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Abstract

In this class, we have largely been able to solve for the energies and eigenstates of Hamilto-
nians exactly. However, this is not always possible. We turn to approximation methods like
the Variational Principle, Perturbation Theory, and the WKB Method to help us find approx-
imate eigenstates and energies to complicated Hamiltonians. In this lecture, we will study the
Variational Principle and Time Independent Perturbation Theory. We will also work through
a couple of examples, and implement the Variational Principle on physical quantum systems
using a quantum computer.

Contents

1 Variational Principle 1
1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum Computing Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Time Independent Perturbation Theory 4
2.1 Nondegenerate Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Orthonormality of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 1st Order Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 2nd Order Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Example: Harmonic Oscillator in an Electric Field . . . . . . . . . . . . . . . 6

2.2 Degenerate Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Appendix - Code 8

1 Variational Principle

1.1 Theory

Suppose we have a Hamiltonian H with energies En and corresponding eigenstates |un⟩ are un-
known. Assume E0 < E1 < ..., i.e. the energies are ascending. We know that the eigenstates must
form an orthonormal basis, i.e.

⟨un|um⟩ = δnm and 1 =
∑
n

|un⟩⟨un|
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Goal: To find the ground state energy of the Hamiltonian H.

Method: We begin by guessing a potential ground state |ψ(λ)⟩, often referred to as an ansatz.
Then, we examine what the energy of this ansatz wavefunction is in this Hamiltonian.

Eψ(λ) =
⟨ψ(λ)|H|ψ(λ)⟩
⟨ψ(λ)|ψ(λ)⟩

Let us examine this Eψ(λ) more closely. Note that

⟨ψ|H|ψ⟩ = ⟨ψ|1H1|ψ⟩

=
∑
n,m

⟨ψ|un⟩⟨un|H|um⟩⟨um|ψ⟩ =
∑
n,m

Em⟨ψ|un⟩⟨un|um⟩⟨um|ψ⟩

=
∑
n,m

Em⟨ψ|un⟩δnm⟨um|ψ⟩ =
∑
n

En|⟨ψ|un⟩|2

≥ E0

∑
n

|⟨ψ|un⟩|2 = E0|⟨ψ|ψ⟩|

Thus,

Eψ(λ) =
⟨ψ(λ)|H|ψ(λ)⟩
⟨ψ(λ)|ψ(λ)⟩

≥ E0

So, for any guess function (ansatz) ψ, we cannot find an energy lower than the ground state energy.
Our goal is to find a good approximation for the ground state energy - we do this by minimizing
Eψ(λ) with respect to lambda. So, we set

∂Eψ(λ)

∂λ
= 0

1.2 Quantum Computing Experiment

We can test the physical implementation of the variational principle on quantum states using
modern-day quantum computers. A quantum computer is a system that performs operations on
quantum bits of information (qubits). These operations are conducted by a series of quantum logic
gates, measurements, and possibly classical computations as well.

We can test the experimental validity of the variational principle using a quantum algorithm called
the “Variational Quantum Eigensolver” (VQE). This algorithm has 4 parts: state preparation,
quantum gate operations, energy measurement, and classical optimization.
In a VQE experiment, we are given a Hamiltonian H, whose ground state energy is unknown. We
prepare a guess function (an ansatz) and encode it onto a collection of qubits. Once this state is
prepared, we feed these qubits into a set of quantum modules that perform a series of quantum gate
operations on these qubits - these gate operations are determined by the Hamiltonian H. Then,
we measure the energies of each qubit and add them to get the total state energy. Finally, we
optimize this energy by classically varying the variational parameters of our initial quantum state.
We repeat this process with our new parameters until a minimum energy is found.
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1.2.1 A Simple Example

Suppose we want to find the ground state energy of the Hamiltonian H = σz =

(
1 0
0 −1

)
. It is

easy to see that the ground state vector is

(
0
1

)
and corresponds to a ground state energy of −1.

