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S

This paper proposes a classical weighted least squares type of local polynomial smooth-
ing for the analysis of clustered data, with the key idea of using generalised inverses of
correlation matrices. The estimator has a simple closed-form expression. Simplicity is
achieved also for nonparametric generalised linear models with arbitrary link function
via a transformation. Our approach can be characterised by ‘local observations with
local variances’, which yields intuitively correct results in the sense that correct/incorrect
specification of within-cluster correlation has respective positive/negative effects. The
approach is a natural extension of classical local polynomial smoothing. Consequently,
existing theory can be largely carried over and important issues such as bandwidth
selection can be tackled in the classical fashion. Moreover, the approach can handle
various types of covariate, such as cluster-level, subject-level or partially cluster-level.
Numerical studies support the theoretical results. The method is illustrated with a real
example on luteinising hormone levels in cows.

Some key words: Asymptotic bias; Bandwidth selection; Generalised estimating equation; Kernel function;
Mean squared error; Nonparametric curve estimation.

1. I

Nonparametric curve estimation, and local polynomial smoothing in particular, is a
well-developed methodology; see for example Fan & Gijbels (1992, 1995, 1996), Fan
(1993), Ruppert & Wand (1994), Fan et al. (1995) and Ruppert (1997). Analysis of
longitudinal or clustered data, especially through the generalised estimating equations of
Liang & Zeger (1986), is of considerable current interest (Lin & Carroll, 2000; Wang,
2003). The aim of this paper is to develop a natural local polynomial smoothing method
for the analysis of clustered data, which, in both theory and computation, is simpler and
more general than the methods of Lin & Carroll (2000) and Wang (2003).

Many articles have addressed the analysis of clustered data via local polynomial
smoothing; see Severini & Staniswalis (1994), Wild & Yee (1996), Zeger & Diggle (1994),
Ruckstuhl et al. (2000), Lin & Carroll (2000), Verbyla et al. (1999) and Wang (2003). Lin
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& Carroll (2000) was the first paper to present a formal extension of parametric generalised
estimating equations, but their method yields a counter-intuitive result that correct
specification of within-cluster correlation would have an adverse effect on the curve
estimation. We may explain this phenomenon as follows. To estimate the curve at a fixed
point x0 , all observations with covariates in the neighbourhood of x0 are called ‘local
observations’ and all observations in the data are called ‘global observations’. In Lin &
Carroll (2000), each observation within a cluster is localised through a kernel function,
but each cluster is weighted with the correlation matrix of the entire cluster, which we
call ‘global variance’, instead of the variance of the local observations, which we call ‘local
variance’. This mismatch of ‘local observations with global variance’ is one plausible
explanation of why a correct specification of within-cluster correlation would in fact have
an adverse effect on the curve estimation. Wang (2003) solves this puzzle and improves
the method of Lin & Carroll with ‘seemingly unrelated observations’. In her method,
all ‘global observations’ are used in the estimation. The nonlocal observations, after
subtraction of their means, can provide information about local observations if their
correlation with local observations is correctly modelled; essentially Wang (2003) fixes the
mismatch of Lin & Carroll by using the match ‘global observations with global variance’.
Wang’s method does indeed yield smaller asymptotic variance when the within-cluster
correlation is correctly specified, but it also has drawbacks. Heuristically, the variance
reduction is compromised by a possible increase in bias: the nonlocal observations
may bring in a sizeable bias because their means, for subtraction, are unknown. If the
within-cluster correlation is modelled incorrectly, the accuracy of curve estimation would
deteriorate much more severely than with the method we propose. Moreover, Wang’s
method has computational and theoretical difficulties. First, it requires an iteration pro-
cedure with initial estimate satisfying an asymptotic expansion, which may diverge, and
the resulting asymptotic bias term contains the asymptotic bias of the initial estimate; see
equations (8) and (11) of Wang (2003). This implies that, even though the initial estimate
may be a reasonable choice, its bias will be carried over to the final estimate of Wang
(2003). In addition, the asymptotic bias after full iteration does not have a closed-form
expression and is difficult to evaluate; see equation (14) in Wang (2003). Furthermore,
the theory of both Lin & Carroll (2000) and Wang (2003) deals with local linear estimation
rather than general local polynomial estimation, let alone estimation of the higher-order
derivatives of the curve.

The method of this paper, in contrast to those of Lin & Carroll (2000) and Wang
(2003), can be characterised by the description ‘local observations with local variances’.
The idea is simple and intuitive. We shall only use the relevant observations, namely the
local observations, and weight them by their own variances, namely the local variances,
rather than by global variances. The estimator is simple and has an explicit expression
similar to that of the weighted least squares estimators; see equation (3). As a result, the
computational workload is minimal. Also, the within-cluster correlation is indeed used
appropriately to improve the estimation: when the within-cluster correlation is involved
in the curve estimation, correct specification has a positive effect; when it is not involved,
correct specification does not have an adverse effect. To be specific, if the number of
subjects with one covariate in a small neighbourhood of a point is comparable with
the number of subjects with two or more covariates in the same small neighbourhood,
then correctly specifying the within-cluster correlation indeed results in more accurate
estimation of the function at that point. Otherwise, for example, if we assume that
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covariates have positive and continuous joint density, correctly or incorrectly specifying
the within-cluster correlation leads to the same accuracy of estimation asymptotically. As
will be seen, this phenomenon has a theoretical foundation, can be verified empirically
and, more importantly, can be justified intuitively; see Remarks 4 and 5. Furthermore,
whether the covariate in study is of cluster-level, subject-level or partially cluster-level
makes no difference to our estimation method, and the properties of the curve estimator
are the same for all cases; see Proposition 2 and Remark 5. In addition, the rich theory of
local polynomial smoothing for non-clustered data can be carried over straightforwardly;
see for example the calculation of the asymptotic bias and asymptotic variance of the
estimators of the function and its higher-order derivatives in Proposition 1. The above
advantages hold for all nonparametric generalised linear models with arbitrary link
function via a transformation. The key idea is the use of generalised inverses of matrices.

