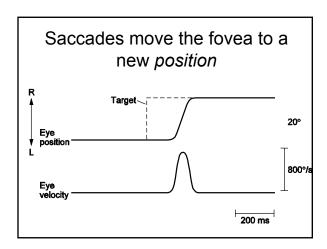
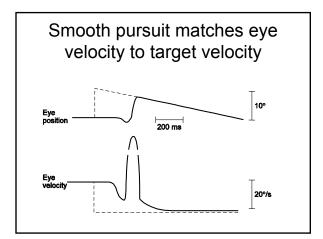
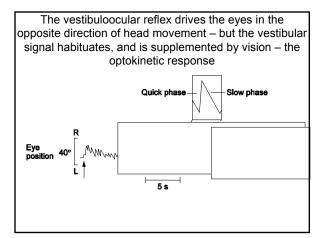
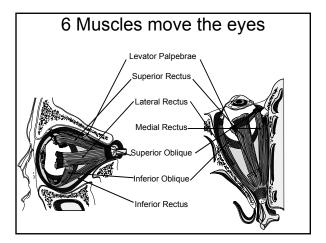
The oculomotor system

Or Fear and Loathing at the Orbit

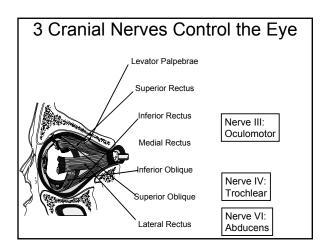

First you tell them what your gonna tell them

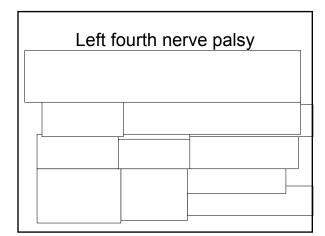

- The phenomenology of eye movements.
- The anatomy and physiology of the extraocular muscles and nerves.
- The supranuclear control of eye movements: motor control and cognitive plans.

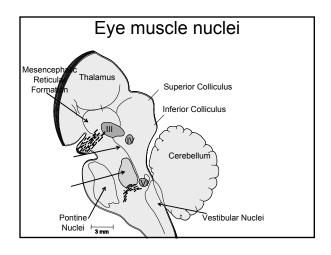

The purposes of eye movements

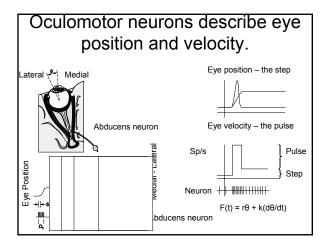

- · Keep an object on the fovea
 - Fixation
 - · Smooth pursuit
- · Keep the eyes still when the head moves
 - Vestibulocular reflex
 - Optokinetic reflex
- Change what you are looking at (move the fovea from one object to another)
 - Saccade
- Change the depth plane of the foveal object
 - Vergence eyes move in different directions

-		
		<u> </u>

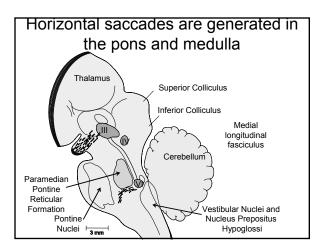


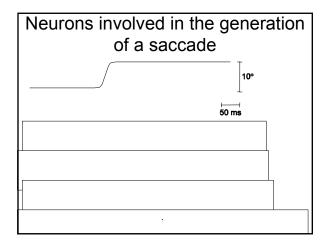

The obliques are counterintuitive


- Each oblique inserts behind the equator of the eye.
- The superior oblique rotates the eye downward and intorts it!
- The inferior oblique rotates the eye upward and intorts it.
- Vertical recti extort the eye as well as elevate or depress it.

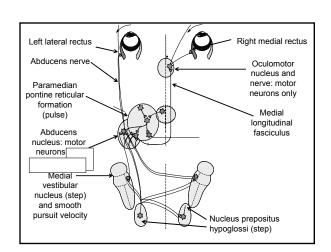


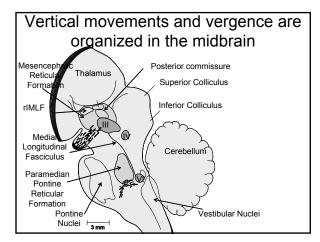
	Vertical movements are liques and vertical rectus	muscles, ea	ach of which has		
а	torsional and a vertical co				





The transformation from muscle activation to gaze


- The pulse of velocity and the step of position are generated independently.
- For horizontal saccades the pulse is generated in the paramedian pontine reticular formation.
- The step is generated in the medial vestibular nucleus and the prepositus hypoglossi by a neural network that integrates the velocity signal to derive the position signal.