We denote the vectors

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
If we wanted to find the ground state and ground state energy of the Hamiltonian using the varia-
tional principle, we would first guess some initial wavevector. We could just guess the wavevector
|1⟩, but this would be a very uninteresting exercise because it is already the ground state. Instead,
let us guess an initial wavevector U(θ)|0⟩, where θ is our variational parameter and U(θ) is the
rotation matrix

U(θ) =

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
Then, if we run this state through our variational quantum eigensolver, we get a plot of energies as
a function of angle θ. This particular example was run on IBM’s Qiskit cloud quantum computing
platform (code in the Appendix 3). We should expect the minimum measured energy to be −1
with angle θ = π since U(π)|0⟩ = |1⟩, the theoretical ground state.
We find that the minimum energy is −1 and it occurs at θ = π, just as we expected. This
demonstrates that the variational principle theory we built physically works in nature!
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2 Time Independent Perturbation Theory

The Varational Principle is a good method to approximate the ground state energies of a Hamilto-
nian. However, it does not give us a prescription for finding good approximations to the eigenstates
of an arbitrary Hamiltonian. The Time Independent Perturbation Theory method helps us do just
that.

2.1 Nondegenerate Perturbation Theory

Suppose we have a Hamiltonian H0 whose eigenstates |n(0)⟩ and corresponding energies E
(0)
n are

known to us. The superscript (0) indicates that these are the eigenstates and energies of the Hamil-
tonian H0. Examples of Hamiltonians whose states and energies we know are the infinite square
well, simple harmonic oscillator, hydrogen atom, etc.

Now, suppose we have a Hamiltonian H = H0 + λH ′ that is a perturbation of our original Hamil-
tonian by another Hamiltonian H ′ and some real parameter λ. We do not know the eigenstates or
energies of H ′.

Goal: We want to find the eigenstates |n⟩ and energies En of this total Hamiltonian H. More
specifically, we want to find states |n⟩ and energies En such that the Schrodinger equation is satis-
fied:

H|n⟩ = En|n⟩

Method: We want to leverage the information we already know from the unperturbed Hamiltonian

states |n(0)⟩ and energies E
(0)
n to construct the new eigenstates and energies for the perturbed

Hamiltonian. So, we expand the eignestates |n⟩ and energies En in a polynomial over our variational
parameter λ.

|n⟩ = |n(0)⟩+ λ|n(1)⟩+ λ2|n(2)⟩+ ...

En = E(0)
n + λE(1)

n + λ2E(2)
n + ...
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We then substitute these expansions into the Schrodinger equation, equate terms, and solve for the
energy and eigenstate corrections. Before we do that, let’s examine the states |n(i)⟩ to understand
their orthonormality properties.

2.1.1 Orthonormality of States

Even in perturbation theory, we want our states |n⟩ to be orthonormal, i.e.

⟨n|m⟩ = δnm

If we work to first order in λ, we may write |n⟩ = |n(0)⟩+ λ|n(1)⟩. The inner product ⟨n|n⟩ yields

1 = ⟨n|n⟩ = (⟨n(0)|+ λ⟩n(1)|)(|n(0)⟩+ λ|n(1)⟩)
= ⟨n(0)|n(0)⟩+ λ⟨n(0)|n(1)⟩+ λ⟨n1|n(0)⟩+ λ2⟨n(1)|n(1)⟩
= 1 + λ(⟨n(0)|n(1)⟩+ ⟨n(1)|n(0)⟩) (only keeping terms upto first order in λ)

= 1 + 2λ⟨n(0)|n(1)⟩

So, we can see that ⟨n(0)|n(1)⟩ = 0. If we worked to higher orders in λ, we would similarly find that

⟨n(i)|n(j)⟩ = δij

Thus, all our expansion eigenstates are orthonormal.

2.1.2 1st Order Corrections

Now that we know all our expansion states are orthonormal, we can turn back to the Schrodinger
equation, and solve for the energy and eigenstate corrections. We begin with the Schrodinger
equation H|n⟩ = En|n⟩ and expand it in terms of our eigenstate and energy expansions.

