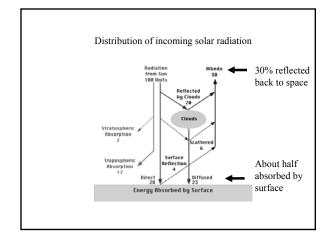
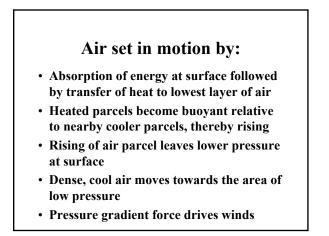
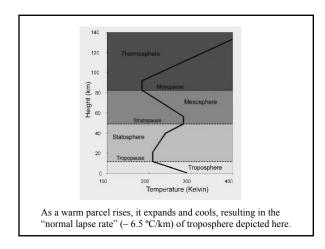
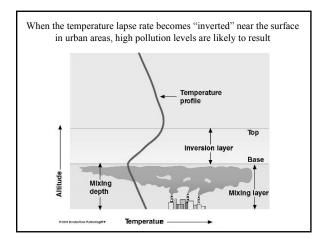
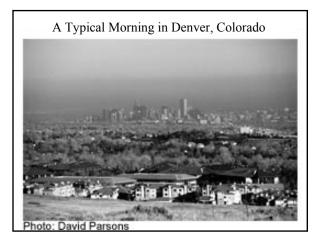

Outdoor and Indoor Air Pollution

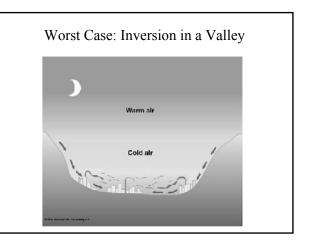

Patrick L. Kinney, Sc.D. Associate Professor Columbia University plk3@columbia.edu


Overview

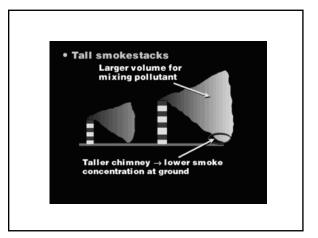

- The natural atmosphere
- Outdoor pollutants and their sources
- Indoor air pollution
- Health effects of air pollution
- Measurement of particle pollution
- Climate change

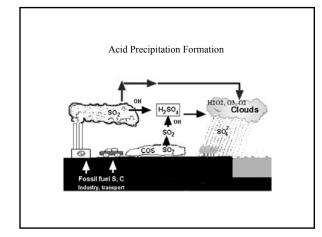




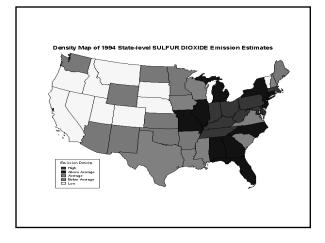


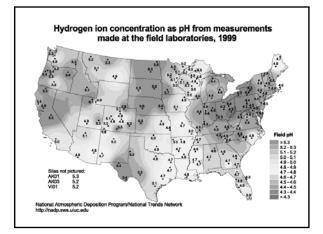
Air Pollutants of Human Health Concern

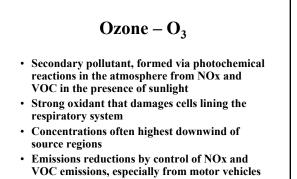

- Carbon monoxide
- Sulfur dioxide
- Nitrogen dioxide
- Volatile organics
- Ozone
- Particulate matter
 - Sulfates, nitrates, organics, elemental carbon, lead and other metals