2. T   

Suppose (x
ij
, y
ij
), for j=1, . . . , J, are the J covariate-response pairs of subject i, which

are independent and identically distributed, for i=1, . . . , n. The covariates x
ij

are scalar.
In the spirit of generalised linear models, we assume that, for j=1, . . . , J, E(y

ij
|x
ij
=x)=

g{h(x)} and var ( y
ij
|x
ij
=x)=w

j
v[g{h(x)}], where g ( . ) and v ( . ) are smooth functions, w

j
is associated with dispersion, and h( . ) is the unknown function to be estimated. The above
conditional variance may in general contain a factor w

ij
, which, without loss of generality,

is omitted here for simplicity of presentation.
If h ( . ) is assumed to belong to a parametric family, the parameters can be estimated

by the method of parametric generalised estimating equations. The key idea is to use
R
i
=R(a, x

i1
, . . . , x

iJ
) to model the within-cluster correlation matrix R

i0
, the conditional

correlation matrix of {y
ij
, j=1, . . . , J}, given {x

ij
, j=1, . . . , J}. For example, one can

model the correlations with the autoregressive model or the exchangeable model that
assumes all the correlations to be the same. In general, the modelling of R

i0
by R

i
may

involve an unknown parameter a to be estimated separately from the data. For simplicity
of argument and without loss of generality, we assume throughout the paper that a is
fixed, that the eigenvalues of R

i
and R

i0
are uniformly bounded below away from 0, and

that the elements of R
i
and R

i0
are continuous functions of the covariates.

In nonparametric regression models, h( . ) is arbitrary except for certain differentiability
properties. Precisely for this reason, the above regression model can be equivalently
formulated as

y
ij
=m(x

ij
)+s(x

ij
)e
ij

( j=1, . . . , J, i=1, . . . , n), (1)

where m(.)=g{h( . )}, s( . )=[v{m(.)}]D and the error e
ij

satisfies

E(e
ij
|x
i1

, . . . , x
iJ

)=0, var (e
ij
|x
i1

, . . . , x
iJ

)=var (y
ij
|x
i1

, . . . , x
iJ

)/s2 (x
ij
)=w

j
,

for j=1, . . . , J. Let W=diag (w1 , . . . , w
J
), S

i
=diag {s2 (x

i1
), . . . , s2 (x

iJ
)} and

V
i0
=var {( y

i1
, . . . , y

iJ
)T |x

i1
, . . . , x

iJ
}.

Then R
i0
= (WS

i
)−DV

i0
(S

i
W)−D. Both V

i0
and R

i0
may possibly depend on the covariates

of subject i. Unlike in the parametric setting, in the nonparametric setting it might be
estimation of g{h( . )} rather than h( . ) that is of interest because the former represents the
conditional mean of the response given the covariates and the latter is a totally unspecified
function which may lack clear interpretation.

 at C
olum

bia U
niversity L

ibraries on M
arch 27, 2015

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


62 K C  Z J

The Moore–Penrose generalised inverse of a matrix will play a key role. We define
the generalised inverse of any symmetric J×J matrix A to be a symmetric matrix,
denoted still by A−1, such that AA−1A=A and A−1AA−1=A−1. To be specific,
suppose that A=C diag (l1 , . . . , l

J
)CT, where C is an orthonormal matrix. Then,

A−1=C diag (1/l1 , . . . , 1/l
J
)CT, where 1/0 becomes 0.

Throughout the paper, x0 is an arbitrary but fixed interior point of the domain of x
ij

and K ( . ) is a symmetric density function with bounded support assumed, without loss of
generality, to be [−1, 1]. Define K

h
(t)=K(t/h)/h, where h is the bandwidth. Typical

choices of K ( . ) are, for example, the Epanechnikov kernel K(t)=0·75(1−t2 )I( |t|∏1) and
the uniform kernel K(t)=0·5I( |t|∏1). Here and throughout the paper, I ( . ) is the indicator
function. Let K

ih
=diag {K

h
(x
i1
−x0 ), . . . , Kh

(x
iJ
−x0 )} and

W
i
= (K−D

ih
WDR

i
WDK−D

ih
)−1=KD

ih
W−D (I

i
R
i
I
i
)−1W−DKD

ih
, (2)

where

I
i
=diag [I{K

h
(x
i1
−x

0
)>0}, . . . , I{K

h
(x
iJ
−x

0
)>0}]

=diag {I( |x
i1
−x

0
|∏h), . . . , I( |x

iJ
−x

0
|∏h)}.

Define

X
i
=A1 (x

i1
−x

0
) … (x

i1
−x

0
)p

e e e e

1 (x
iJ
−x

0
) … (x

iJ
−x

0
)pBJ×(p+1) , Y

i
=Ay

i1
e

y
iJ
B
J×1

.

Minimising Wn
i=1

{(Y
i
−X

i
b)TW

i
(Y
i
−X

i
b)} over b= (b0 , . . . , b

p
)TµRp+1, one obtains

b@=Ab@
0
e

b@
p
B=A ∑

n

i=1
XT
i
W
i
X
iB−1A ∑

n

i=1
XT
i
W
i
Y
iB . (3)

Set m@
k
(x0 )=k!b@

k
to be the estimator of m(k) (x0 ), for k=0, . . . , p. In particular, m@ 0 (x0 ) is

the estimator of m(x0 ). Naturally, one defines hA (x0 )=g−1{m@ (x0 )}=g−1 (b@0 ) to be the
estimator of h(x0 ). Although it appears to be more natural to use R−1

i
rather than (I

i
R
i
I
i
)−1

in expression (2), it will become clear later that such a replacement will result in less
accurate estimators; see Corollary 2. Proofs are given in the Appendix.

The greatest advantage of the estimator proposed above is its simplicity. Its expression
is in closed form and analogous to the classical weighted least squares type of local
polynomial estimators for non-clustered data. The related theory and computation are
straightforward. The estimators of Lin & Carroll (2000), for instance, are solutions of
estimating equations which do not have closed-form expressions, so that numerical
solution is necessary. Furthermore, such computation has to be repeated at any point x0
of interest if one wishes to estimate h(x0 ) or m(x0 ). The computation is more complex in
Wang (2003) since it relies on the estimate of Lin & Carroll (2000) as an initial estimate
and, moreover, requires another iteration procedure.

