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Abstract

This article is an introduction to affine and Riemannian connections on manifolds. In particular,
we will prove the Fundamental Theorem of Riemannian Geometry: every Riemannian manifold
has a unique Riemannian connection.

Audience: This article assumes an introductory knowledge of inner products, manifolds, directional
derivatives, and vector fields as taught in this course MATH 4081.

1 Affine Connections

On a manifold M , we know how to define the directional derivative of a smooth function f in the
direction Xp ∈ TpM :

∇Xp
f = Xpf

It is also useful to talk about directional derivatives of vector fields on manifolds. However, there
is no canonical way to define the directional derivative of a vector field since there is no canonical
basis for the tangent space TpM . Instead, we define a map called an affine connection with similar
linearity and Leibniz Rule properties as directional derivatives in Rn. This affine connection acts like
a directional derivative of vector fields on a manifold.

Definition (Affine Connection). Let X(M) be the set of all C∞ vector fields on M . An affine
connection on a manifold M is an R-bilinear map

∇ : X(M)× X(M) → X(M)

satisfying the two properties: If F is C∞(M), the set of smooth functions on M , then

1. ∇(X,Y ) is F-linear in X

2. ∇(X,Y ) satisfies the Leibniz Rule in Y , i.e. for f ∈ F , ∇(X, fY ) = (Xf)Y + f∇(X,Y )

Following convention , we write ∇X(Y ) for ∇(X,Y ).

Example 1.1 (Directional Derivative). The directional derivative DX of a vector field Y on Rn is an
affine connection on Rn. It is called the Euclidean connection.

Example 1.2 (A Connection on S2). Let dY be the differential (Jacobian matrix) of a vector field
Y : S2 → R3 such that ⟨Y (p), p⟩ = 0 for all p ∈ S2. Then,

∇XY (p) = dY (p)(X(p)) + ⟨X(p), Y (p)⟩p

defines an affine connection on S2, where ⟨·, ·⟩ denotes the standard inner product on R3.
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2 Torsion

An interesting property of affine connections on manifolds is torsion. For our purposes, torsion will
be useful insofar as it is 0 for a particular connection, the Riemannian connection, in section 3.2.

Definition (Torsion). The torsion tensor or torsion T of a connection ∇ is the quantity

T (X,Y ) = ∇X(Y )−∇Y (X)− [X,Y ]

If T (X,Y ) = 0 for all X,Y ∈ X(M), then we say the associated connection is torsion-free.

Example 2.1. The connection in Example 1.2 on S2 is torsion-free.

An interesting property of torsion is that it is F-linear in both arguments (as shown below) even
though ∇XY is not necessarily F-linear in Y .

Proposition 2.1. Torsion T (X,Y ) of a connection ∇ is F-linear in X and Y .

Proof. Let f, g ∈ F . Then,

T (fX, gY ) = ∇fX(gY )−∇gY fX − [fX, gY ]

= f∇X(gY )− g∇Y (fX)− [fX, gY ] (F-linearity in first argument)

= f(Xg)Y + fg∇X(Y )− g(Y f)X − gf∇Y (X)− [fX, gY ] (Leibniz Rule)

= f(Xg)Y + fg∇X(Y )− g(Y f)X − fg∇Y (X)− f(Xg)Y + g(Y f)X − fg[X,Y ]

= fg(∇X(Y )−∇Y (X)− [X,Y ]

= fgT (X,Y )

3 Riemannian Connections

3.1 Riemannian Manifolds

We continue to build up our machinery for proving the fundamental theorem of Riemannian geometry.
A topic central to Riemannian geometry is Riemannian manifolds. One can think of a Riemannian
manifold as a manifolds equipped with a metric that allows one to measure lengths and angles of
tangent vectors intrinsically to the manifold, independent of its embedding in a higher dimensional
space.

Definition (Riemannian Metric). A Riemannian metric on a manifold M is the assignment of an
inner product ⟨·, ·⟩p on the tangent space TpM to each p ∈ M such that p 7→ ⟨·, ·⟩p is C∞ as follows:
If X,Y are C∞ vector fields on M , then p 7→ ⟨Xp, Yp⟩p is a C∞ function on M .

Example 3.1 (Euclidean Metric on Rn). All tangent spaces TpRn are canonically isomorphic to Rn.
So, the standard Euclidean inner product ⟨·, ·⟩ on Rn defines a Riemannian metric on Rn. This is
called the Euclidean metric on Rn.

Definition (Riemannian Manifold). A Riemannian manifold is a pair (M, ⟨·, ·⟩) of a manifold M
and a Riemannian metric ⟨·, ·⟩ on M .

Example 3.2. Rn equipped with the Euclidean metric is a Riemannian manifold.

Example 3.3. S2 equipped with the Euclidean metric on R3 is a Riemannian manifold.

