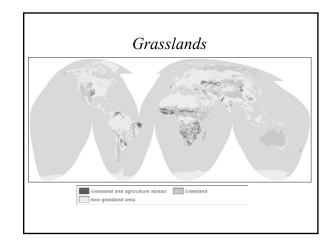
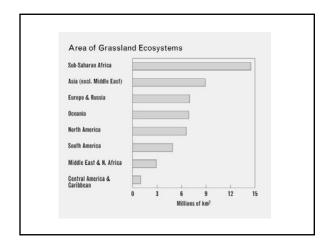
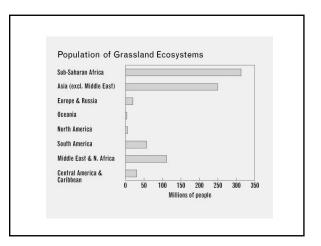
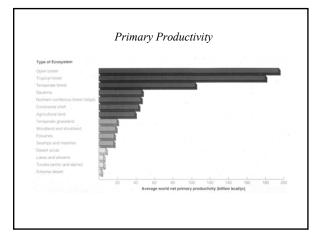
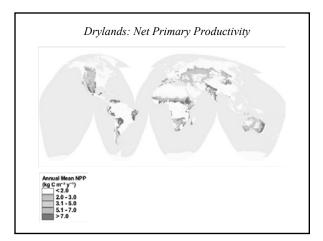

Ecology Of Grasslands

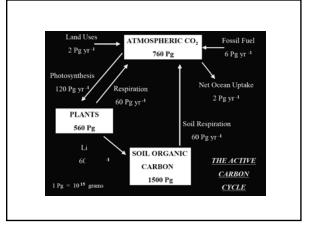

Woodlands
oounnus
40%
20%
40%
30%

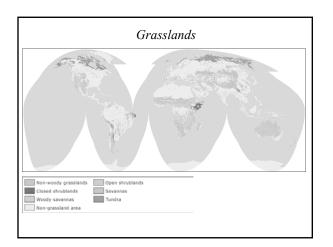

Ecosystem Functions And Services

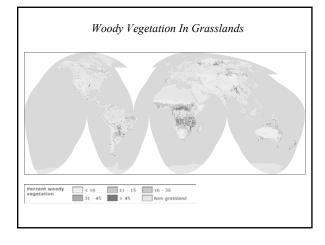

- 1. Carbon Storage
- 2. Nutrient re-cycling
- 3. Habitat For Grazers
- 4. Buffer Between Deserts and Forests
- 5. Useful For Grain Crop Agriculture

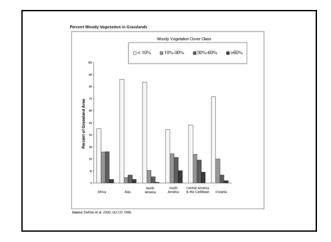

		Global	Carbon Stocks	(GtC)	
Ecosystem Type *	Total Land Area (10° km²)	Vegetation [®] (Low-High)	Solls ^c (Mean)	Total (Low-High)	Carbon Stored/Area (t C /ha) (Low-High)
Forests High-latitude	10.3	46-115	266	312-380	303-370
Mid-latitude ⁴	5.9	37-77	84	122-161	206-273
Low-latitude	12.8	48-265	131	180-396	140-310
Sub-total	29.0	132-457	481	613-938	211-324
Grasslands*					
High-latitude	10.9	14-48	281	295-329	271-303
Mid-latitude ⁴ Low-latitude	20.1	17-56 40-126	140 158	158-197 197-284	79-98 91-131
Low-latitude Sub-total	52.6	40-126	158	197-284 650-810	91-131