The above estimate m@
k
(x) does not use either g ( . ) or v ( . ). The function g ( . ) is only used

in deriving the estimate of h( . ). Therefore, the framework of generalised linear models
becomes less essential. This point is most clearly seen from (1), where s( . ) plays the role
of a nuisance parameter and should not be modelled unless necessary. On the other hand,
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63Regression analysis of clustered data

if v ( . ) is known, one may choose to modify the definition of W
i
in (2) slightly to incorporate

this information and obtain slightly different estimates. However, such a modification
incurs more computation and it is unclear if the modified version is better.

3. A 

Let FX
n

denote the s-algebra generated by (x
i1

, . . . , x
iJ

), for i=1, . . . , n. Using only the
positivity and continuity of s2 ( . ) at x0 , one can show via a direct calculation that

var (b@ |FX
n
)=s2 (x

0
)A−1

n
B
n
A−1
n

{1+o
P
(1)}, (4)

where A
n
=Wn

i=1
XT
i
W
i
X
i
and

B
n
= ∑

n

i=1
XT
i
W−DKD

ih
(I
i
R
i
I
i
)−1KD

ih
R
i0

KD
ih
(I
i
R
i
I
i
)−1KD

ih
W−DX

i
. (5)

The asymptotic theory requires some regularity conditions on the local distribution of
the covariates. Let V

k
, for 1∏k∏2J−1, be the 2J−1 distinct subsets of {1, . . . , J}, except

for the empty set, and let B(x, h) denote the interval [ x−h, x+h].
Then an important condition is that there exists a d0>0 such that, for all xµB(x0 , d0 )

and all k=1, . . . , 2J−1,

pr {x
1j
µB(x, h) and are equal for all jµV

k
, and x

1j
1

Nx
1j

for any j
1
1V

k
and jµV

k
}

=P h
−h

f
k
(x+t)dt

=pr {x
1j
µB(x, h) for all jµV

k
, and x

1j
1B(x, h) for all j1V

k
}+o(h),

for all 0<h<2d0 , where f
k
( . ), for 1∏k∏2J−1, are nonnegative continuous functions on

B(x0 , 2d0 ) such that W2J−1
k=1

f
k
(t)>0 for all tµB(x0 , 2d0 ).

Remark 1. This condition is referred to as ‘the existence of partial density’ of the
covariates (x11 , . . . , x1J )T at x0 , because, for every k=1, . . . , 2J−1, f

k
( . ) can be viewed

as the partial density of the partial cluster-level covariates {x
1j

, jµV
k
}. The condition

ensures that, unless they are of partial cluster-level, two covariates take values in a
small neighbourhood of x0 with negligible chance. This condition precisely features the
types of covariate of interest: cluster-level covariates, partial cluster-level covariates and
covariates with existing joint density. Cluster-level covariates, i.e. such that x

i1
= . . . =x

iJ
,

typically appear in, for example, the repeated measurements of responses given the
same covariates. Partial cluster-level covariates are also rather common, for example
when covariates are a random point process observed at different times. Since the paths
of a point process are step functions, consecutive observations may well be identical, that
is pr {x

i,j
=x

i,j+1
}>0. Note that the marginal density of x

1l
, denoted by f *

l
( . ), satisfies

f *
l
( . )=W2J−1

k=1
f
k
( . )I(lµV

k
). Consider the special case when the joint density of x

1j
(1∏ j∏J) exists. Suppose, for k=1, . . . , J, that V

k
={k}. Then, in this case, f

k
( . ) is the

marginal density of x
1k

, for k=1, . . . , J, and the remaining f
k
( . ) are 0. Consider another

special case of cluster-level covariates such that pr {x11= . . . =x
1J

}=1. Suppose that
V
2J−1

={1, . . . , J}. Then, in this case, f
2J−1

( . ) is the common marginal density for every
covariate, and all other f

k
( . ), for kN2J−1, are 0.

Let S
k
(0)={x

1j
=x0 for all jµV

k
, and x

1j
Nx0 for all j1V

k
}, and define

j
k
=E{1T

0
W−D (I

k0
R
1
I
k0

)−1W−D1
0
|S
k
(0)},
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where I
k0
=diag {I(1µV

k
), . . . , I(JµV

k
)}, which is a J×J nonrandom matrix, and 10 is

a J-vector with all components equal to 1. Define j
k0

as for j
k

except with the modelled
correlation matrix R1 replaced by the true correlation matrix R10 . Define j:

k
as for j

k
except with (I

k0
R1Ik0 )−1 replaced by (I

k0
R1Ik0 )−1R10 (Ik0R1Ik0 )−1. Note that j

k
=j:

k
=j

k0
if the modelled correlation matrix equals the true correlation matrix, that is R1=R10 .

Some more notation is needed. Set m
j
=∆ tjK(t)dt, n

j
=∆ tjK2 (t)dt, c

p
=(m

p+1
, . . . , m

2p+1
)T,

S= (m
i+j

)
0∏i,j∏p

and S9= (n
i+j

)
0∏i,j∏p

. Note that c
p

is a ( p+1)-vector and that S

and S9 are ( p+1)× ( p+1) matrices. Let e
k
= (0, . . . , 0, 1, 0, . . . , 0)T be a ( p+1)-vector,

where the unique 1 occurs at the kth position, and let e0 be the ( p+1)-vector of zeros.
Let f *

j
denote the density function of x

ij
.

P 1. Suppose that the condition of the existence of partial density holds
and s2 ( . ) and m(p+1) ( . ) are continuous at x

0
with s2 (x

0
)>0. L et k=0, . . . , p, and assume

that h� 0 and nh�2. T hen the following results hold.
(i ) T he conditional variance of m@

k
(x
0
) is

var {m@
k
(x
0
) |FX

n
}=

k!2

nh1+2k
eT
k+1

S−1S9S−1ek+1
s2 (x

0
)W2J−1

l=1
f
l
(x
0
)j:
l

{W2J−1
l=1

f
l
(x
0
)j
l
}2

+o
PA 1

nh1+2kB . (6)

T he conditional bias of m@
k
(x0 ) for p−k odd is

Bias {m@
k
(x
0
) |FX

n
}=eT

k+1
S−1c

p
k!