Remark. Although we won’t prove it, we should note that on every manifold M , there is a Rieman-
nian metric.
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Proposition 3.1. A C∞ vector field X on a Riemannian manifold (M, ⟨·, ·⟩) is uniquely determined
by the values ⟨X,Z⟩ for all Z ∈ X(M).

Proof. Let X,X ′ ∈ X(M). We want to show that if ⟨X,Z⟩ = ⟨X ′, Z⟩ for all Z ∈ X(M), then X = X ′.
This is equivalent to showing that for Y = X −X ′, if ⟨Y,Z⟩ = 0 for all Z ∈ X(M), then Y = 0.

Choose Z = Y . Then,

⟨Y,Z⟩ = ⟨Y, Y ⟩ = 0 =⇒ ⟨Yp, Yp⟩p = 0 for all p ∈ M

=⇒ Yp = 0 for all p ∈ M

=⇒ Y = 0

Thus, X = X ′

3.2 Riemannian Connections

On an arbitrary (Riemannian) manifold, we may define a multitude of connections. However, if we
wanted to define unique connections on Riemannian manifolds, we would need to impose restrictions
on the set of connections on our manifold. In fact one can find a unique “Riemannian connection”
on every Riemannian manifold by imposing just two restrictions on our set of connections: metric
compatibility and torsion-freeness.

Definition (Metric Compatibility of a Connection). On a Riemannian manifold M , a connection is
compatible with the metric if for all X,Y, Z ∈ X(M),

Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩

Definition (Riemannian Connection). On a manifold, a Riemannian connection is a connection that
is torsion-free and is compatible with the metric.

Example 3.4. The Euclidean connection in Example 1.1 on Rn equipped with the Euclidean metric
is a Riemannian connection.

Example 3.5 (Riemannian Connection on S2). The affine connection in Example 1.2 is a Riemannian
connection on S2. We already know it is torsion-free by Example 2.1. One can show that it is metric
compatible as well.

Note that the form of the Riemannian connection on S2 in Example 1.2 is interesting. It happens
to be the projection of DXpY , the directional derivative of Y in the Xp-direction, onto TpS

2. More
generally, the point-wise Riemannian connection for a smooth, not necessarily orientable, surface M
in R3 is given by

(∇XY )p = prp(DXp
Y )

where prp : TpR3 → TpM is the projection to the tangent space of M at p.

Now that we have built up this machinery of connections, torsion, metric compatibility, and Rie-
mannian manifolds & connections, we are prepared to prove the following theorem:

Theorem 3.1 (Fundamental Theorem of Riemannian Geometry). On a Riemannian manifold M ,
there is a unique Riemannian connection.

Proof. Suppose ∇ is a Riemannian connection on M . By Proposition 3.1, to specify ∇XY , it suffices
to know ⟨∇XY,Z⟩ for all Z ∈ X(M).

Since ∇ is a Riemannian connection, it is metric compatible. So, permuting cyclically in X,Y, Z,

Z⟨X,Y ⟩ = ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩
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Y ⟨Z,X⟩ = ⟨∇Y Z,X⟩+ ⟨Z,∇Y X⟩

X⟨Y,Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩

Since ∇ is a Riemannian connection, it is also torsion-free. So, for all X,Y ∈ X(M),

T (X,Y ) = ∇X(Y )−∇Y (X)− [X,Y ] = 0

So, we may rewrite Y ⟨Z,X⟩ as

Y ⟨Z,X⟩ = ⟨∇Y Z,X⟩+ ⟨Z,∇XY ⟩ − ⟨Z, [X,Y ]⟩

So, we may write

X⟨Y,Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩ = 2⟨∇XY,Z⟩+ ⟨Y,∇XZ −∇ZX⟩+ ⟨X,∇Y Z −∇ZY ⟩ − ⟨Z, [X,Y ]⟩
= 2⟨∇XY,Z⟩+ ⟨Y, [X,Z]⟩+ ⟨X, [Y, Z]⟩ − ⟨Z, [X,Y ]⟩ (torsion-free)

Thus,

⟨∇XY,Z⟩ = 1

2

(
X⟨Y,Z⟩+ Y ⟨Z,X⟩ − Z⟨X,Y ⟩ − ⟨Y, [X,Z]⟩ − ⟨X, [Y, Z]⟩+ ⟨Z, [X,Y ]⟩

)
By Proposition 3.1, this defines ∇XY for all X,Y ∈ X(M). So, if a Riemannian connection ∇ exists,
it is unique and defined as above.

We may also see that a connection ∇ defined as above is torsion-free and compatible with the met-
ric. Torsion-freeness may be proved by calculating ⟨T (X,Y ), Z⟩ and showing that it is 0 for all
X,Y, Z ∈ X(M). So, T (X,Y ) = 0 for all X,Y ∈ X(M). Metric compatibility may be proved by sim-
ply calculating ⟨∇ZX,Y ⟩+ ⟨X,∇ZY ⟩ and showing it is equal to Z⟨X,Y ⟩. Thus, ∇ is a Riemannian
connection.
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