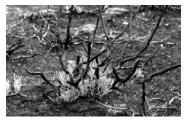

			Grassland
		Total Land	Area
Country	Region ^b	Area (km²)	(percent)
Benin	Sub-Saharan Africa	116,689	93.1
Central African Republic	Sub-Saharan Africa	621,192	89.2
Botswana	Sub-Saharan Africa	579,948	87.8
Togo	Sub-Saharan Africa	\$7,386	87.2
Somalia	Sub-Saharan Africa	639,004	86.7
Australia	Oceania	7,704,716	85.4
Burkina Faso	Sub-Saharan Africa	273,320	84.7
Mongolia	Asia	1,558,853	83.9
Guinea	Sub-Saharan Africa	246,104	83.5
Mozambique	Sub-Saharan Africa	788,938	81.6
Namibia	Sub-Saharan Africa	825,606	80.6
Angola	Sub-Saharan Africa	1,252,365	79.9
Zimbabwe	Sub-Saharan Africa	391,052	76.8
Nigeria	Sub-Saharan Africa	912,351	76.7
Guinea-Bissau	Sub-Saharan Africa	34,117	73.9
Senegal	Sub-Saharan Africa	196,699	73.5
South Africa	Sub-Saharan Africa	1,223,084	73.5
Lesotho	Sub-Saharan Africa	30,533	73.5
Afghanistan	Middle East & N. Africa	642,146	73.4
Ethiopia	Sub-Saharan Africa	1,132,213	72.9
Zambia	Sub-Saharan Africa	754,676	69.8
Tanzania, United Republic	Sub-Saharan Africa	945,226	69.7
Madagascar	Sub-Saharan Africa	594,816	69.4
Kenya	Sub-Saharan Africa	584,453	68.6
Ghana	Sub-Saharan Africa	240.055	64.2
Cote d'Ivoire	Sub-Saharan Africa	322,693	62.3
Turkmenistan	Asia	471,216	62.1
Kazakhstan	Asia	2.715.317	61.5



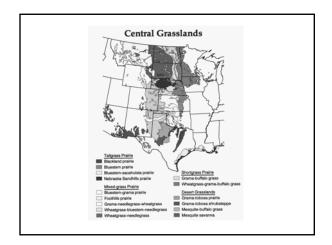
Chaparral Adaptations to Fire

- Mediterranean climate fire season from July to November
- Average fire cycle is 10-50 years (slope & aspect)
- Resinous foliage, woody stems, accumulated litter promote fire
- Fire needed for regeneration

 Clears away litter and shrubby vegetation
 Ground is generally left bare but with nutrient-rich ash
- Reproduce via seeds and vegetatively
 Seed bank: seeds buried in the soil
 Sporting: from root groups, basel groups, thize
 - Sprouting: from root crowns, basal crowns, rhizomes, and other other underground structures

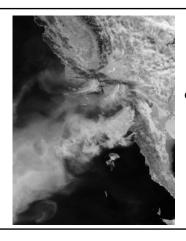

FIRE ECOLOGY OR ADAPTATIONS:

In grassland ecosystems, fires may occur in any year, provided the grass is cured and ready to burn. In the plains grasslands, mean fire intervals likely range from 4 to 20 years depending on climates and ignition sources. Fire in grasslands can burn over large areas until a break in terrain or a change in weather stops the fire. In desert grasslands where blue grama may dominate, reductions in fire frequency result in shrub invasion and substantially less grass cover. Fire occurring during periods of drought combined with wind erosion may retard the process of succession. Fire is an essential element in our ecosystem as natural management

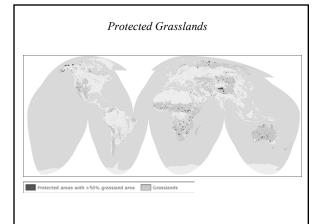

technique to control species dominance, noxious invasion, healthy

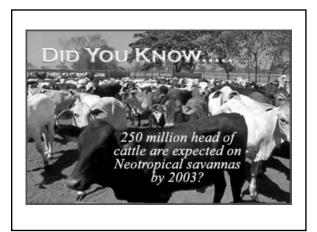
plant production, and successful germination. Fires do not have a

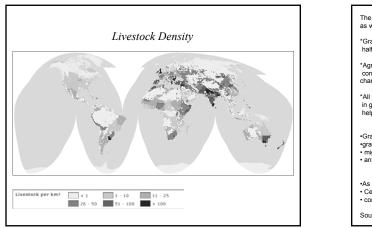
natural detrimental effect on grasslands.