( p+1)!
m(p+1) (x

0
)hp+1−k+o

P
(hp+1−k ), (7)

where the main term on the right-hand side is free of the distribution of the covariates or
the modelled or true correlation matrices. For p−k even, (7) still holds and the first term
on the right-hand side is 0.

(ii ) For any given bandwidth and kernel, the asymptotic variance and mean squared error
are minimised when the modelled correlation matrix equals the true correlation matrix, that
is R

i
=R

i0
, in which case j

l
=j:

l
=j

l0
, for 1∏ l∏2J−1.

(iii ) For any given bandwidth, the asymptotic variance is minimised when the modelled
correlation matrix equals the true correlation matrix and the kernel is the uniform kernel.

(iv) For a given kernel K(.) and p−k odd, the asymptotic mean squared error of m@
k
(x
0
)

is minimised when the modelled correlation matrix equals the true correlation matrix and
the bandwidth is the optimal local variable bandwidth,

C (2k+1)( p+1)!2 ∆ {K
k,p

(t)}2dts2 (x
0
)

n(2p+2−2k){m(p+1) (x
0
) ∆ tp+1K

k,p
(t)dt}2W2J−1

l=1
f
l
(x
0
)j
l0
D1/(2p+3) , (8)

where K
k,p

is the equivalent kernel of order (k, p) induced by K. Moreover, for p−k odd, the
asymptotic mean squared error is minimised when the modelled correlation matrix is the true
correlation matrix, the smooth symmetric nonnegative kernel is the Epanechnikov kernel and
the bandwidth is the above optimal bandwidth.

Remark 2. Result (iv) of Proposition 1 provides the optimal theoretical local variable
bandwidth based on the mean squared error criterion, which varies with the value of x0 .
In practice, however, a global variable bandwidth which is constant might be preferred
because of its simplicity. An expression for asymptotic optimal global bandwidth can be
obtained by minimising the conditional weighted mean integrated squared error,

=P ([Bias {m@
k
(x) |FX

n
}]2+var {m@

k
(x) |FX

n
})w(x)dx=P {m@

k
(x) |FX

n
}w(x)dx,
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say, where w( . ) is a nonnegative weight function. This leads to the global constant optimal
bandwidth expression,

C (2k+1)( p+1)!2 ∆ {K
k,p

(t)}2 dt{∆ s2 (x)w(x)/W2J−1
l=1

f
l
(x)j

l0
dx}

n(2p+2−2k){∆ tp+1K
k,p

(t)dt}2 ∆ {m(p+1) (x)}2w(x)dx D1/(2p+3) .
Remark 3. The asymptotic properties of h@ (x0 ) can be obtained straightforwardly from

Proposition 1. It follows from Taylor expansion that

h@ (x
0
)−h(x

0
)=

1

g∞{h(x
0
)}

{m@
0
(x
0
)−m(x

0
)}−

g◊{h(x
0
)}

2[g∞(h(x
0
)}]3

{m@
0
(x
0
)−m(x

0
)}2{1+o

P
(1)}.

By a careful examination of the negligible terms, one can show that

Bias {h@ (x
0
) |FX

n
}=C 1

g∞{h(x
0
)}

Bias {m@
0
(x
0
) |FX

n
}−

g◊{h(x
0
)}

2[g∞{h(x
0
)}]3

var {m@
0
(x
0
) |FX

n
}D

×{1+o
P
(1)},

var {h@ (x
0
) |FX

n
}=[g∞{h(x

0
)}]−2 var {m@

0
(x
0
) |FX

n
}{1+o

P
(1)},

{h@ (x
0
) |FX

n
}=[g∞{h(x

0
)}]−2{m@

0
(x
0
) |FX

n
}{1+o

P
(1)}.

In the special cases when the joint density of the covariates exists or when the covariates
are of cluster-level, the expression for the asymptotic variance can be simplified as follows.

C 1. Suppose that the conditions of Proposition 1 hold.
(i ) If, in particular, the joint density of (x

11
, . . . , x

1J
)T exists, then the conditional variance

of m@
k
(x
0
) can be simplified as

var {m@
k
(x
0
) |FX

n
}=

k!2

nh1+2k
eT
k+1

S−1S9S−1ek+1
s2 (x

0
)

WJ
l=1

f *
l
(x
0
)/w

l
+o

PA 1

nh1+2kB , (9)

where f *
l
( . ) is the marginal density of x

1l
. In this particular case, the modelled correlation

matrix, correct or incorrect, does not aVect the asymptotic variance of the curve estimation.
(ii ) If, in particular, the covariates are of cluster level, that is pr {x11= . . . =x

1J
}=1,

then the conditional variance of m@
k
(x0 ) is

var {m@
k
(x
0
) |FX

n
}=

k!2

nh1+2k
eT
k+1

S−1S9S−1ek+1
s2 (x

0
)j:
*

f *
1
(x
0
)j2
*
+o

PA 1

nh1+2kB , (10)

where f *
1
( . )= . . . = f *

J
( . ) is the common density of x

11
, . . . , x

1J
and j* and j:* are

respectively defined as for j
k
and j:

k
except with S

k
(0) replaced by {x

11
= . . . =x

1J
=x

0
}.

Remark 4. When the joint density of covariates exists, the modelled correlation matrix
does not appear in the expressions for asymptotic variance and bias and therefore does
not affect the accuracy of curve estimation. This phenomenon is in fact not surprising
at all. A heuristic but intuitive explanation is as follows. In constructing the estimator
m@
k
(x0 ), only those (x

ij
, y
ij
) with |x

ij
−x0 |∏h are used. The existence of joint density

ensures that the number of subjects with exactly one covariate-response pair used is
2nhWJ

j=1
f *
j
(x
0
){1+o

P
(1)}, while the number of subjects with two or more covariate-

response pairs used is O
P
(nh2 ). Apparently, the estimate m@

k
(x0 ) is mostly determined by
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subjects with exactly one covariate-response pair used, so that modelling within-cluster
correlation becomes redundant and the local polynomial smoothers for clustered data are
essentially reduced to those for non-clustered data.

Suppose that, in the definition of b, we replace (I
i
R
i
I
i
)−1 by R−1

i
. The resulting estimator

m@ *
k
(x
0
) of m

k
(x0 ) in the case of p=1 is the estimator proposed in Lin & Carroll (2000).

