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Lecture 9
Nonparametric methods to estimate the 
distribution of survival times (both Kaplan-Meier 
and life table methods)

Parametric models – Weibull model, Exponential 
model and Lognormal model

Semiparametric model – Cox proportional 
hazards model
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Objectives

• To understand how to describe survival 
times

• To understand how to choose a survival 
analysis model
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Survival Data (1)
Example one:  Four Liver Cancer Patients

B27211/3/02Dead2/4/02Susan
B246+11/4/02Alive3/3/02Tom
A927/8/02Dead4/7/02Kathy
A2429/1/02Dead1/2/02Mike

TreatmentSurvival 
Time (Day)

Date of Death 
or Censoring

EndpointDate of 
Diagnosis

Patient

Complete data (noncensored data): survival time = 242, 92, 272
Incomplete data (censored data): survival time = 246+  for Tom

The survival time for Tom will exceed 246 days, but we don’t know the
exact survival time for Tom.
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Survival Data (2)

Right-Censored Data:    Subjects observed
to be event-free to a certain time beyond
which their status is unknown
1. Subjects sometimes withdraw from a study, or 

die from other causes (diseases).
2. The study is completed before the endpoint is 

reached.

Methods for survival analysis must account
for both censored and noncensored data.
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Survival Data (3)
Survival analysis assumes censoring is 
random.
Censoring times vary across individuals 
and are not under the control of the 
investigator.
Random censoring also includes designs in 
which observation ends at the same time 
for all individuals, but begins at different 
times.



3

Applied Epidemiologic Analysis
Fall 2002

Survival Data (4)
Example two: Researchers treated 65 multiple myeloma
patients with alkylating agents. Of those patients, 48 died 
during the study and 17 survived. The goal of this study is 
to identify important prognostic factors.

TIME survival time in months from diagnosis
STATUS 1 = dead,  0 = alive (censored)
LOGBUN log blood urea nitrogen (BUN) at diagnosis
HGB hemoglobin at diagnosis
PLATELET platelets at diagnosis: 0 = abnormal, 1 = normal
AGE age at diagnosis in years
LOGWBC log WBC at diagnosis
FRACTURE fractures at diagnosis: 0 = none, 1 = present
LOGPBM log percentage of plasma cells in bone marrow
PROTEIN proteinuria at diagnosis
SALCIUM serum calcium at diagnosis
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Survival Data (5) – more examples
Survival analysis techniques arose from the life 
insurance industry as a method of costing 
insurance premiums. The term “survival” does 
not limit the usefulness of the technique to issues 
of life and death.

A “survival” analysis could be used to examine:
•The survival time after a heart transplant
•The time a kidney graft remains functional
•The time from marriage to divorce
•The time from release to first arrest
•The time to a job change
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Nonparametric Methods

1. Kaplan-Meier method (also called 
product-limit method)

2. Life table method

To estimate the distribution of survival times
-- estimate the survival rate
-- calculate the median survival time
-- graphs: survival curve, log(time) against log[-

log(survival rate)]
-- comparison of two survival curves
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How to describe survival times (1)

Product-Limit (Kaplan-Meier) Survival Estimates
Survival
Standard     Number     Number

TIME     Survival    Failure      Error      Failed       Left

0.0000       1.0000           0           0        0          65
1.2500            .           .           .        1          64
1.2500       0.9692 0.0308      0.0214        2          63
2.0000            .           .           .        3          62
2.0000            .           .           .        4          61
2.0000       0.9231 0.0769      0.0331        5          60
3.0000       0.9077 0.0923      0.0359        6          59
4.0000*           .           .           .        6          58
4.0000*           .           .           .        6          57
5.0000            .           .           .        7          56
5.0000       0.8758 0.1242      0.0411        8          55
---------------------------------------------------------------
89.0000      0.0414      0.9586      0.0382       47           1
92.0000           0      1.0000           0       48           0

NOTE: The marked survival times are censored observations.
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How to describe survival times (2)

Product-Limit (Kaplan-Meier) Survival Estimates

ni:  the number of surviving units just prior to ti
di:  the number of units that fail at ti
q = di / ni
p = 1- q

(63/65)(60/63)(59/60)(55/57)=0.875855/572/572575

(63/65)(60/63)(59/60)=0.907759/601/601603

(63/65)(60/63)=0.923160/633/633632

(63/65)=0.969263/652/652651.25

survival ratepqdinitime
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How to describe survival times (3)

Product-Limit (Kaplan-Meier) Survival Estimates

Kaplan-Meier method uses the actual observed 
event and censoring times. 