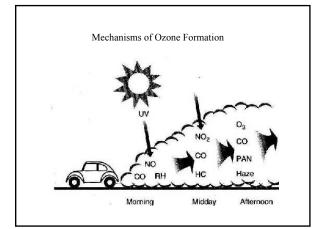

Carbon Monoxide - CO

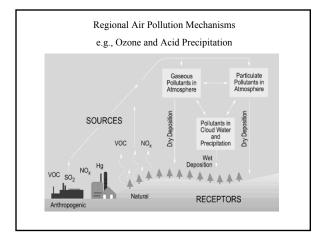
- Colorless, odorless gas
- Primary pollutant, emitted by incomplete combustion of biomass or fossil fuels
- Binds strongly with hemoglobin, displacing oxygen
- Emissions reduction by higher temperature combustion and use of catalytic converters on motor vehicles


Sulfur Dioxide – SO₂


- Primary pollutant, emitted by combustion of fuels containing sulfur; also metal smelting
- Irritates upper respiratory tract
- Converted in atmosphere to acid sulfates
- Emissions reductions by building taller smoke stacks, installing scrubbers, or by reducing sulfur content of fuel being burned

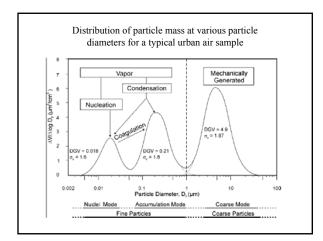


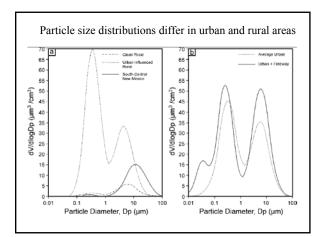

Nitrogen Dioxide – NO₂

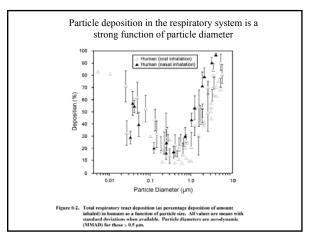

- Formed by oxidation of NO, which is produced with high temperature combustion (NO₂ is a secondary pollutant)
- Oxidant that can irritate the lungs and hinder host defense
- · A key precursor of ozone formation
- Emissions reductions by engine redesign and use of catalytic converters

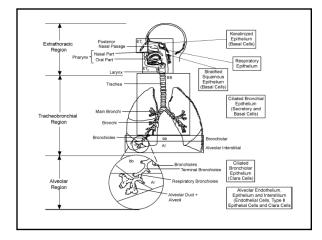
Volatile Organic Compounds VOCs

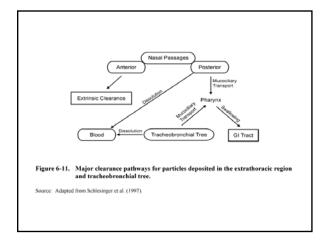
- Products of incomplete combustion, evaporation of liquid fuels, atmospheric reactions, and release from vegetation (both primary and secondary)
- Wide range of compounds with varying health effects
- Another key ozone precursor
- Emissions reductions by high temperature combustion and control of evaporation, e.g., during refueling of cars

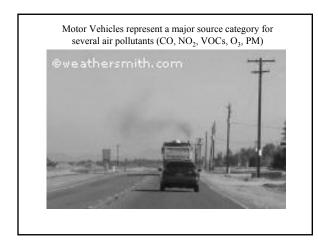


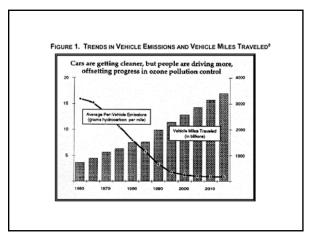


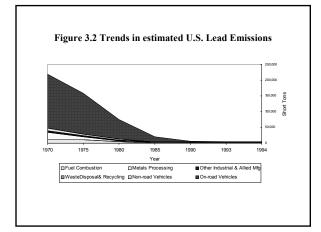

Particulate Matter - PM

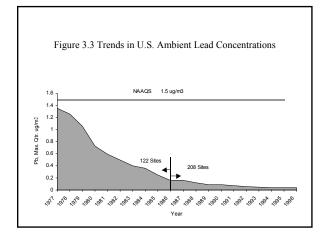

- Products of combustion, atmospheric reactions, and mechanical processes
- · Wide range of particle sizes
- · Wide range of physical/chemical properties
- Wide range of health impacts, including premature death
- Control by filtration, electrostatic precipitation, and reduction of precursor gases

