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Abstract

Our goal in this article is to construct and understand the mathematics behind the Dirac-
von Neumann Operator Algebra formulation and the Hilbert Space formulation of Quantum
Mechanics. Along the way, we will explore topological vectors spaces like Banach and Hilbert
spaces, continuous dual spaces, weak and weak⋆ topologies, and C* algebras, in the hopes of
understanding the mathematical foundations of Quantum Physics.

This article assumes a working intuition/understanding of real analysis, linear algebra, and point-set
topology. Some familiarity with quantum mechanics will be useful, but is not necessary.
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Definition. A Topological Vector Space (TVS) X is a vector space over a topological field K
(usually Rstd or Cstd) that is equipped with some topology such that addition + : X ×X → X and
multiplication · : K×X → X are continuous.

1 Banach and Hilbert Spaces

1.1 Banach Spaces

We begin our journey with an exploration of Banach spaces. Banach spaces are of interest in various
areas of mathematics including functional analysis, partial differential equations, and manifolds.
Specific Banach spaces like Hilbert spaces are of fundamental importance to physics including
quantum mechanics, topological and algebraic quantum field theory, and classical field theory.

Definition. A Banach space B is a normed complete TVS. A metric space (X, d) is complete is
every Cauchy sequence of points in X also has a limit in X. A sequence of points x1, x2, ..., xn ∈ X
is Cauchy if for all ϵ > 0, there is some N such that d(xm, xn) < ϵ for all m,n > N . In a Banach
space, the metric is given by its norm ∥ · ∥.

Example 1.1. An example of a Banach space (or really, multiple examples) is ℓp for 1 ≤ p < ∞,
the space of all complex sequences x = {xi} such that

∥x∥p =

(∑
i

|xi|p
)1/p

<∞

Another example of a closely related Banach space is ℓ∞, the space of all complex sequences x = {xi}
such that

∥x∥∞ = sup(|xi|) <∞

Although not immediately relevant, it is important for us to consider closed subspaces of Banach
spaces. We will later see the following Proposition come into action in Section 3.

Proposition 1.1. A closed subspace C ⊆ B of a Banach space B is itself a Banach space.

Proof. Since C is a subspace, it is vector space with norm inherited from B. Given any Cauchy
sequence {xi} in C, it must have a limit in B since B is complete. Since C is closed, it must contain
all limit points - so the limit of {xi} is also contained in C. So, C is also complete. Thus, C is a
complete normed TVS - a Banach space.

A natural quantity to examine on Banach spaces are maps between Banach spaces. These maps
themselves have a norm as defined below - so a set of maps between Banach spaces can form a
Banach space itself.

Definition. The operator norm for an map f : X → Y between Banach spaces X,Y is ∥f∥ =
sup∥x∥≤1(∥f(x)∥). We say f is bounded if there exists a constant M > 0 such that for all x ∈ X,
∥f(x)∥ ≤M∥x∥.

Proposition 1.2. A linear map f : X → Y between Banach spaces is continuous if and only if it
is bounded.
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Proof. First, suppose f : X → Y is bounded, i.e. there exists a constant M > 0 such that for all
x ∈ X, ∥f(x)∥ ≤M∥x∥. Then, for all x, y ∈ X,

∥f(x)− f(y)∥ = ∥f(x− y)∥ ≤M∥x− y∥

Given ϵ > 0, choose δ = ϵ
M . Then, ∥x− y∥ < δ =⇒ ∥f(x)− f(y)∥ < ϵ. Thus, f is continuous.

Now, suppose f is continuous - specifically continuous at 0 ∈ X. Since f is linear, f(0) = 0.
From the ϵ-δ definition of continuity, take ϵ = 1. Then, there is a δ such that

∥f(x)∥ = ∥f(x)− f(0)∥ ≤ 1 whenever ∥x∥ = ∥x− 0∥ ≤ δ

So, ∥f(x)∥ = ∥x∥
δ ∥f(δ x

∥x∥ )∥. Note that since ∥δ x
∥x∥∥ ≤ δ, ∥f(δ x

∥x∥ )∥ ≤ 1. Thus,

∥f(x)∥ ≤ ∥x∥
δ

Thus, f is bounded by M = 1
δ .