(H0+λH
′)(|n(0)⟩+λ|n(1)⟩+λ2|n(2)⟩+...) = (E(0)

n +λE(1)
n +λ2E(2)

n +...)(|n(0)⟩+λ|n(1)⟩+λ2|n(2)⟩+...)

If we expand both sides of this equation, they yield polynomials in lambda on the left and right
hand sides. Linear algebra tells us that we have to then equate the coefficients of each λi term. If
we do this, we get the following:

λ0 : H0|n(0)⟩ = E(0)
n |n(0)⟩ (as expected)

λ1 : H0|n(1)⟩+H ′|n(0)⟩ = E(0)
n |n(1)⟩+ E(1)

n |n(0)⟩ (⋆)
λ2 : H0|n(2)⟩+H ′|n(1)⟩ = E(0)

n |n(2)⟩+ E(1)
n |n(1)⟩+ E(2)

n |n(0)⟩ (†)
and so on ...

To find the first oder energy corrections E
(1)
n , we inner product equation (⋆) with ⟨n(0)|.

⟨n(0)|H0|n(1)⟩+ ⟨n(0)|H ′|n(0)⟩ = E(0)
n ⟨n(0)|n(1)⟩+ E(1)

n ⟨n(0)|n(0)⟩

Our discussion of orthonormality of expansion states told us that ⟨n(0)|n(1)⟩ = 0. Thus,

E(1)
n = ⟨n(0)|H ′|n(0)⟩
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To find the first order eigenstate corrections |n(1)⟩, we examine how the perturbation term H ′ in
our Hamiltonian acts on each unperturbed basis state |n(0)⟩.

H ′|n(0)⟩ = 1H ′|n(0)⟩ =
∑
m

|m(0)⟩⟨m(0)|H ′|n(0)⟩

=
∑
m ̸=n

|m(0)⟩⟨m(0)|H ′|n(0)⟩+ |n(0)⟩⟨n(0)|H ′|n(0)⟩

=
∑
m ̸=n

|m(0)⟩⟨m(0)|H ′|n(0)⟩+ E(1)
n |n(0)⟩

If we compare this equation with equation (⋆) from above (the λ1 equation), we deduce

(E(0)
n −H0)|n(1)⟩ =

∑
m̸=n

|m(0)⟩⟨m(0)|H ′|n(0)⟩

Inner-producting this with ⟨m(0), a fixed bra vector with m ̸= n yields

(E(0)
n − E(0)

m )⟨m(0)|n(1)⟩ = ⟨m(0)|H ′|n(0)⟩ =⇒ ⟨m(0)|n(1)⟩ = ⟨m(0)|H ′|n(0)⟩
E

(0)
n − E

(0)
m

Since |n(1)⟩ =
∑
m ̸=n |m(0)⟩⟨m(0)|n(1)⟩,

|n(1)⟩ =
∑
m̸=n

⟨m(0)|H ′|n(0)⟩
E

(0)
n − E

(0)
m

|m(0)⟩

Notice that this expression for |n(1)⟩ is well-defined because we are working in the nondegenerate

case, i.e. E
(0)
n ̸= E

(0)
m for m ̸= n. We will treat the degenerate case differently later.

2.1.3 2nd Order Corrections

Let us find the 2nd order corrections E
(2)
n to the energies of our nondegenerate system. To do so, we

examine the λ2 equation (†) from above. Similar to the 1st order correction case, we inner product
equation (†) with ⟨n(0)|. Simplifying terms, we get

E(2)
n = ⟨n(0)|H ′|n(1)⟩

Substituing the expression for |n(1)⟩ above, we simplify and find

E(2)
n =

∑
m̸=n

|⟨m(0)|H ′|n(0)⟩|2

E
(0)
n − E

(0)
m

2.1.4 Example: Harmonic Oscillator in an Electric Field

Suppose we have a Hamiltonian H = p2

2m + 1
2mω

2x2 − qEx. Find the energies of this Hamiltonian
up to 2nd order in our perturbative expansion.
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We may write this Hamiltonian as H = H0 + λH ′ with H0 = p2

2m + 1
2mω

2x2, H ′ = −qEx, and
λ = 1. We know the energies of H0, the simple harmonic oscillator.