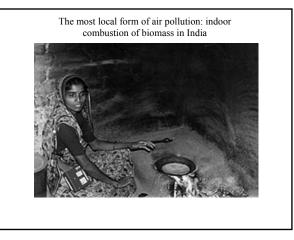


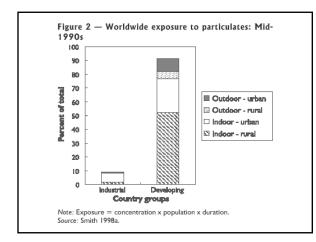


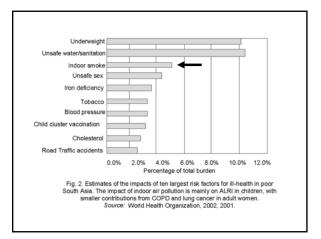

		Fine	Coarse
	Ultrafine	Accumulation	
Formation Processes		on, high-temperature d atmospheric reactions	Break-up of large solids droplets
Formed by:	Nucleation Condensation Coagulation	Condensation Coupliation Reactions of gases in or on particles Reactions of gases in or on particles Evaporation of fog and cloud dooplets in which gases have dissolved and reacted	Mechanical disruption (crushing, grinding, abrasien of surfaces) Evaporation of sprays Surpension of datts Reactions of gases in or on particles
Composition:	Sulfates Elemental Carbon Metal compounds Organic compounds with very low saturation vapor pressure at ambient temperature	Salfate, Nitrate, Ammonium, and Hydrogen ions Elemental carbon Large variety of organic compounds Metals: compounds of Pb, Cd, V, Ni, Cu, Zn, Mn, Fe, etc. Particle-bound water	Suspended soil or street dust Fly aib frees uncentrolled combustion of coal, oil, and wood Narates; chiorides from HNO, HCI Oxides of crustal elements (St. AJ, Ti, Fe) CaOO, NaCI, sea salt Pollen, mold, fangal spores Hart and animal flagments Tine, trake peak, and road wear debris
Solubility:	Probably less soluble than accumulation mode	Largely soluble, hygroscopic, and deliquescent	Latgely insoluble and nenhygroscopic
Atmospheric half-life:	Minutes to hours	Days to weeks	Minutes to hours
Removal Processes	Grows into accumulation mode	Forms cloud droplets and rains out Dry deposition	Dry deposition by fallout Scavenging by falling rain drops
Travel distance:	<1 to 10s of km	100s to 1000s of km	<1 to 10s of km (100s to 1000s in dust storms)

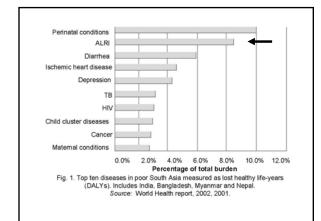


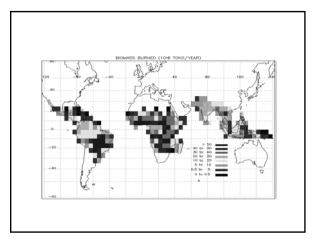


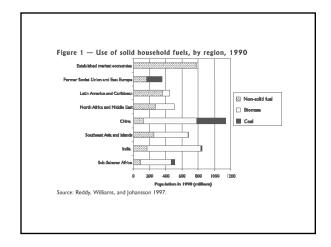







Indoor Air Pollution


- Combustion is principal source: cooking, smoking, heating
- Dilution and dispersion are limited, especially nearest the source
- Pollutants of greatest importance include: CO, NO2, PM, VOCs
- Indoor concentrations often far higher than outdoors, even in urban areas
- Those who spend the most time indoors near the source will be most impacted

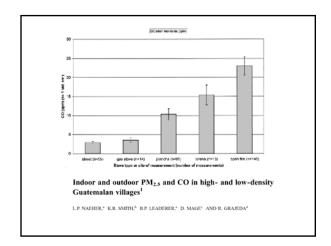


 About half the world 's households use unprocessed solid fuels for cooking, ranging roughly from near zero in developed countries to more than 80% in China, India, and Sub-Saharan Africa (Holdren et al., 2000).