Corollary 2 shows that m@ *
k
(x
0
) is actually less accurate than m@

k
(x0 ).

C 2. Suppose that the conditions of Proposition 1 hold. If the joint density of
(x
11

, . . . , x
1J

)T exists, then the conditional biases of m@ *
k
(x
0
) are the same as (7) and the

conditional variance of m@ *
k
(x
0
) is

var {m@ *
k
(x
0
) |FX

n
}=

k!2

nh1+2k
eT
k+1

S−1S9S−1ek+1
s2 (x

0
){WJ

l=1
f *
l
(x
0
)r2
l
/w
l
}

{WJ
l=1

f *
l
(x
0
)r
l
/w
l
}2

+o
PA 1

nh1+2kB ,

(11)

where f *
l
( . ) is the marginal density of x

1l
and r

l
=E(ril |x

il
=x

0
), with ril being the lth diagonal

element of R−1
i

. Moreover, m@ *
k
(x
0
) has larger asymptotic mean squared error than m@

k
(x
0
)

unless R
i
is the identity matrix.

The ease of theoretical analysis is reflected in Proposition 1 and Corollary 1 and the
close resemblance of these results to those for non-clustered data. In fact, the asymptotic
biases given in (7) are identical to the classical counterpart, and, when J=1, the asymptotic
variances in (6), (9) and (10) also reduce to their classical counterpart; see for example
Fan & Gijbels (1996, p. 62). This can also be seen in the following corollary, which
presents asymptotic properties of the widely-used local linear smoothers. As a result of
the theoretical simplicity, critical issues such as optimal bandwidth, optimal choice of
kernel and minimisation of mean squared error are easily solved.

C 3 (L ocal linear smoothers). Suppose that the condition of the existence of
partial density holds and that s2 ( . ) and m◊( . ) are continuous at x

0
with s2 (x0 )>0. Assume

that h� 0 and nh�2. T hen the following results hold.
(i ) T he conditional variance of m@ (x

0
) is

var {m@ (x
0
) |FX

n
}=

∆K2 (t)dt

nh

s2 (x
0
)W2J−1

k=1
f
k
(x
0
)j:
k

{W2J−1
k=1

f
k
(x
0
)j
k
}2

{1+o
P
(1)}, (12)

and the conditional bias of m@ (x
0
) is

Bias {m@ (x
0
) |FX

n
}=

1

2
h2m◊(x

0
) P t2K(t)dt+o

P
(h2 ). (13)

(ii) Assume that m◊(x0 )N0. T he conditional asymptotic mean squared error is minimised
when the modelled correlation matrix is the true correlation matrix, the smooth symmetric
nonnegative kernel is the Epanechnikov kernel, the bandwidth is

h=C 15s2 (x
0
)

n{m◊(x
0
)}2W2J−1

k=1
f
k
(x
0
)j
k0
D1/5 ,
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and the minimised asymptotic mean squared error is

3

4
15−1/5{m◊(x

0
)}2/5q s2 (x

0
)

nW2J−1
k=1

f
k
(x
0
)j
k0
r4/5 .

For a given bandwidth, the uniform kernel with the true correlation matrix achieves the
minimum asymptotic variance.

As stated before, the condition of the existence of partial density is broad enough to
cover most interesting cases. In fact, for the purpose of variance minimisation, even this
mild condition can be dropped. This is reflected in Proposition 2.

P 2. Suppose that s2 ( . ) is continuous and positive at x
0
, and assume that

h� 0 and nh�2. T hen the asymptotic variance of m@
k
(x
0
) is minimised when R

i
=R

i0
and K(.) is the uniform kernel, in which case A

n
=2B

n
. T he minimised asymptotic variance

of b@ is

s2 (x
0
)q ∑

n

i=1
XT
i
W−D (I

i
R
i0

I
i
)−1W−DX

ir−1{1+o
P
(1)}.

In particular, if the joint density of (x
11

, . . . , x
1J

)T exists, then the asymptotic variance of
m@
k
(x
0
) is minimised when K(.) is the uniform kernel and R

i
is an arbitrary correlation matrix.

Remark 5. Curve estimation is more accurate when the modelled correlation matrix is
equal to the true correlation matrix. For illustration, suppose that g ( . ) is the identity
function and w

j
=1, but without assuming within-cluster independence. The conditional

variance of the proposed estimator with R
i
=R

i0
and the uniform kernel is

A ∑
n

i=1
XT
i
W
i
X
iB−1A ∑

n

i=1
XT
i
W
i
V
i
W
i
X
iBA ∑

n

i=1
XT
i
W
i
X
iB−1
js2 (x

0
)q ∑

n

i=1
XT
i
(I
i
R
i0

I
i
)−1X

ir−1,
while the conditional variance of the existing working independence estimator is
approximately

s2 (x
0
)A ∑

n

i=1
XT
i
I
i
X
iB−1A ∑

n

i=1
XT
i
I
i
R
i0

I
i
X
iBA ∑

n

i=1
XT
i
I
i
X
iB−1 .

It is clear that the former is smaller than or equal to the latter, with equality only
when either all {R

i0
} are identity matrices, which implies that there is no within-cluster

correlation, or each I
i
contains at most one nonzero diagonal element, which implies that

every observation has at most one covariate in the interval [ x0−h, x0+h]. Heuristically,
if the within-cluster correlation is nonzero and there exist observations with more than
one covariate in the interval, then the proposed estimator with correct modelling is better.
Otherwise, the proposed estimator is still as good as the existing one. In other words, if
the within-cluster correlation matrix is involved in the estimation, the estimator based
on a correct specification is more accurate than the existing estimator. With correct
specification of within-cluster correlation, the limiting conditional variance of the proposed
estimator is always smaller than or equal to that of the existing estimator.
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4. N 

Simulation studies are carried out to examine the performance of the proposed method,
with data generated from the model

y
ij
=m(x

ij
)+e

ij
( j=1, 2, 3, i=1, . . . , n),

where m(x)=2×exp {sin (10x)} and the errors (e
i1

, e
i2

, e
i3

) follow the trivariate normal
distribution with mean 0, var (e

i1
)=0·25, var (e

i2
)=0·64, var (e

i3
)=0·49 and corr (e

ij
, e
ik
)=

0·6, for jNk and j, k=1, 2, 3. The covariates are of partial cluster-level: x
i1

and x
i2

are
generated independently from the uniform distribution Un [−2, 2] and x

i3
=x

i1
. The

errors and covariates are independent.
The number of simulations is 1000 and the sample size n is either 50 or 100. The curve

estimate m@ 0 ( . ) is computed on the grid points x
j
=−1·8+0·036j ( j=0, . . . , 100), with

several choices of bandwidth h, using four different estimation methods: the proposed
local linear, p=1, method; the working independence method of Lin & Carroll (2000);
the one-step estimation method of Wang (2003); and the estimation method of Wang
(2003) with iterations. The Epanechnikov kernel was used in all methods.

