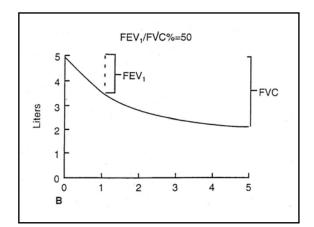
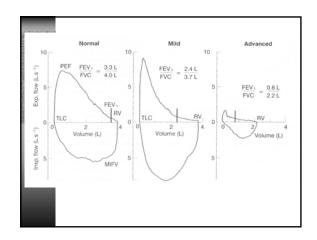
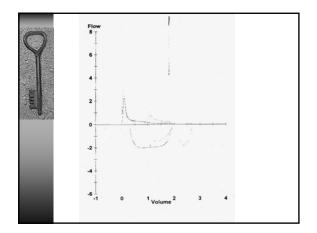


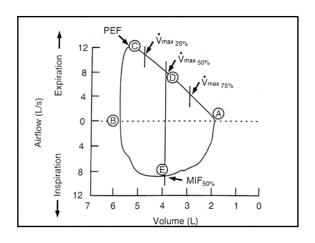
Obstructive Ventilation: Expiratory

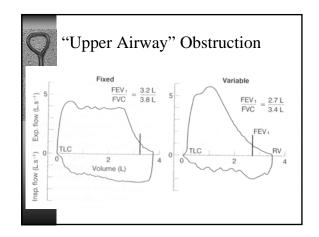

- ◆ Decrease in expiratory airflow (volume and/or rate of flow)
- ♦ FEV1 decreased
- ♦ FVC normal or decreased
- ♦ FEV1/FVC decreased*
- ♦ FEF₂₅₋₇₅ decreased

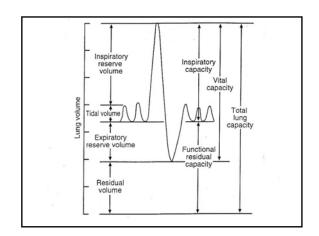

*definition of obstructive defect



Types of Airflow Obstruction


- ♦ Bronchoconstriction
- ♦ Dynamic airway compression (FVC vs SVC). Emphysema: FVC < slow or inspiratory VC, and plethysmographic volumes greater than gas dilution volumes
- ◆ Upper Airway
- ♦ Small Airways
- ♦ "Mixed"




Patient:	-		10: 480-00-34				
Age: 65		Gender: Male		Location:		Date: 1	
Height(in): 70		(cm): 179	Temp: 29		F	PBar: 7	
Weight(lb): 204		(kg): 92.5	Physician:				
(19). 52.0			Technician: GD				
Spirometry		Ref	Pre	Pre	Post	Pos	
			Meas	% Ref	Meas	% Ref	
FVC	Liters	4.70	1.93	41	2.71	58	
FEV1	Liters	3.63	0.54	15	0.60	17	
FEV1/FVC	%	77	28		22		
FEF25-75%L/sec		2.88	0.25	9	0.24	8	
FEF25%	L/sec	7.80	0.27	3	0.29	4	
FEF50%	L/sec	4.32	0.18	4	0.19	4	
FEF75%	L/sec	1.57	0.10	6	0.09	6	
PEF	L/sec	8.44	2.27	27	2.96	35	
MVV	L/min	134			26	19	
PIF	L/sec	3.67					
FIF50%	L/sec	4.59					
FET100%	Sec		13.02		19.70		
Lung Vo	olumes						
vc	Liters	4.49			2.85	63	
TLC	Liters	6.59			8.66	132	
RV	Liters	2.46			5.81	236	
RV/TLC	%	39			67		
FRC PL	Liters	3.52			7.02	199	
FRC He	Liters	3.52					
Vtg	Liters				6.94		
_							

Lung Volumes

- ♦ "Static function"
- ◆ Gas Equilibration ("wash in" and "wash out")
- ♦ Body plethysmography

Gas Equilibration Lung Volumes

- "Wash in:" Helium (insoluble gas) breathed from a reservoir of known VOLUME and CONCENTRATION, thus diluting its concentration by the volume of the lungs
- ♦ VFRC = Vreservoir x
 Conc INIT Conc FINAL/ Conc FINAL

Gas Equilibration Lung Volumes

- ♦ "Wash out:" Lung gas (N2) washed out during breathing of 100% O2
- ♦ Initial N2 concentration known (atmospheric); volume and N2 concentration of expired gas measured
- \bullet VFRC=VEXP X conc EXP/ .79- Conc ALV (final)

Plethysmographic Lung Volumes

- ♦ P₁V₁=P₂V₂ in a closed system at same temperature
- ◆ Lungs and airway closed system when occluded
- ◆ Panting at FRC: inhalation=decreased intrathoracic pressure, increased volume

Plethysmographic Lung Volumes

- $\bullet~V \mbox{FRC=V} / \Delta P \mbox{ (PFRC-} \Delta P \mbox{) where } \Delta P \mbox{ is negligible } c/w \mbox{ PFRC}$
- Vfrc= $\Delta V / \Delta P$ (Pfrc)
- ◆ ∆P obtained from change in mouth pressure against occluded valve
- ◆ ∆V obtained from change in pressure in the plethysmograph as air in the box is compressed by increase in lung volume