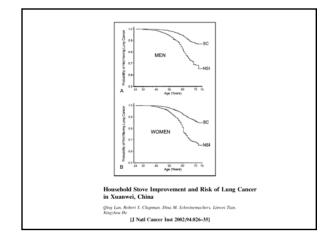
 In simple small-scale devices, such as household cookstoves, solid fuels have rather large emission rates of a number of important health-damaging airborne pollutants including respirable particulates, CO, dozens of PAHs and toxic hydrocarbons, and, depending on combustion and fuel characteristics, nitrogen and sulfur oxides.

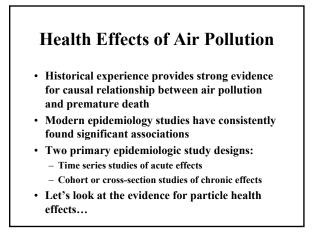
•A large,although uncertain,fraction of such stoves are not vented,i.e.do not have flues or hoods to take the pollutants out of the living area.

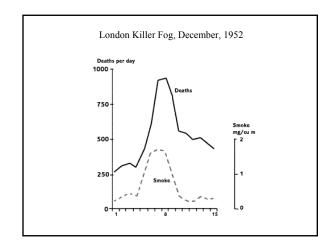
 Even when vented to the outdoors, unprocessed solid fuels produce enough pollution to significantly affect local pollution levels with implications for total exposures (Smith et al., 1994).As cookstoves are essentially used everyday at times when people are present, their exposure effectiveness (or intake fraction)is high, i.e. the percentage of their emissions that reach people's breathing zones, is much higher than for outdoor sources(Smith, 2002; Bennett et al., 2002).


•The individual peak and mean exposures experienced in such settings are large by comparison with WHO guidelines and national standards.

From: Kirk Smith, Indoor Air 2002;12:198 .207


Region (number of studies)	Number of households	Duration of study	Porticulate leve (micrograma pe cubic meter) ^a
Pacific (2)	15	12 hr	1,300-5,200
South Asia (7)	504	Cooking	4,000-21,000
	135	Cooking	850-4,400 (1)
	100	Noncooking	630-820
	68	Noncooking	(T) 088
	61	24 hr	2,000-2,800 (
China (8)	73	Various	2,600-2,900
	35	Various	1,100-11,000
Africa (5)	28	Cooking/heating	800-1,700
.,	40	Cooking/heating	1,300 (1)
	100	24 hr	1,300-2,100 (
Latin America and the Caribbean (5)	42	Cooking/heating	110-1,100 (I) 340 (R)
	53	24 h	720-1,200 (I) 520-870 (R)


Country	Year of publication	Description of sample	Concentration [µg/m ³]
India	1983	n=65, 4 villages	6800
	1987	n=165, 8 villages	3700
	1987	n=44, 2 villages	3600
	1988	n=129, 5 villages	4700
	1991	n=95, winter/summer/monsoon	6800/5400/4800
	1996	n=40, two urban slums, infants, 24 h	400/520 (1)
Nepal	1986	n=49, 2 villages	2000
	1990	n=40, trad/impr	\$200/3000
Zambia	1992	n=184, 4 h, urban, wood/charcoal	470/210 (R)
Ghana	1993	n=143, 3 h, urban, wood/charcoal	590/340 (R)
South Africa	1993	n=15, 12 h, children, winter/summer	2370/290


breathing area concentrations (women during cooking, unless otherwise stated) (Smith 1996).