For each of the grid points, the bias and variance were computed based on the 1000
simulation runs. Also, the integrated squared error D

i
was obtained for the ith simulation,

where D
i
=∆1·8

−1·8
{m(x)−m@

0i
(x)}2dx (i=1, . . . , 1000) with the integration replaced by

summation over x
j
=−1·8+0·036j ( j=0, . . . , 100). Table 1 summarises the results:

‘Bias’, the average of the absolute values of biases over the 101 grid points; ‘’, the average
of the sample standard deviations over the 101 grid points; and ‘’, the average of
integrated squared errors. Table 1 also reports the relative values of  for the three
other estimators to that for the proposed estimator: a ratio greater than 1 indicates that
the new estimator performs better.

The estimates based on the proposed method have the smallest overall bias among the
four methods, for each fixed n and h. Wang’s method outperforms that of Lin & Carroll
in terms of  and  only when h=0·2 for n=50 and when h=0·1 for n=100. This
indicates that whether or not Wang’s method is better than Lin & Carroll’s depends

Table 1. Comparison of methods based on 1000 simulations

Lin–Carroll’s Wang’s first-step Wang’s estimator
Proposed estimator estimator estimator after iterations

h Bias  1 Bias   Bias   Bias  

n=50
0·1 0·139 1·134 5·329 0·159 2·979 11·76 0·176 2·677 13·10 0·183 2·044 5·81
0·2 0·529 0·411 2·036 0·532 0·471 1·52 0·593 0·438 1·25 0·628 0·448 1·33
0·3 0·951 0·405 4·844 0·969 0·424 1·04 1·043 0·413 1·18 1·065 0·435 1·24
0·4 1·283 0·439 8·261 1·308 0·455 1·04 1·347 0·440 1·09 1·353 0·461 1·11

n=100
0·1 0·163 0·280 0·436 0·165 0·442 11·70 0·189 0·335 3·45 0·209 0·339 4·23
0·2 0·554 0·223 1·702 0·563 0·233 1·04 0·640 0·218 1·27 0·668 0·235 1·38
0·3 0·971 0·261 4·657 0·993 0·272 1·05 1·075 0·266 1·21 1·090 0·279 1·25
0·4 1·298 0·298 8·060 1·328 0·307 1·05 1·366 0·299 1·10 1·369 0·314 1·11

Estimators: Lin–Carroll, Lin & Carroll (2000); Wang’s first step and Wang’s estimator after iterations, Wang
(2003). Bias, average of absolute values of biases at 101 grid points; , average of standard deviations at 101
grid points; 1 , average of integrated squared errors D

i
(i=1, . . . , 1000) for proposed method; , 

as a multiple of 1 .
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critically on the sample size and the choice of bandwidth. On the other hand, all 
ratios are greater than 1, indicating that the proposed method outperforms the other three
methods. It also shows that the improvement achieved by the proposed estimator can be
quite substantial for smaller bandwidths.

We apply the proposed method to a real example. Raz (1989) presented luteinising
hormone levels, in ng/ml, in 16 suckled and 16 non-suckled cows at times 1, 2, 3, 4, 5, 5·5,
6, 6·5, 7, 7·5, 8, 8·5, 9, 9·5 and 10 days after their postpartum. Figure 1 shows the profile
plot of the raw data. It is of interest to compare the two groups of cows, and visual
comparison from Fig. 1 is not easy.

Fig. 1. The profile plot of cow luteinising hormone data; 16 solid
lines for nonsuckled cows, 16 dotted lines for suckled cows.

We therefore consider local linear, p=1, and local cubic, p=3, fits separately for
each group. Our estimates use two different working within-cluster correlation matrices,
the identity matrix I and the estimated correlation matrix RC0 , where RC0 was based on the
residuals from the fit with identity working within-cluster correlation matrix under the
assumption that the two groups have identical correlation structures. The global optimal
bandwidth in Remark 2 was estimated by mimicking the rule-of-thumb global bandwidth
selector in Fan & Gijbels (1996, p. 110) with a constant weight function w( . )¬1. With
initial global bandwidths ranging from 1 to 6, the approach yielded estimates of the
optimal global bandwidth with a range of 1·99 to 4·69 and mean 3·01. Consequently,
bandwidth h=3 was used in our computation. We found that the rule-of-thumb global
bandwidth selection is easy to apply and reliable. Other competitive approaches, such
as crossvalidation and the empirical-bias bandwidth selector (Ruppert, 1997), can also
be applied. The two curves were estimated on the grid points 0·5+0·25 ( j−1), for
j=1, . . . , 41, with the Epanechnikov kernel. The results are contained in Fig. 2(a) for the
local linear fit and Fig. 2(b) for the local cubic fit, respectively. It is evident from Figs 1
and 2 that nonsuckled cows typically have higher luteinising hormone levels than suckled
cows. It is also clear that different working within-cluster correlation matrices lead to
different curve estimates.
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Fig. 2. The estimated curves of cow luteinising hormone levels
with ±2 pointwise standard errors (a) for p=1 and (b) for
p=3: for nonsuckled cows using estimated correlation matrix,
solid; for nonsuckled cows using identity correlation matrix,
dotted; for suckled cows using estimated correlation matrix, long-
dashed; for suckled cows using identity correlation matrix,

short-dashed. The thicker curves are the estimated curves.
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A