We denote the set of continuous linear maps from a Banach space X to another Banach space Y
as CL(X,Y ).

Proposition 1.3. CL(X,Y ) for X and Y Banach spaces is itself a Banach space when equipped
with the operator norm.

Proof. We have to show that CL(X,Y ) is a normed TVS that is complete.

Normed TVS: From linear algebra, we know that the set of all linear maps between L(X,Y )
between vector spaces X and Y is itself a vector space. Then, if CL(X,Y ) is a subset of L(X,Y )
closed under addition and scalar multiplication, then it is also a vector space. Let a, b ∈ K and
f, g ∈ CL(X,Y ) with ∥f∥ =M, ∥g∥ = N . Then,

∥af + bg∥ = sup
∥x∥≤1

(∥af(x) + bg(x)∥) ≤ sup
∥x∥≤1

(|a|∥f(x)∥+ |b|∥g(x)∥) = |a|M + |b|N

So, CL(X,Y ) is closed under addition and scalar multiplication - it is a normed vector space.

Completeness: We now show that CL(X,Y ) is complete. Let {fn} be a Cauchy sequence in
CL(X,Y ). Since Y is complete, {fn(x)} is Cauchy in Y and converges uniformly to some f(x) ∈ Y
for all x ∈ X. Given ϵ > 0, choose N > 0 so that for all m,n > N ,

d(fm(x), fn(x)) = ∥fm(x)− fn(x)∥ < ϵ

Then, if we take m→ ∞, we have for all x ∈ X and n > N ,

∥f(x)− f(xn)∥ < ϵ

So, fn → f uniformly. We just need to show that f is bounded and therefore lies in CL(X,Y ). By
uniform convergence, there exists some N > 0 such that for all n > N , x ∈ X,

∥f(x)− fn(x)∥ ≤ 1

Since fn ∈ CL(X,Y ) are each bounded, M > 0 such that ∥fn∥ < M − 1. Then, for all ∥x∥X ≤ 1,

∥f(x)∥ ≤ ∥f(x)− fn(x)∥+ ∥fn(x)∥ ≤ 1 +M − 1 =M

So, f is bounded and is in CL(X,Y ). Thus, CL(X,Y ) is a complete normed TVS, i.e. Banach.
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1.2 Hilbert Spaces

We now turn to a specific type of Banach spaces called Hilbert spaces. Quantum states and physical
observables that we can measure are intimately tied to Hilbert spaces and operators between them.
So, understanding Hilbert spaces is essential to understanding the mathematical foundations of
quantum physics.

Definition. A Hilbert space is a pair (H, ⟨·, ·⟩) of a Banach space H and an inner product ⟨·, ·⟩ :
H ×H → K so that the associated norm is defined by ∥x∥ =

√
⟨x, x⟩.

The inner product on a Hilbert space is a more primitive notion than the norm - we generally don’t
talk about the norm on a Hilbert space, but instead of the inner product on it. For our purposes,
an inner product on a field K = R or C and a Hilbert space H satisfies the following four conditions:

1. Linear in first coordinate, i.e. ⟨a(x+ y), z⟩ = a(⟨x, z⟩+ ⟨y, z⟩) for a, b ∈ K and x, y, z ∈ H

2. Antilinear in second coordinate, i.e.⟨x, b(z + y)⟩ = b(⟨x, z⟩ + ⟨x, y⟩), where b is the complex
conjugate of b

3. ⟨x, y⟩ = ⟨y, x⟩

4. ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0 ∈ H

Example 1.2. An example of a Hilbert space is ℓ2 when equipped with the inner product ⟨u, v⟩ =∑
uivi for u = {ui}, v = {vi}, where · : K → K is complex conjugation.

It is important to note that not all Banach spaces are Hilbert spaces. In fact, Hilbert spaces are
somewhat rare amongst Banach spaces, as we will understand by this next Proposition.