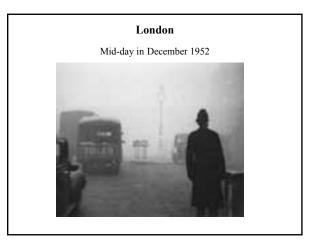
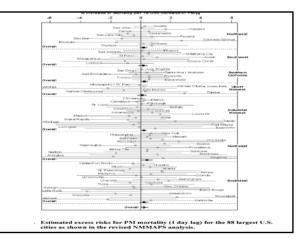


TABLE 2. Tu store	,		encentrations for the mean \pm SD	Open Fire, Plancha, and Ga geometric mean (95% Cl)	s/Open Fire Comb median	ination range
open fi planch LPG/op	a	59	930 ± 1280 330 ± 220 200 ± 1080	1560 (1310, 1850) 280 (240, 320) 850 (680, 1050)	1630 270 780	300-6750 50-1130 125-5510
* N refers	to the total numb	er of observation	is for the 10 household	in each cockstove condition.		



Air Pollution Epidemiology

- Provides most directly relevant results for policy makers
- Assesses effects of real mix of pollutants on human populations
- Pollutants tend to co vary, making it hard to distinguish effects
- Can demonstrate associations between outcome and exposure, but not cause and effect
- Must control for confounding factors
- Exposure assessment is "ecologic"

Time Series Epidemiology

- Addresses effects in narrow time window
- Involves multiple regression analysis of long series of daily observations
- Large number of studies have reported significant associations between daily deaths and/or hospital visit counts and daily average air pollution.
- Time series design avoids spatial confounding; however, temporal confounding due to seasons and weather must be addressed.
- Particles often appear most important, but CO, SO₂, NO₂, and/or ozone may also play roles.
- For example, NMMAPS Study

Cohort Epidemiology

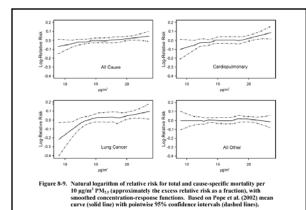
- · Address long term exposure response window
- Large populations in multiple cities enrolled and then followed for many years to determine mortality experience
- Cox proportional hazards modeling to determine associations with pollution exposure
- Must control for spatial confounders, e.g., smoking, income, race, diet, occupation
- Assessment of confounders at individual level is an advantage over cross sectional, "ecologic" studies

Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution

Pope, C.A. et al., Journal of the American Medical Association: 287, 1132 141, 2002

Context Associations have been found between day-to-day particulate air pollution and increased risk of various adverse health outcomes, including cardiopulmonary mortality. However, studies of health effects of long-term particulate air pollution have been less conclusive.

Objective To assess the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality.


Design, Setting, and Participants Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998.

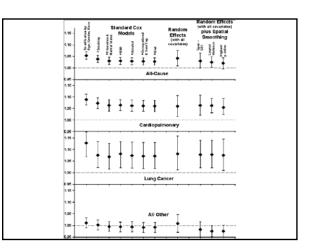
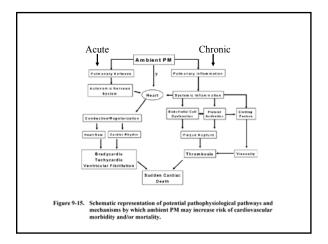

Main Outcome Measure All-cause, lung cancer, and cardiopulmonary mortality

Table 2. Adjusted M	ortality Relative Risk (RR) Associated With a 10-µg/m ³ Change in Fine
Particles Measuring L	ess Than 2.5 μm in Diameter
	Adjusted BB (95% CI)*