Proofs

Proof of Proposition 1. (i) Set H=diag (1, h, . . . , hp ) and c
ijs
= (x

ij
−x0 )s{Kh

(x
ij
−x0 )/wj}1/2,

for i=1, . . . , n, j=1, . . . , J and s=0, . . . , p. For every fixed n=1, . . . , 2J−1, let

S
n
(h)={x

1j
µB(x

0
, h) for all jµV

n
, and x

1j
1B(x

0
, h) for all j1V

n
}.
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Recall that S
n
(0)={x

1j
=x0 for all jµV

n
, and x

1j
Nx0 for all j1V

n
}. The condition of the existence

of partial density ensures that pr {x
1j

are all equal for all jµV
n
|S
n
(h)}=1+o(1) with their con-

ditional marginal densities being proportional to f
n
( . ){1+o(1)} on B(x0 , h) as h� 0. Let a

m+1,l+1
denote the (m+1, l+1)th element of A

n
, for 0∏m and l∏p. Let j

n
µV

n
. Then, for 0∏m and l∏p,

E(a
m+1,l+1

)= ∑
n

i=1
EG(ci1m . . . c

iJm
)(I
i
R
i
I
i
)−1Ac

i1l
e

c
iJl
BH

=n ∑
2J−1

n=1
EG(c11m . . . c

1Jm
)(I
1
R
1
I
1
)−1Ac

11l
e

c
1Jl
B KSn

(h)H pr {S
n
(h)}

=n ∑
2J−1

n=1
E[(x

1j
n

−x
0
)m+lK

h
(x
1j
n

−x
0
)I{S

n
(h)}]

×E{1T
0
W−1/2 (I

n0
R
1
I
n0

)−1W−1/21
0
|S
n
(0)}{1+o(1)}

=n ∑
2J−1

n=1
P (x−x

0
)m+l f

n
(x)

1

h
KAx−x

0
h B dx

×E{1T
0
W−1/2 (I

n0
R
1
I
n0

)−1W−1/21
0
|S
n
(0)}{1+o(1)}

=n ∑
2J−1

n=1
hm+l P tm+lK(t) f

n
(x
0
+ht)dt

×E{1T
0
W−1/2 (I

n0
R
1
I
n0

)−1W−1/21
0
|S
n
(0)}{1+o(1)}

=nhm+lm
m+l

∑
2J−1

n=1
f
n
(x
0
)j
n
{1+o(1)}.

Similarly, we can show that {var (a
m+1,l+1

)}1/2=o(nhm+l ). Then

a
m+1,l+1

=E(a
m+1,l+1

)+O
P
[{var (a

m+1,l+1
)}1/2]=nhm+lm

m+l
∑
2J−1

n=1
f
n
(x
0
)j
n
{1+o

P
(1)}.

Therefore,

A
n
=nq ∑

2J−1

n=1
f
n
(x
0
)j
nrHSH{1+o

P
(1)}.

By a similar calculation, it follows that

B
n
=nh−1q ∑

2J−1

n=1
f
n
(x
0
)j:
nrHS9H{1+o

P
(1)}.

Therefore, it follows from (4) that

var {m@
k
(x
0
) |FX

n
}=k!2s2 (x

0
)eT
k+1

A−1
n

B
n
A−1
n

e
k+1

{1+o
P
(1)}

=
k!2

nh1+2k
eT
k+1

S−1S9S−1ek+1
s2 (x

0
)W2J−1

l=1
f
l
(x
0
)j:
l

{W2J−1
l=1

f
l
(x
0
)j
l
}2

+o
PA 1

nh1+2kB .

Thus, (6) holds.
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Similarly to the asymptotic expansion of A
n
, one can show that

∑
n

i=1
XT
i
W
iA (x

i1
−x

0
)p+1

e

(x
iJ
−x

0
)p+1B=nhp+1 ∑

2J−1

n=1
{ f
n
(x
0
)j
n
}Hc

p
{1+o

P
(1)}.

By Taylor expansion, the conditional bias of b@ is

E(b@ |FX
n
)−b=A ∑

n

i=1
XT
i
W
i
X
iB−1 ∑

n

i=1
XT
i
W
iGAm(x

i1
)

e

m(x
iJ

)B−X
i
bH

=A−1
n

∑
n

i=1
XT
i
W
iA (x

il
−x

0
)p+1

e

(x
iJ
−x

0
)p+1B {b

p+1
+o

P
(1)}

=Cnq ∑
2J−1

n=1
f
n
(x
0
)j
nrHSHD−1Hc

p
nhp+1 ∑

2J−1

n=1
{ f
n
(x
0
)j
n
}{b

p+1
+o

P
(1)}

=H−1S−1c
p
hp+1{b

p+1
+o

P
(1)}.

Recall that b
l
=m(l) (x0 )/l ! for l�0. Then (7) follows.

If p−k is even, it is well known that eT
k+1

S−1c
p
=0; see Fan & Gijbels (1996, p. 102). Thus, the

leading term in (7) is 0.
(ii) To show that, for any bandwidth and any kernel K, the asymptotic variance is minimised

when the modelled correlation matrix equals the true correlation matrix, it suffices to show that
W2J−1
l=1

f
l
(x
0
)j:
l
/{W2J−1

l=1
f
l
(x
0
)j
l
}2 is minimised when R1=R10 . Recall that 10 is the J-vector with all

components equal to 1. Let

b
l
= (W1/2I

l0
R
10

I
l0
W1/2 )1/2 (W1/2I

l0
R
1
I
l0
W1/2 )−11

0
(1∏ l∏2J−1).

Then

W2J−1
l=1

f
l
(x
0
)j:
l

{W2J−1
l=1

f
l
(x
0
)j
l
}2

=
W2J−1
l=1

f
l
(x
0
)E{bT

l
b
l
|S
l
(0)}

[W2J−1
l=1

f
l
(x
0
)E{1T

0
(W1/2I

l0
R
10

I
l0
W1/2 )−1/2b

l
|S
l
(0)}]2

�
1

W2J−1
l=1

f
l
(x
0
)E{1T

0
(W1/2I

l0
R
10

I
l0
W1/2 )−11

0
|S
l
(0)}

=q ∑
2J−1

l=1
f
l
(x
0
)j
l0r−1 ,

where the inequality follows from the Cauchy–Schwartz inequality, and equality holds if and only
if b

l
= (W1/2I

l0
R10Il0W1/2 )10 . By the definition of b

l
, R1=R10 implies that b

l
= (W1/2I

l0
R10Il0W1/2 )10 .