A problem arises with Kaplan-Meier method if 
there exist censored times that are later than the 
last event time. The average duration will be 
underestimated when we use the time until the 
last event occurs. In the practical application of 
such cases, an interpretation only considers the 
length of time until the last event occurs.
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How to describe survival times (4)
Life Table Survival Estimates

Effective  Conditional  
Interval     Number   Number    Sample    Probability  

[Lower, Upper)  Failed  Censored    Size     of Failure    Survival   
NF       NC        n            q            p

0        10     16        5       62.5        0.2560       1.0000
10 20     15        7       40.5        0.3704       0.7440   
20        30       3        1       21.5        0.1395       0.4684
30        40       3        0       18.0        0.1667       0.4031
40        50       2        1       14.5        0.1379       0.3359
50        60       4        2       11.0        0.3636       0.2896
60        70       2        0        6.0        0.3333       0.1843
70        80       0        1        3.5             0       0.1228
80        90       2        0        3.0        0.6667       0.1228
90 .       1        0        1.0        1.0000       0.0409

n = N – ½ (NC);    62.5 = 65 – 5/2,     40.5 = 44 – 7/2       
q = NF / n;    0.2560 = 16/62.5,     0.3704 = 15/40.5
p = Пp = П(1-q);     0.7440 = 1 – 0.2560,  0.4684 = (1-0.2560)(1-0.3704)
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How to describe survival times (5)

Life Table Survival Estimates

The Life Table method uses time interval. 

The Life Table method is very useful for a large 
sample, but the estimated results will depend on 
the chosen interval length. The larger the 
interval, the poorer the estimations.

You should apply Kaplan-Meier method if the 
sample is not very large.
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How to describe survival times (6) 
Survival Curve
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How to describe survival times (7)

Summary Statistics for Time Variable
Point       95% Confidence Interval

Percent    Estimate         [Lower    Upper)

75        52.0000          35.0000     67.0000
50        19.0000          15.0000     35.0000
25          9.0000            6.0000     14.0000

Mean      Standard Error
32.1460            4.0301

Percent
Total   Failed    Censored    Censored

65      48               17   26.15
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How to describe survival times (8)
Median Survival Time

The median survival time is defined as the value at 
which 50% of the individuals have longer survival 
times and 50% have shorter survival times.
The reason for reporting the median survival time 
rather than the mean survival time is because the 
distributions of survival time data often tend to be 
skewed, sometimes with a small number of long-
term ‘survivors’. Another reason is that we can 
not calculate the mean survival time for the 
survival time with censored data.
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How to describe survival times (9)

How to estimate median survival time

If there are no censored data, the median survival 
time is estimated by the middle observation of the 
ranked survival times.

In the presence of censored data the median 
survival time is estimated by first calculating the 
Kaplan-Meier survival curve, then finding the value 
of survival time when survival rate=0.50 (50%)
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How to describe survival times (10)

Graph of Log Negative Log SDF versus Log Time

Exponential Distribution
The graph is approximately a straight line, the 
slope is 1. 

Weibull Distribution
The graph is approximately a straight line, but the 
slope is greater or less than 1.
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How to describe survival times (11) 
Graph of Log Negative Log SDF versus Log Time
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Comparison of Two Survival Curves (1)
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Comparison of Two Survival Curves (2)

Median Survival Time

Group 1:  PLATELET = 0 (abnormal)
Point      95% Confidence Interval

Percent    Estimate     [Lower      Upper)             
50         13.0000       6.0000      35.0000

Group 2:  PLATELET = 1 (normal)
Point       95% Confidence Interval

Percent    Estimate        (Lower      Upper)               
50     24.0000            16.0000      41.0000    
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Comparison of Two Survival Curves (3)
Test of Equality of Two Survival Curves

Test                    Chi-Square     DF           P Value
Log-Rank        3.2923  1    0.0696

Wilcoxon                     2.3724       1        0.1235
-2Log(LR)                     2.4065                1            0.1208

Log-Rank test 
for Weibull distribution or proportional hazards assumption, using 
weight=1 so that each failure time has equal weighting, placing less 
emphasis on the earlier failure times.

Wilcoxon test
For lognormal distribution, using weight=the total number at risk at 
that time so that earlier times receive greater weight than later times, 
placing less emphasis on the later failure times.

-2Log(LR) : Likelihood Ratio test
for exponential distribution survival data.
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Parametric Models (1)
Whenever fundamental hypotheses are to 
be tested or you have clear idea about the 
distribution of survival data, you should 
use a parametric model.

Three most common parametric models:
1. Exponential regression model
2. Weibull regression model
3. Lognormal regression model
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Parametric Models (2)
Exponential Regression Model

The exponential distribution is a useful form 
of the survival distribution when the hazard 
function (probability of failure) is constant 
and does not depend on time, the graph is 
approximately a straight line with slope=1.

In biomedical field, a constant hazard 
function is usually unrealistic, the situation 
will not be the case. 
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Parametric Models (3)

Weibull Regression Model

The hazard function changes with time, the graph 
is approximately a straight line, but the slope is 
not 1.

The hazard function always increase when the 
parameter α >1

The hazard function always decrease when α <1

It is the exponential regression model when  α=1
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Parametric Models (4)

Lognormal Regression Model

The survival times are log-normal 
distribution.