	Adjusted fire boly					
Cause of Mortality	1979-1983	1999-2000	Average			
All-cause	1.04 (1.01-1.08)	1.06 (1.02-1.10)	1.06 (1.02-1.11)			
Cardiopulmonary	1.06 (1.02-1.10)	1.08 (1.02-1.14)	1.09 (1.03-1.16)			
Lung cancer	1.08 (1.01-1.16)	1.13 (1.04-1.22)	1.14 (1.04-1.23)			
All other cause	1.01 (0.97-1.05)	1.01 (0.97-1.06)	1.01 (0.95-1.06)			
*Estimated and adjusted ba sex, race, smoking, educa CI indicates confidence in	sed on the baseline random-eff ation, marital status, body mass terval.	ects Cox proportional hazards r , alcohol consumption, occupa	nodel, controlling for age, tional exposure, and diet			

¹¹³⁶ JAMA, March 6, 2002—Vol 287, No. 9 Pope, C.A., et al.,

Conclusion

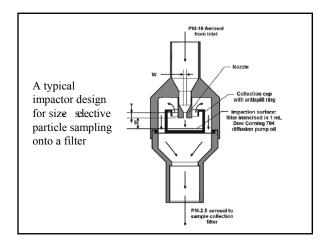

• "Long-term exposure to combustionrelated fine particle air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality."

Human Health Effects of Airborne Particulate Matter

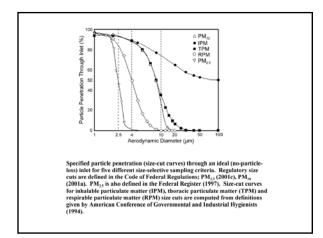
- Daily time series studies have demonstrated small but consistent associations of PM with mortality and hospital admissions, reflecting acute effects.
- Acute effects on lung function, asthma exacerbations, and other outcomes
- Multi dty prospective cohort studies have shown increased mortality risk for cities with higher long term PM concentrations, reflecting chronic effects.

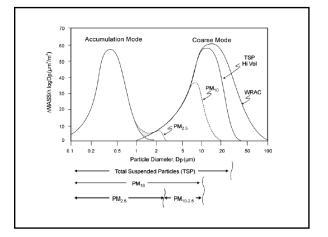
Implications

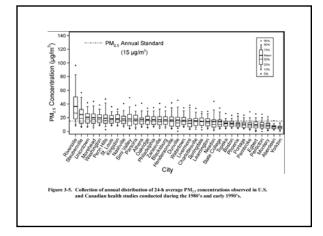
- Acute effects are well documented but of uncertain significance
- Chronic effects imply very large impacts on public health.
- A new US national ambient air quality standard for PM_{2.5} was established in 1997, largely based on the cohort epidemiology evidence
- Mechanistic explanation for chronic effects remains unclear
- · Weaknesses in exposure assessment limits interpretation

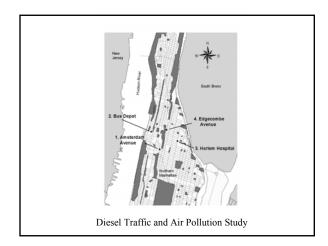


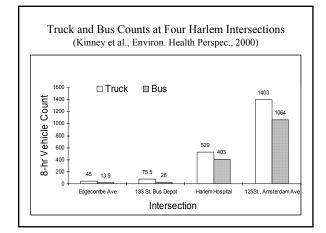
It is also unclear...

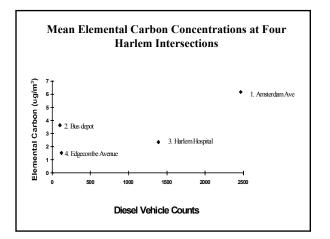

- Whether a threshold exists
- · Who is at risk due to
 - Higher exposures
 - Greater susceptibility
- · What particle components are most toxic
- · Which sources should be controlled