Proposition 1.4. (Parallelogram Law) A Banach space B with norm ∥·∥is a Hilbert space if and
only if it satisfies the parallelogram law, i.e. for all u, v ∈ B, ∥u+ v∥2 + ∥u− v∥2 = 2(∥u∥2 + ∥v∥2).

Proof. Suppose B is a Hilbert space with inner product ⟨·, ·⟩. Then, for arbitrary u, v ∈ B,

∥u+ v∥2 + ∥u− v∥2 = ⟨u+ v, u+ v⟩+ ⟨u− v, u− v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩+ ⟨u, u⟩+ ⟨u,−v⟩+ ⟨−v, u⟩+ ⟨−v,−v⟩
= 2⟨u, u⟩+ 2⟨v, v⟩
= 2(∥u∥2 + ∥v∥2)

Conversely, suppose u, v ∈ B, ∥u + v∥2 + ∥u − v∥2 = 2(∥u∥2 + ∥v∥2) for all u, v ∈ B, a Banach
space. Then, we may define an inner product ⟨·, ·⟩ : B ×B → K by

⟨u, v⟩ = 1

4
(∥u+ v∥2 − ∥u− v∥2)

One can check that this is a valid inner product that is consistent with the parallelogram law.
Equipped with this inner product, B is a Hilbert space.

Similar to our discussion on Banach spaces, let us observe something important about the set of
continuous linear maps on Hilbert spaces:
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Proposition 1.5. The set of continuous linear functions CL(X,Y ) between Hilbert spaces X and
Y is a Banach space, but not necessarily a Hilbert space.

Proof. Since X,Y are Hilbert and so Banach, Proposition 1.3 tells us that CL(X,Y ) is a Banach
space. To show that CL(X,Y ) is not always Hilbert, let’s focus on CL(X,X) = CL(X), the set of
bounded operators on X. The reason we’re examining this space is because it will be useful to us
in Section 3.

Suppose dim(X) > 1. Then, we can find y, z ∈ X with ∥x∥ = ∥y∥ = 1 and ⟨y, z⟩ = 0. De-
fine projection operators Py, Pz ∈ CL(X) such that Py(x) = ⟨x, y⟩y and Pz(x) = ⟨x, z⟩z. One can
check that Py, Pz are continuous and linear on X. Then,

∥Py∥ = sup
∥x∥≤1

(∥Py(x)∥) = 1 and ∥Pz∥ = sup
∥x∥≤1

(∥Pz(x)∥) = 1

So, 2(∥Py∥2 + ∥Pz∥2) = 4. One can also check that ∥⟨x, y⟩y ± ⟨x, z⟩z∥2 = ∥⟨x, y⟩∥2 + ∥⟨x, z⟩∥2
because ⟨y, z⟩ = 0 and ∥y∥ = ∥z∥ = 1. Since ⟨y, z⟩ = 0, we may think of Py(x) and Pz(x) as
vectors in the y-z plane. Then, for ∥x∥ ≤ 1, ∥⟨x, y⟩∥2 + ∥⟨x, z⟩∥2 represents the squared-magnitude
of vectors inside the unit ball in the y-z plane. So,

∥Py ± Pz∥2 = sup
∥x∥≤1

(∥Py(x)± Pz(x)∥2) = sup
∥x∥≤1

(∥⟨x, y⟩∥2 + ∥⟨x, z⟩∥2) = 1

So, ∥Py + Pz∥2 + ∥Py − Pz∥2 = 1 + 1 = 2 ̸= 4. Therefore,

∥Py + Pz∥2 + ∥Py − Pz∥2 ̸= 2(∥Py∥2 + ∥Pz∥2)

So, the Parallelogram Law is broken. Thus, CL(X) = CL(X,X) for dim(X) > 1 is not a Hilbert
space.

Now that we have some idea of what Banach and Hilbert spaces look like, we will extend our
discussion on continuous maps between Banach and Hilbert spaces to a discussion of continuous
maps from Banach and Hilbert spaces to the field K.

2 Dual Spaces

2.1 Continuous Dual Space

Definition. Let CL(X,Y ) be the set of continuous linear maps from a TVS X to TVS Y . For a
TVS X over the field K (either real or complex), the continuous dual space (or simply dual space)
X⋆ is CL(X,K), the set of all continuous linear functionals f : X → K. Here, functionals are just
maps from a TVS to the field.