This proves that, for given bandwidth and kernel, the asymptotic variance is minimised when the
modelled correlation matrix equals the true correlation matrix.

(iii)–(iv) It is a classical result that the minimum variance kernel minimising eT
k+1

S−1S9S−1ek+1
is the uniform kernel 0·5I( |t|∏1); see for example Fan & Gijbels (1996, p. 75). Thus the proof
of (ii) implies that, for any given bandwidth, the asymptotic variance is minimised with the true
correlation matrix and the uniform kernel. In a similar fashion, the last two statements also follow
from the proof of (ii) and the analogous results established for local polynomial regression for
non-clustered data; see Fan & Gijbels (1996, Ch. 3). %
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Proof of Corollary 1. (i) Without loss of generality, suppose that V
l
={l} for l=1, . . . , J. When

the joint density of (x11 , . . . , x1J )T exists, it is seen that f
l
(x0 )= f *

l
(x
0
), the marginal density of x

1l
for 1∏ l∏J, and that f

l
(x0 )=0 for l>J. Moreover, j

l
=j:

l
=w−1

l
for l=1, . . . , J. Therefore, (9)

follows from (6). Since the leading term in (9) is free of the modelled correlation matrix or the true
correlation matrix, the asymptotic variance remains the same whether the modelled correlation
matrix is correct or not.

(ii) Without loss of generality, suppose that V
2J−1

={1, . . . , J}. Then pr {x11= . . . =x
1J

}=1
implies that f

l
(x0 )=0 for all 1∏ l∏2J−2, and that f

2J−1
(x
0
)= f *

1
(x
0
)= . . . = f *

J
(x
0
). Therefore,

W2J−1
l=1

f
l
(x
0
)j
1
= f *

1
(x
0
)j
*

and W2J−1
l=1

f
l
(x
0
)j:
l
= f *

1
(x
0
)j:
*
. Then (10) follows from (6). %

Proof of Corollary 2. If we replace (I
i
R
i
I
i
)−1 by R−1

i
, the conditional asymptotic biases and

variance (11) can be derived by the same steps as in the proof of Proposition 1 (i). Thus, we omit
the details.

Since m@
k
(x0 ) and m@ *

k
(x
0
) have the same asymptotic biases, we only need to compare

var {m@
k
(x0 ) |FX

n
} with var{m@ *

k
(x
0
) |FX

n
}. By the Cauchy–Schwartz inequality, we have

WJ
l=1

f *
l
(x
0
)r2
l
/w
l

{WJ
l=1

f *
l
(x
0
)r
l
/w
l
}2

�
1

WJ
l=1

f *
l
(x
0
)/w

l
,

in which equality holds if and only if r
l
=1 and l=1, . . . , J. This implies that

var {m@ *
k
(x
0
) |FX

n
}�var {m@

k
(x
0
) |FX

n
}

with equality holding if and only if R
i
is the identity matrix. Thus, the last claim holds. %

Proof of Corollary 3. Equations (12) and (13) in part (i) are special cases of (6) and (7) in
Proposition 1 with k=0 and p=1, and (ii) is a special case of (iv) of Proposition 1. The calculations
are straightforward and we omit the details. %

Proof of Proposition 2. Let Z
i
and D

i
be any two J× ( p+1) matrices. Observe that

∑
n

i=1
ZT
i
Z
i
−A ∑

n

i=1
ZT
i
D
iBA ∑

n

i=1
DT
i
D
iB−1A ∑

n

i=1
DT
i
Z
iB

= ∑
n

i=1
CqZi

−D
iA ∑

n

j=1
DT
j
D
jB−1A ∑

n

j=1
DT
j
Z
jBrTqZi

−D
iA ∑

n

j=1
DT
j
D
jB−1A ∑

n

j=1
DT
j
Z
jBrD ,

which is therefore always nonnegative definite. Moreover, this matrix is the zero matrix if and only
if Z

i
=D

i
C, where C is any ( p+1)× ( p+1) matrix. Set

D
i
= (I

i
R
i0

I
i
)−1/2W−1/2X

i
, Z

i
= (I

i
R
i0

I
i
)1/2K1/2

ih
(I
i
R
i
I
i
)−1K1/2

ih
W−1/2X

i
.

It is easily checked that

∑
n

i=1
ZT
i
Z
i
=B

n
, ∑

n

i=1
DT
i
Z
i
= ∑

n

i=1
ZT
i
D
i
=A

n
, ∑

n

i=1
DT
i
D
i
= ∑

n

i=1
XT
i
W−1/2 (I

i
R
i0

I
i
)−1W−1/2X

i
.

Therefore, B
n
−A

n
(Wn

i=1
DT
i
D
i
)−1A

n
is always nonnegative definite, implying that

A−1
n

B
n
A−1
n

−A ∑
n

i=1
DT
i
D
iB−1

is always nonnegative definite. Furthermore, A−1
n

B
n
A−1
n

= (Wn
i=1

DT
i
D
i
)−1 if and only if Z

i
=D

i
C

for any ( p+1)× ( p+1) matrix C. Note that K
ih
=I

i
/2 if K( . ) is the uniform kernel. Then

Z
i
=D

i
/2 if K( . ) is the uniform kernel and R

i
=R

i0
, in which case

A−1
n

B
n
A−1
n

=q ∑
n

i=1
XT
i
W−1/2 (I

i
R
i0

I
i
)−1W−1/2X

ir−1 .
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Now assume that the joint density of (x11 , . . . , x1J )T exists. Let

N={1∏ i∏n : I
i
contains exactly one nonzero element}.

It is straightforward to show that

B
n
= ∑

iµN

ZT
i
Z
i
{1+o

P
(1)}, A

n
= ∑

iµN

DT
i
Z
i
{1+o

P
(1)}= ∑

iµN

ZT
i
D
i
{1+o

P
(1)}.

Evidently, Z
i
=D

i
/2 for all iµN, if K is the uniform kernel. Then the claimed minimisation follows

from an argument analogous to the above. The proof is complete. %
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