E(0)
n = ℏω(n+

1

2
)

To make our lives easier, we express H ′ using the lowering and raising operators.

H ′ = −qEx = −qE
√

ℏ
2mω

(a+ a†)

To find the 1st order corrections to the energies, we use the expression E
(1)
n = ⟨n(0)|H ′|n(0)⟩.

E(1)
n = −qE

√
ℏ

2mω
⟨n(0)|(a+ a†)|n(0)⟩ = 0

To find the 2nd order corrections to the energies, we write

E(2)
n =

∑
m̸=n

|⟨m(0)|H ′|n(0)⟩|2

E
(0)
n − E

(0)
m

= E(2)
n

=
q2E2ℏ
2mω

∑
m ̸=n

|⟨m(0)|(a+ a†)|n(0)⟩|2

ℏω(n−m)

=
q2E2

2mω2

( |
√
n|2

n− (n− 1)
+

|
√
n+ 1|2

n− (n+ 1)

)
= − q2E2

2mω2

So, up to 2nd order, En = ℏω(n + 1
2 ) −

q2E2

2mω2 . If you were to solve this Hamiltonian exactly, by
completing the square, you would find that these are the exact values of the energy for H! This is
a rare case where perturbation theory gives us the exact values of energies for the Hamiltonian -
however, this is not generally the case.

2.2 Degenerate Perturbation Theory

Suppose that the total Hamiltonian H = H0 + λH ′ has energy En with N degenerate states n
(0)
i ,

i = 1, ..., N . Here, we have fixed n - so only for the nth energy state is there an N -fold degeneracy.

Goal: We want to find the 1st order corrections E
(1)
n for the state |n⟩.

Method: We expand our eigenstate |n⟩ in powers of λ, similar to our nondegenerate case anal-

ysis. However, we replace the 0-th order term |n(0)⟩ with a linear combination
∑
j cj |n

(0)
j ⟩ of the

degenerate states. We do this because we are unsure of what combination of these states yields the
“correct” 0-th order contribution to |n⟩. So,

|n⟩ =
∑
j

cj |n(0)j ⟩+ λ|n(1)⟩+ λ2|n(2)⟩+ ...
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En = E(0)
n + λE(1)

n + λ2E(2)
n + ...

We work with the Schrodinger equation H|n⟩ = En. Then, the λ
1 equation (⋆) becomes

H0|n(1)⟩+
∑
j

cjH
′|n(0)j ⟩ = E(0)

n |n(1)⟩+ E(1)
n

∑
j

cj |n(0)j ⟩

We inner product this equation with ⟨n(0)i | to yield∑
j

⟨n(0)i |H ′|n(0)j ⟩cj = E(1)
n

∑
j

cj⟨n(0)i |n(0)j ⟩ = E(1)
n

∑
j

cjδij = E(1)
n ci

The terms ⟨n(0)i |H ′|n(0)j ⟩ = H ′
ij are the matrix elements of H ′ in the {|n(0)i ⟩} basis of degenerate

0-th order states. So, ∑
j

H ′
ijcj = E(1)

n ci

This is precisely an eigenvalue equation. The first order corrections E
(1)
n are the eigenvalues of

H ′ in the degenerate state basis and the corresponding vectors ci characterize the “correct” linear

combination
∑
j cj |n

(0)
i ⟩ in the 0-th order term of the eigenstate |n⟩.

Finding eigenvalues and eigenvectors of a matrix are equivalent to diagonlizing it - so, when we
carry about this procedure for finding the 1st order corrections to the energies of degenerate states,
we diagonalize the perturbation Hamiltonian H ′.