The hazard function changes with time. The 
hazard function first increase and then 
decrease (an inverted “U” shape).
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Cox Model (1)
Disadvantages of parametric models:
1. It is necessary to decide how the hazard function

depends on time. 
2. It may be difficult to find a parametric model if the

hazard function is believed to be nonmonotonic.
3. Parametric models do not allow for explanatory

variables whose values change over time. 
It is cumbersome to develop fully parametric models
that include time-varying covariates.

Time-varying covariates are very important in survival
analysis:

1) continuous time-varying variable: income is changed over time
2) discrete time-varying variable: single - married - divorce - remarried
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Cox Model (2)

David Cox, a British statistician, solved 
these problems in 1972, published a paper 
entitled “Regression Models and Life-Tables 
(with Discussion),” Journal of the Royal 
Statistical Society, Series B, 34:187-220

h(t|xi) = h0(t) exp (βixi)
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Cox Model (3)
Why is Cox model a semiparametric model ?

h(t|xi) = h0(t) exp (βixi)

h0(t): nonparametric baseline hazard function,
this function does not have to be specified,
the hazard may change as a function
of time.

exp (βixi):  parametric form for the effects of the 
covariates, the hazard function changes as a
exponential function of covariates
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Cox Model (4)
Why is Cox model a ‘proportional hazards’ model?

Any two individuals (or groups, i & j) at any point 
in time, the ratio of their hazards is a constant (a 
fixed proportional).

For any time t,      hi(t) / hj(t) = C

C may depend on explanatory variables but not on 
time.
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Cox Model (5)
What is a partial likelihood ?

It is easy for a statistician to write down a model:
h(t|xi) = h0(t) exp (βixi)

It isn’t easy to devise ways to estimate this model.
Cox’s most important contribution was to propose 
a method called partial likelihood because it does 
not include the baseline hazard function h0(t).

Partial likelihood depends only on the order in 
which events occur, not on the exact times of 
occurrence.
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Cox Model (6)
What is a partial likelihood ? (cont)

Partial likelihood accounts for censored survival 
times.

Partial likelihood allows time-dependent 
explanatory variables.

It is not fully efficient because some information is 
lost by ignoring the exact times of event 
occurrence. But the loss of efficiency is usually so 
small that it is not worth worrying about.
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Cox Model (7)
Using Cox model to fit our data (final model)

Parameter  Standard                                          Hazard   95% Hazard Ratio
Variable    Estimate    Error     Chi-Square  Pr > ChiSq   Ratio    Confidence Limits
LOGBUN    1.67440      0.61209        7.4833         0.0062     5.336    1.608    17.709
HGB          -0.11899      0.05751        4.2811    0.0385      0.888     0.793     0.994

The hazards ratio (also known as risk ratio) is the ratio of 
the hazards functions that correspond to a change of one 
unit of the given variable and conditional on fixed values 
of all other variables.
An increase in one unit of the log of blood urea nitrogen 
increases the hazard of dying by 433.6% (5.336-1).  
An increase in one unit of hemoglobin at diagnosis 
decreases the hazard of dying by 11.2% (1-0.888). 
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Cox Model (8): Examine Proportional Hazards Assumption
1. Checking the assumption graphically

The two plots appear ‘parallel’ in that there is an approximately
constant vertical distance between them at any given time.
The hazards for the two groups are proportional, their ratio remains
approximately constant with time.
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Cox Model (9)
Examine Proportional Hazards Assumption cont.

2. Statistical test of the assumption
Testing the increasing or decreasing 

trend over time in the hazard function by 
investigating the interaction between time 
and covariate. 

A significant interaction would imply 
the hazard function changes with time, the 
proportional hazards model assumption is 
invalid.
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How do you decide which model to use?  (1)

How does hazard function depend on time?

Examples
The hazard function for retirement increases 
with age.
The hazard function for being arrested 
declines with age at least after age 25.
The hazard function for death from any 
cause has “U” shape.
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How do you decide which model to use? (2)

1. Using exponential regression model if hazard
function is constant and does not depend on time.

2. Using Weibull regression model (monotonic
models) if hazard function always increases or
always decreases with time.

3. Using Lognormal regression model
(nonmonotonic models) if hazard function first
increases and then decreases with time
(an inverted “U” shape).
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How do you decide which model to use? (3)
4. Using Cox regression model if hazard function first 
decreases and then increases, or changes dynamically (a 
“U” shape or other shapes)

Cox model can fit any distribution of survival data if the 
proportional hazards assumption is valid (actually most 
hazards ratios are fixed proportional). This is why the Cox 
model is used so widely now.

By the way, when we have a Cox model, we can not use 
this model for forecasting because we just have exp (βixi), 
we do not have the h0(t) (baseline hazard function). 
We have to estimate h0(t) (by using BASELINE Statement 
in SAS) before we forecast.
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Contents
1. Nonparametric methods to estimate the 

distribution of survival times.
2. Semiparametric model – Cox proportional 

hazards model.
3. Parametric models – Exponential model, Weibull

model, and Lognormal model.

Objectives
1. To understand how to describe survival times.
2. To understand how to choose a survival analysis 

model.