Generating the horizontal gaze signal

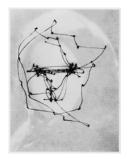
- The medial rectus of one eye and the lateral rectus of the other eye must be coordinated.
- This coordination arises from interneurons in the abducens nucleus that project to the contralateral medial rectus nucleus via the medial longitudinal fasciculus.

To reiterate

- Ocular motor neurons carry a step of position and a pulse of velocity.
- For horizontal saccades the pulse comes from the ipsilateral paramedian pontine reticular formation.
- For the VOR (and probably for smooth pursuit) the velocity signal comes from the contralateral medial vestibular nucleus.
- The step comes from the prepositus hypoglossi and medial vestibular nucleus, which integrate the velocity signal.
- Abducens interneurons send the pulse and step to the oculomotor nucleus via the medial longitudinal fasciculus.

Internuclear ophthalmoplegia

- The medial longitudinal fasciculus is a vulnerable fiber tract.
- It is often damaged in multiple sclerosis and strokes.
- The resultant deficit is internuclear ophthalmoplegia
- The horizontal vergence signal cannot reach the medial rectus nucleus, but the convergence signal can.


_
 _
 _
 _
 _
 _
_
 _
 _
 _

Supranuclear control of saccades

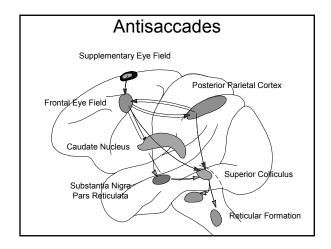
- The brainstem can make a rapid eye movement all by itself (the quick phase of nystagmus).
- The supranuclear control of saccades requires controlling the rapid eye movement for cognitive reasons.
- In most cases saccades are driven by attention

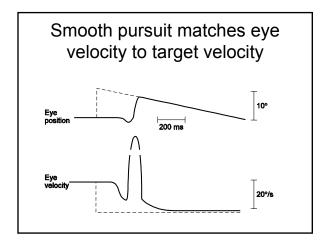
Humans look at where they attend

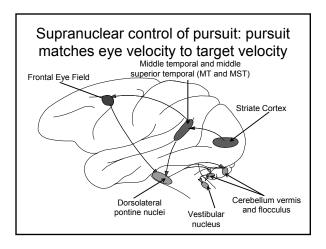
Supplementary Eye Field Posterior Rarietal Cortex Frontal Eye Field Caudate Nucleus Substanția Nigra Pars Reticulata Reticular Formation

Supranuclear Control of Saccades

- Superior colliculus drives the reticular formation to make contralateral saccades.
- The frontal eye fields and the parietal cortex drive the colliculus.
- The parietal cortex provides an attentional signal and the frontal eye fields a motor signal.
- The substantia nigra inhibits the colliculus unless
- · It is inhibited by the caudate nucleus
- · Which is, in turn, excited by the frontal eye field.


The effect of lesions


- Monkeys with collicular or frontal eye field lesions make saccades with a slightly longer reaction time.
- Monkeys with combined lesions cannot make saccades at all.
- Humans with parietal lesions neglect visual stimuli, but have no specific eye movement deficits. If they can see it they can make saccades to it.
- Humans with frontal lesions cannot make antisaccades.


The Antisaccade Task

- · Look away from a stimulus.
- The parietal cortex has a powerful signal describing the attended stimulus.
- The colliculus does not respond to this signal.
- The frontal motor signal drives the eyes away from the stimulus.
- Patients with frontal lesions cannot ignore the stimulus, but must respond to the parietal signal

-	

Smooth pursuit

- Requires cortical areas that compute target velocity, and the cerebellum.
- Utilizes many of the brainstem structures for the vestibuloocular reflex
- · Requires attention to the target.

Clinical deficits of smooth pursuit

- · Cerebellar and brainstem disease
- Specific parietotemporal or frontal lesions
- Any clinical disease with an attentional deficit – Alzheimer's or any frontal dementia, schizophrenia

Oh no, what do I really have to know about this stuff, he panicked

- The kinds of eye movements.
- · What the muscles do.
- The separation, in the brainstem, or horizontal and vertical eye movement systems.
- The brainstem pathway for horizontal saccades.
- The cortical pathways for saccades and smooth pursuit.