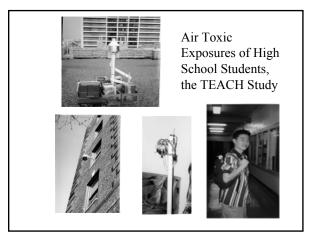

Measurement of Airborne Particulate Matter

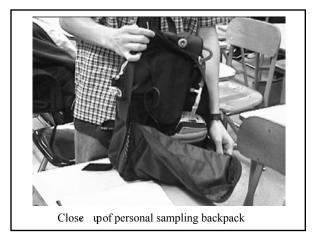

- Getting the size right
- A look at some field studies

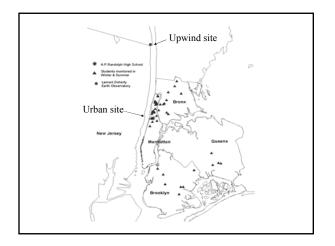


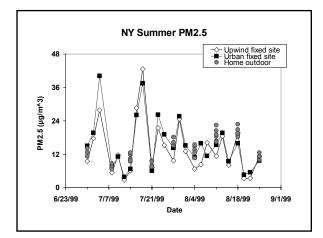


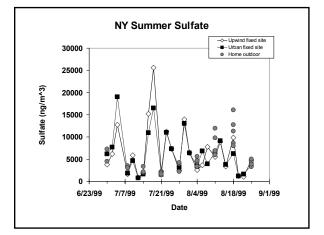


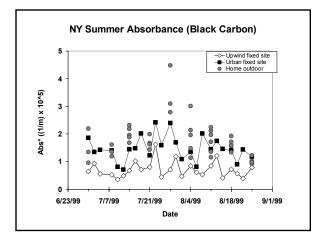


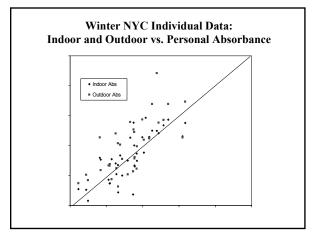


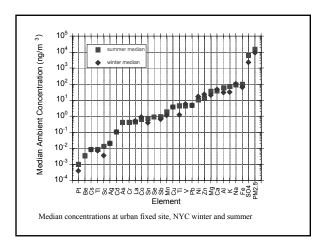


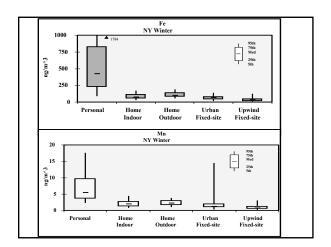


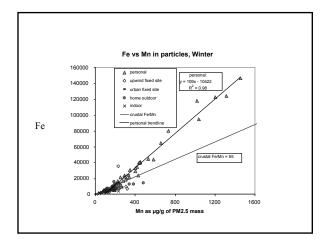


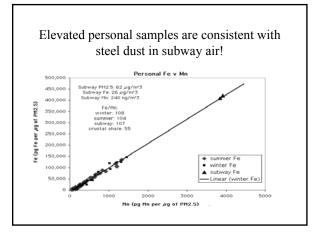


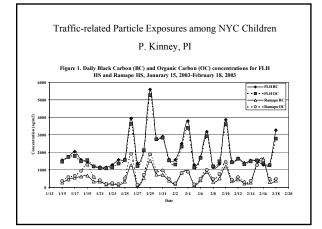

Analysis of Particle Samples


- Mass determined by weighing Teflon filter before and after sampling under controlled conditions
- Elemental carbon estimated by light absorption
- Analysis of trace elements by ICP-mass spectrometry