As we will see in Section 4, functionals in the dual spaces of Hilbert space represent states in
quantum systems. So, understanding the properties of dual spaces will help us understand the
nature of quantum states.

Proposition 2.1. The dual space B⋆ of a Banach space B over a field K = Rstd or Cstd is also a
Banach space with the operator norm defined by ∥f∥ = sup∥x∥≤1(|f(x)|) for f ∈ B⋆.
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Proof. We first note that K = Rstd or Cstd is Banach space (proof at [1]). So, by Proposition 1.3,
B⋆ = CL(B,K) is a Banach space.

An interesting question we may ask if what the dual spaces of dual spaces look like. There is
a natural embedding (continuous injective map) x 7→ ϕx, from X to X⋆⋆ = (X⋆)⋆ defined by
ϕx : X⋆ → K, ϕx(f) = f(x). This map characterizes the relationship between spaces and their
double-duals.

Definition. A TVS X is reflexive if this natural embedding x 7→ ϕx from X to X⋆⋆ is an isomor-
phism. Then, X ∼= X⋆⋆ via x 7→ ϕx. We may abuse notation and write X = X⋆⋆.

Remark. We note that since x 7→ ϕx is a continuous injection, we only need to check that it is an
isometric surjection to show that a TVS X is reflexive.

We may naively think of the dual operation ⋆ as a kind of complex conjugation and so just like the
conjugate of a conjugate is the original constant, the dual of a dual is the original space. However,
these next few examples will us that not all Banach spaces are reflexive. So, reflexivity of topological
vector spaces, is in fact an interesting nontrivial concept.

Proposition 2.2. c0 is the space of sequences in ℓ∞ that converge to 0. The dual space of c0 is ℓ1.

Proof. The idea behind this proof is to construct a continuous linear f : ℓ1 → c⋆0 by construct-
ing a functional ft on c0 for each element t ∈ ℓ1. show that c0 ⊆ ℓ1 by defining a continuous
functional defined by elements of ℓ1 from c0 to K. In other words, we need to construct an iso-
morphism t 7→ ft from ℓ1 to c⋆0. If this map is a linear, bijective, isometry, then it is an isomorphism.

Given t ∈ ℓ1, define the functional

ft : c0 → K by ft(x = {xi}) =
∑

tixi

Linearity: Let a, b ∈ K, x, y ∈ c0 be arbitrary. Then,

ft(ax+ by) =
∑

ti(axi + bxi) = a
∑

tixi + b
∑

tiyi = aft(x) + bft(y)

So, ft is linear. Additionally,

Isometry: To show that ft is an isometry, we first show that ft is bounded. Observe that

|ft(x)| = |
∑

tixi| ≤
∑

|tixi| ≤ ∥x∥∞
∑

|ti| = ∥x∥∞∥t∥1

So, ft is also bounded by ∥t∥1. Now we show that the supremum of |ft(x)| is ∥t∥1 by finding a value
x ∈ c0 such that |ft(x)| is arbitrarily close to ∥t∥1. Let ϵ > 0. Since t ∈ ℓ1,

∑
|ti| converges. So,

we may find some N > 0 such that for all n > N ,
∑∞
i=n |ti| < ϵ. Then, let x = {xi} with xi = ti

for i ≤ N and xi = 0 for i > N . So, x ∈ c0. Then,

|ft(x)− ∥t∥1| = |
N∑
i=0

tixi −
∑

|ti|| = |
∞∑

i=N+1

|ti|| < ϵ

So, ∥ft∥ = ∥t∥1. Thus, ft is an isometry.
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Injectivity: This amounts to to showing that ft(x) = 0 for all x ∈ c0 if and only if t = 0 ∈ ℓ1

is the 0-sequence. If t = 0 ∈ ℓ1, then ft(x) = 0 for all x ∈ c0 obviously. If ft(x) = 0 for all x ∈ c0,
then

ft(ei) =
∑

tj(ei)j = ti = 0

Since i is arbitrary, ti = 0 for all i. So, t = 0 ∈ ℓ1.