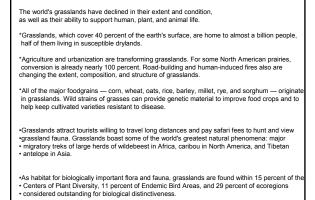

http://www.cnr.uidaho.edu/range456/hot-topics/fire-ecol.htm#nutrientcycling

Community or Ecosystem	Dominant Species Fi	re Return Interval Range (years)
Nebraska sandhills prairie	Andropogon gerardii	< 10
bluestem-Sacahuista prairie	Andropogon littoralis-Spartina spar	tinae <10
sagebrush steppe	Artemisia tridentata	20-70
basin big sagebrush	Artemisia tridentata var. tridentata	12-43
mountain big sagebrush	Artemisia tridentata var. vaseyana	15-40
Wyoming big sagebrush	Artemisia tridentata var. wyomingen	asis 10-70
saltbush-greasewood	Atriplex confertifolia	< 35 to < 100
desert grasslands	Bouteloua eriopoda	5-100
plains grasslands	Bouteloua spp.	< 35

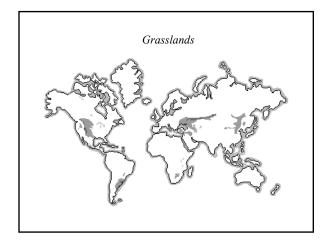

Human Impacts on Chaparral

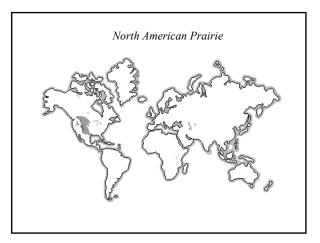

- Urbanization and development of chaparral areas – urban-wildland interface
- Fire suppression to protect these homes
- Dangerous Cycle:
 No fire
 - no new vegetation
 - woody debris buildup increases fire hazard
 - huge, destructive conflagrations destroy homes
 - people rebuild
 - fire suppression continued
- Fire regime may now be as great as 155 years in Santa Cruz Mountains chaparral