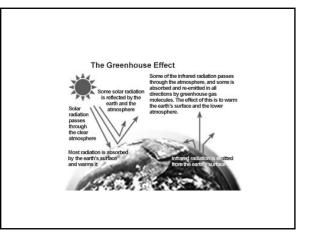


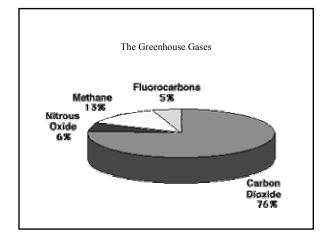


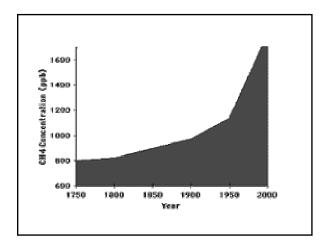


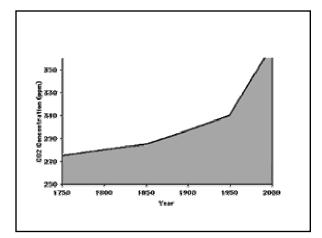
Preliminary Conclusions

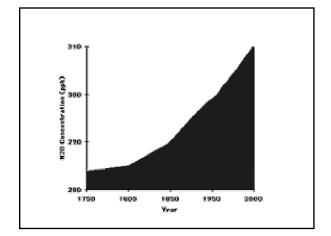
- We see strong urban influences on air toxic exposures for some particle components.
- Personal exposures are closely associated with outdoor concentrations of black carbon, an indicator of diesel exhaust particles.
- Diesel particle exposures are associated with lung cancer and have been suggested to play a role in asthma.
- New studies underway to examine the diesel/asthma link.

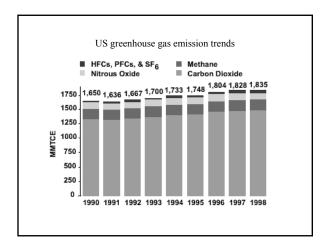

Urban Diesel Exposure and Inner City Asthma

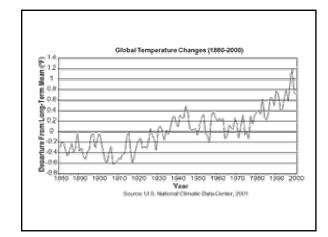

R. Miller, PI

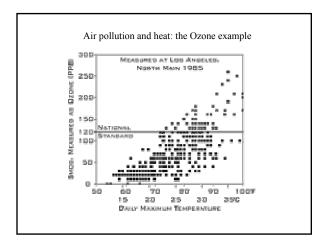

Objective:

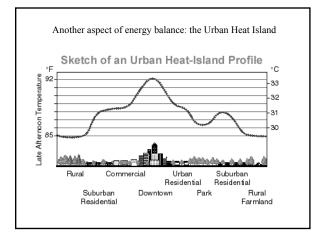

To assess geographic associations between diesel exposure and asthma development in a NYC birth cohort

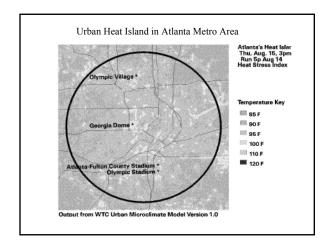


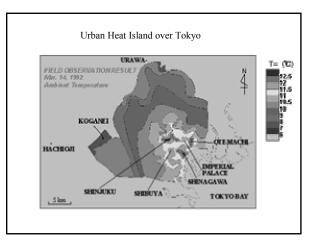


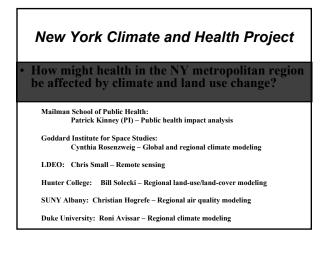


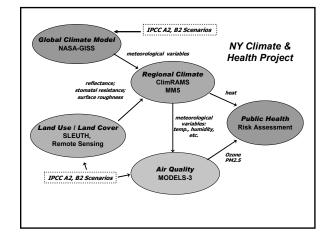





Impacts of Climate Change


- General warming; greater at poles; greater in winter
- · Sea level rise
- Changing rainfall patterns
- Greater variability and intensity of weather extremes
 - Longer and deeper droughts
 - More frequent and extreme storms


Climate Change and Public Health


- Changing patterns of rainfall will have profound effects on local agriculture, water supply, and well-being
- Heat-related mortality and morbidity
- Death and injury due to extreme storms
- Changing patterns of vector-borne diseases
- Air pollution
- Ability to adapt will vary with income level