Surjectivity: We now show that every continuous functional f : co → K takes that form. Let
ei be the basis sequence vector that has a 1 in the ith position and 0s everywhere else. Then, for
an arbitrary continuous functional f ,

|f(x)| = |
∑

f(xiei)| = |
∑

xif(ei)| ≤
∑

|xi||f(ei)| ≤ ∥x∥∞
∑

|f(ei)|

Since f is continuous, it must be bounded. So,
∑

|f(ei)| <∞ and {f(ei)} ⊆ ℓ1. Thus, f = f{f(ei)}.

Since the map t 7→ ft from ℓ1 to c⋆0 is a linear bijective isometry, it is an isomorphism. Thus,
c⋆0

∼= ℓ1, or more simply c⋆0 = ℓ1.

Proposition 2.3. (ℓ1)⋆ = ℓ∞

Proof. This proof is very similar (almost identical) to the proof in Example 2.2. We use functionals
ft : ℓ

1 → K for t ∈ ℓ∞ of similar form, i.e. ft(x) =
∑
tixi to show (ℓ1)⋆ = ℓ∞.

Theorem 2.1. Not all Banach spaces are reflexive.

Proof. We note that from Propositions 2.2, 2.3 that

(c0)
⋆ = ℓ1 and (c0)

⋆⋆ = (ℓ1)⋆ = ℓ∞

We know ℓ∞ ̸= c0 because c0 is the set of sequences in ℓ∞ that converge to 0, i.e. ℓ∞ is a much
larger space than c0. Since (c0)

⋆⋆ = ℓ∞ ̸= c0, not all Banach spaces are reflexive.

There is a subtlety to Theorem 2.1: there are models of set theory where Banach spaces that are
not reflexive in one model, are reflexive in another model. For example, ℓ1 is not reflexive if we
assume the axiom of choice (AOC), but is reflexive in models of set theory without the AOC.
The non-reflexivity of ℓ1 with the Axiom of Choice relies on an important statement known as the
Hahn-Banach Theorem [2].

Theorem 2.2 (Hahn-Banach). For X a normed linear space and M ⊆ X a linear subspace, let
f ∈M⋆ be a bounded linear functional on M. Then, there exists a bounded linear functional f ′ ∈ X⋆

that extends f , i.e. f ′|M = f , and satisfies ∥f ′∥X⋆ = ∥f∥M⋆ .

Proof Idea. Although we will not prove the Hahn-Banach Theorem here, we may understand the
idea behind it and its use of the axiom of choice. The Hahn-Banach Theorem relies on the axiom
of choice in Zermelo-Fraenkel Set Theory (ZFC) to show that a partially ordered set, in which
every totally ordered set has an upper bound, itself has at least one maximal element. This allows
subsets and functionals defined on them to be ordered in such a way that sets are “greater” than
their subsets and extended functions are “greater” than the functions they extend on those subsets.
Eventually, you get a largest set X and functional f ′ on X.

The proof of the Hahn-Banach Theorem can be found here [2].
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Corollary 2.2.1. A corollary of the Hahn-Banach Theorem is that for any nonempty nontrivial
normed vector space X ̸= {0}, the dual space X⋆ is also nontrivial nonempty, i.e. X⋆ ̸= {0}.

Proof. [3] Suppose X ̸= {0}. Choose a nonzero vector x ∈ X with span(v) = Y ⊆ X a subspace.
We may choose a linear functional f ∈ Y ⋆ such that f(v) = 1. By Hahn-Banach Theorem, we can
extend this functional to a functional f ′ on X⋆. Since f ′(a) = f(a) = 1 is nonzero f ′ ̸= 0. So, there
is a nonzero functional in X⋆. Thus, X⋆ ̸= {0}.

Remark. Without the Hahn-Banach Theorem, the corollary 2.1 above is not always true. For
example, there are models of set theory where (ℓ∞/c0)

⋆ = {0}. These models then yield reflexivity
of ℓ1.