Restrictive Ventilation

- ♦ A decrease in lung expansion
- ♦ FEV1 decreased
- ♦ FVC decreased
- ♦ FEV1/FVC normal or increased
- ♦ Total Lung Capacity (TLC) decreased*
- * Definition of restrictive ventilatory defect

Types of Restrictive Defects

- ♦ Parenchymal removal/destruction
- ◆ Parenchymal infiltration
- ♦ Extrapulmonary deformity
- ♦ Reduced force generation

Restrictive patterns

- Diffuse parenchymal disease, thoracic cage restriction: symmetric decrease in TLC, VC, FRC, RV
- Neuromuscular weakness: IC mainly decreased; TLC and VC decreased and FRC and RV spared

Height: Body Ma	69 in (176 cm) iss Index: 29.80	Weight:	203 lb	(92.3 kg		ysician: State chnician: AE	nu-Rai
Spirom	etry	Ref		Pre	Pre	Post	Post
		- 8		Meas	% Ref	Meas	% Ref
FVC	Liters	4.43		1.88	42		
FEV1	Liters	3.41		0.88	26		
FEV1/FVC		77		47			
FEF25-75		3.10		0.23	7		
FEF25%	L/sec	7.62		1.02	13		
FEF50%	L/sec	3.97		0.26	7		
FEF75%	L/sec	1.39		0.08	6		
PEF	L/sec	8.06		2.81	35		
MVV	L/min	126		41	33		
PIF	L/sec	3.55		3.26	92		
FIF50%	L/sec	4.49		3.19	71		
FET100%	Sec			13.80			
Lung Vo	olumes						
VC	Liters	4.43		1.73	39		
TLC	Liters	6.88		4.39	64		
RV	Liters	2.39		2.66	111		
RV/TLC	%	35		61			
FRC PL	Liters	3.64		3.45	95		
FRC He	Liters	3.64					
Vtg	Liters			3.78			
Diffusion							
DLCO	mL/mmHg/min	31.8		15.2	48		
DL Adj	mL/mmHg/min	31.8		15.2	48		
VA	Liters			4.13			
DLCO/VA	mL/mHg/min/L	4.73		3.68	78		
Respirat	ory Muscle P	ressure	s				
Pl max	cmH2O	105	-	75	71		
PE max	cmH2O	197		150	76		

Diffusing Capacity for CO (DL_{CO})

- ◆ DL_{CO} = CO rate of uptake (ml/min)/ΔPCO (mmHg)
- O2 and CO combine with Hgb; therefore reflect properties of alveolar-capillary membrane, and its uptake therefore limited by resistance across this interface
- Soluble gases limited by pulmonary blood flow
- ◆ 2 major resistances therefore: membrane properties, and molecular conformation properties of Hgb binding
- Diffusion determinants: Gas gradient, solubility, hemoglobin, membrane thickness, surface area

SB Diffusing Capacity for CO (DL_{CO})

- ◆ Inspirate 0.25% CO, 10% inert gas, 21% O2, balance N2
- ◆ Expire to RV; inhale rapidly to TLC; hold for remainder of 10 seconds of breath hold time (BHT)
- ◆ Expire; discard anatomic dead space gas; sample 500-1000 ml alveolar gas

Diffusing Capacity

- ◆ Increased in alveolar hemorrhage, obesity, asthma??
- ♦ Decreased in emphysema (destruction and/or non-equilibration), restrictive disorders (all:why??), pulmonary vascular disorders, anemia, abnormal Hgb
- ◆ Single breath (10 sec) vs steady state/rebreathe techniques

DLCO Pearl

- ◆ Isolated DLCO decrease: suspect pulmonary vascular disorder
- Or, interstitial disorder not yet, or no longer, affecting parenchymal volume
- ♦ Or, abnormality of Hgb (eg, anemia, carboxyhgb, methhgb)

Pre-operative Pulmonary Assessment: PFTs

- ◆ Complications: highest for thoracic and upper abdominal (ie, near the diaphragm)
- All having lung resection, orthopoedic and lower abdominal with lung disease, or smoking
- ♦ Age>60 years

Pre-operative Pulmonary Assessment: PFTs

- ◆ Spirometry: FEV1 or FVC <70%, FEV1/FVC<65%
- ♦ PaCO2>45 mmHg in COPD
- ♦ None contraindicate
- ◆ Lung resection: FEV1 best for pulmonary reserve and post op complications; post op FEV1 <30% predicted=increased long term mortality and immediate post op problems

Pre-operative Pulmonary Assessment: PFTs

- ♦ DLCO <40%, PaCO2>45 mmHg specific risk factors
- ♦ VO2 max <20 mL/kg/min excessive mortality
- ♦ Does not apply to LVRS: should have TLC>/=110%, RV>220%, FEV1</=45%, DLCO</=70%

PFT Summary

- ◆ Obstructive ventilatory defect: decreased FEV1/FVC
- ♦ Restrictive ventilatory defect: decreased TLC
- ◆ Low DLCO: abnormal uptake of gas by Hgb across alveolar capillary membrane: Diffusion determinants= Gas gradient, solubility, hemoglobin, membrane thickness, surface area
- Disorders with airway dysequilibration (emphysema): gas dilution will underestimate lung volumes (and ? DLCO)

Series "ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING" Edited by V. Brusasco, R. Crapo and G. Viegi. General considerations for lung function testing

Eur Respir J 2005; 26: 153-161