3 Appendix - Code

The code below is the code for executing Example 1.2.1 on IBM’s Qiskit cloud quantum computing
platform.

1 # Preamble

2 import numpy as np

3 import math as m

4 import matplotlib.pyplot as plt

5 from qiskit import QuantumCircuit , QuantumRegister , ClassicalRegister , execute ,

BasicAer , IBMQ

6 from qiskit.visualization import plot_histogram , plot_bloch_multivector

7

8 import qiskit

9 print(qiskit.__qiskit_version__)

10

11

12 # Defining our ansatz

13 def ansatz(param , qc):

14 # We apply some unitary gate onto our general state to create our ansatz.

15 # Sets theta = param , and the next two (phi , lambda) to 0. Last argument is the

qubit number

16 # Since our example just has one qubit , let’s just set that to 0

17 qc.u(param , 0, 0, 0)

18 return

19
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20

21 # Calculating the energy of our ansatz

22 def expectation(param , shots_number = 1024):

23 # We run the quantum circuit. Then , using the resulting measurement , we

calculate the expectation value

24 # This function is hard -coded for our Hamiltonian

25 # We assume we are in the z-basis. Then , we need only find the amplitudes of

being in |0> and |1>.

26 # <H> = (Counts (0) - Counts (1)) / Normalization

27

28 # Creating the circuit

29 q = QuantumRegister (1)

30 c = ClassicalRegister (1)

31 qc = QuantumCircuit(q, c)

32

33 # Next , apply our ansatz onto the state

34 ansatz(param , qc) # Applying the ansatz preparation on a given |0>

35

36 # make a measurement in the Z basis

37 qc.measure (0,0) # measures onto the classical registry

38

39 backend = BasicAer.get_backend(’qasm_simulator ’)

40 counts = execute(qc , backend , shots=shots_number).result ().get_counts () #

executs the job

41

42 # Go through the results and return the relative counts of being in either the 0

or 1 state

43 # I use if/else statements to avoid key errors if we are 100% in one state.

44 if (’0’ in counts.keys()):

45 freq_0 = counts[’0’] / shots_number

46 else:

47 freq_0 = 0

48

49 if (’1’ in counts.keys()):

50 freq_1 = counts[’1’] / shots_number

51 else :00

52 freq_1 = 0

53

54 # From the results above , return an expectation value.

55 exp = (1* freq_0) + (-1* freq_1) # This can be seen from <psi | H | psi >

56 return exp

57

58

59 # Iterating through theta and finding the minimum energy

60 def brute_force(step_size , min_theta , max_theta):

61 # This is an extremely naive optimization method , but I am using it return a

graph

62 # We will pick a step size , start at min_theta , and work all the way to the

max_theta.

63 # This really only works because our ansatz is a one -parameter wave function

64

65 # Create our array of thetas and the corresponding np.array for expectations.

66 thetas = np.arange(min_theta , max_theta , step_size)

67 expectations = np.zeros(np.size(thetas)) # creating a zero array of equal length

68

69 # Iterate through the thetas to find the expectation value.

70 i = 0

71 while i < np.size(thetas):
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72 expectations[i] = expectation(thetas[i])

73 i += 1

74

75 # Plot the results and find the minimum value and minimum index.

76 plt.scatter(thetas , expectations)

77 min_value = np.amin(expectations)

78 min_index = np.where(expectations == min_value)[0][0]

79 # returns the index of the first instance of the minimum value

80 opt_theta = thetas[min_index]

81

82 print("The minimum expectation value is " + str(min_value) + ", which occurs at

position "

83 + str(min_index) + " and corresponds to theta = " + str(opt_theta))

84 # return the theta corresponding to the minimum value , and also the minimum

value.

85 return opt_theta , min_value

86

87

88 # Now , we run it!

89 brute_force(m.pi/10, 0.0, 2*m.pi)
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