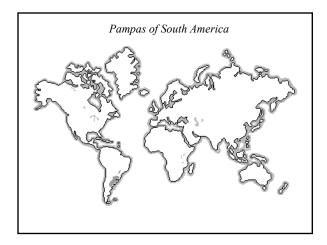


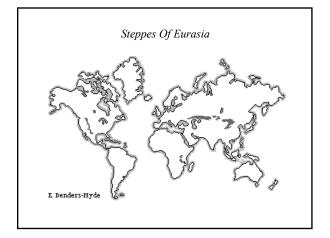

California Chaparral On Fire, 2003

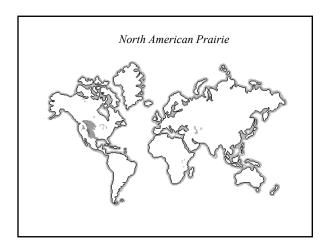
Santa Anna Winds Are Visible

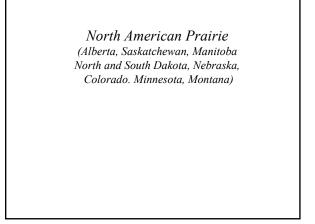


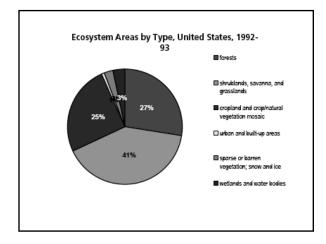


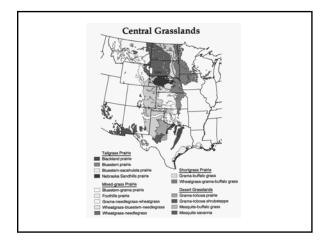


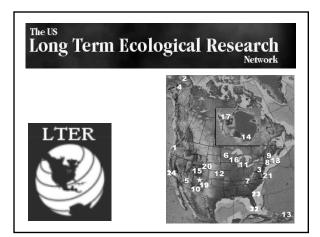


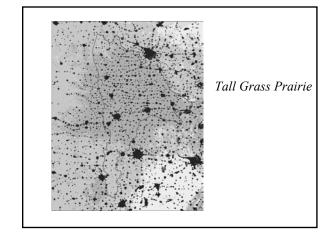

Source: World Resources 2000-2001

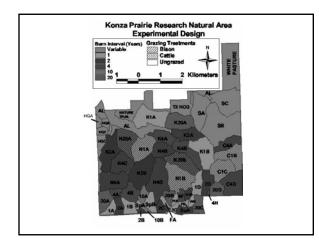


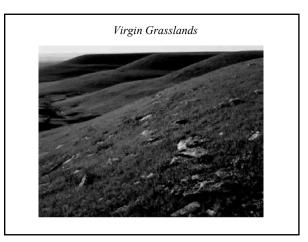




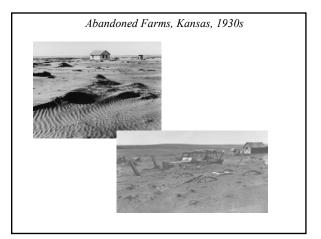


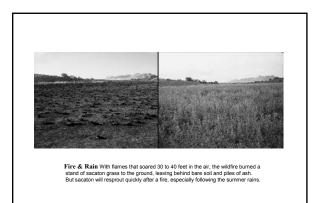




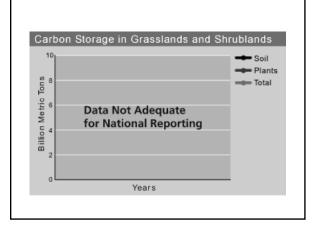


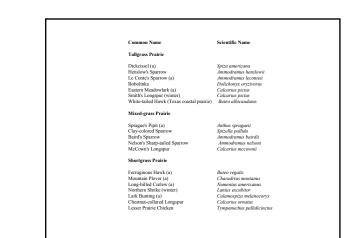






What Ever Happened To The "Dust Bowl"?* *read: Grapes Of Wrath



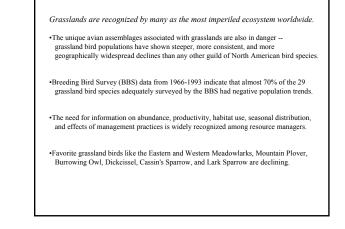


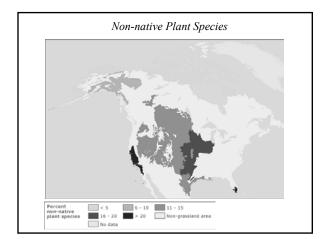
Technical Note for Grasslands and Shrublands Indicator: Carbon Storage

This indicator seeks to track long-term changes in carbon sequestration in grasslands and shrublands. Measurements of this indicator through time can provide information on whether the ecosystem is a net source or a net sink of atmospheric carbon dioxide. An ecosystem accruing carbon is one contributing to a reduction in greenhouse gases. White et al. (2000) have estimated that grassland ecosystems worldwide store an amount of carbon that is about of that stored by the world's forests and roughly equivalent to that stored by agricultural systems.

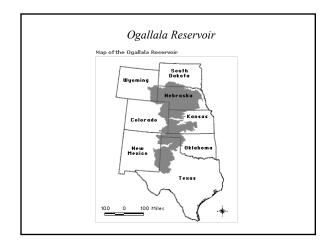
http://www.heinzctr.org/ecosystems/grass_technotes/grass_crbn_strg.shtml

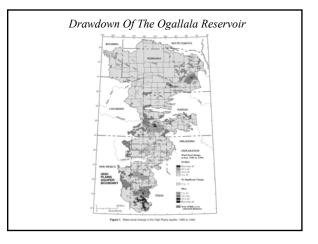
Biodiversity Of Birds Utilizing Prairie Habitats


Sonoran/Chihuahuan Desert Grasslands


Cassin's Sparrow (a) Aplomado Falcon Botteri's Sparrow (a) Rufous-winged Sparrow (a)

Grassland Generalists


Upland Sandpiper (a) Northerm Harrier (a) Swainson's Hawk (a) Burrowing Owl (a) Short-eared Owl (a) Common Nighthawk Loggerhead Shrike (a) Vesper Sparrow Savannah Sparrow Grasshopper Sparrow (a) Lark Sparrow Western Meadowlark (a) Aimophila cassinii Falco femoralis Aimophila botterii Aimophila carpalis


Bartramia longicauda Circus cyaneus Buteo swainsoni Athene cunicularia Asio flammeus Chordeiles minor Lanius Indovicianus Poscectes gramineus Passerculus sandwichenis Ammodramus savannarum Chondestes grammacus Sturnella neglecta

"The truth of the matter is that if the High Plains are to continue to be of any agricultural importance new water sources must be found. Potential water supplies could be the collection and storage of natural rainfall before it runs off or evaporates, increasing rainfall through seeding clouds (still being researched), and most importantly new sources of water will have to come from outside the High Plains region."

*Saying On Some Texas license plates. Too late, because: "We All Live Downstream"