Now that we have some understanding of functionals in the dual space and an idea of why dual
space reflexivity is an interesting and nontrivial concept, let us narrow our focus to studying the
dual spaces of Hilbert spaces. We will find that Hilbert spaces are reflexive, which makes working
with them and their dual spaces really nice!

2.2 Hilbert Space Duals

The fact that the inner product is the more primitive notion when compared to the norm makes
Hilbert spaces very friendly. It gives rise to a nice structure that allows us to draw a bijective
correspondence between a Hilbert space and its dual, preserve norms between elements in the space
and their corresponding functionals, and define inner products on Hilbert space duals. Let us begin
with some preliminary definitions and propositions.

Definition. The orthogonal complement of U ⊆ H, a subspace of a Hilbert space H, is U⊥ = {y ∈
H | ⟨x, y⟩ = 0 for all x ∈ H}.

Proposition 2.4. Let H be a Hilbert space and ψ : H → Kstd be a continuous functional, i.e.
ψ ∈ H⋆. Then, ker(ψ) is closed in H.

Proof. We know
ker(ψ) = {x ∈ H | ψ(x) = 0} = ψ−1({0})

{0} is closed in Kstd and ψ is continuous. Thus, ker(ψ) = ψ−1({0}) is closed in H.

Proposition 2.5. Let H be a Hilbert space with dual H⋆. Then, for all y ∈ H, ∥⟨·, y⟩∥H⋆ = ∥y∥H ,
where ⟨·, y⟩ : H → K is an inner product map.

Proof. The Cauchy-Schwarz Inequality tells us that ⟨x, y⟩ ≤ ∥x∥∥y∥ for all x ∈ H. So, ⟨·, y⟩ is
bounded - more specifically,

∥⟨·, y⟩∥H⋆ ≤ ∥y∥H
If we take x = y, then ∥y∥2H = ⟨y, y⟩ ≤ ∥⟨·, y⟩∥H⋆∥y∥H . Then,

∥y∥H ≤ ∥⟨·, y⟩∥H⋆

Thus, ∥⟨·, y⟩∥H⋆ = ∥y∥H .

With those definitions and propositions, let us prove the Riesz Representation Theorem. It is
probably the most important theorem in this article because it is what makes Hilbert spaces so nice
to work with.

8



Theorem 2.3 (Riesz Representation Theorem). For all continuous functionals ψ ∈ H⋆, there is a
unique representation fψ ∈ H such that ψ(x) = ⟨x, fψ⟩ for all x ∈ H. We call fψ a representation
of ψ in H.

Proof. Given, ψ ∈ H, we examine Nψ = ker(ψ), a closed linear subspace of H (by Proposition 2.4).
If Nψ = H, then ψ(x) = 0 for all x ∈ H and fψ = 0. If Nψ ̸= H, then the orthogonal complement
N⊥
ψ is nonempty.

So, we may find an element g ∈ N⊥
ψ such that ∥g∥H = 1. Then, for all x ∈ H, we may define an

element uψ ∈ Nψ by
uψ = ψ(x)g − ψ(g)x

uψ ∈ Nψ because ψ(uψ) = ψ(x)ψ(g)− ψ(g)ψ(x) = 0.

Since uψ ⊥ g,

0 = ⟨uψ, g⟩ = ⟨ψ(x)g − ψ(g)x, g⟩
= ψ(x)∥g∥2H − ψ(g)⟨x, g⟩
= ψ(x)− ψ(g)⟨x, g⟩

Then, ψ(x) = ψ(g)⟨x, g⟩ = ⟨x, ψ(g)g⟩. Thus, fψ = ψ(g)g ∈ H is a representation of ψ ∈ H⋆.

To show uniqueness, suppose ψ(x) = ⟨x, fψ⟩ = ⟨x, hψ⟩ for all x ∈ H. Subtracting, ⟨x, fψ − hψ⟩ = 0
for all x ∈ H. Take x = fψ − hψ. Then,

⟨x, fψ − hψ⟩ = ⟨fψ − hψ, fψ − hψ⟩ = ∥fψ − hψ∥2 = 0

Thus, fψ = hψ.

Corollary 2.3.1. ∥ψ∥H⋆ = ∥fψ∥H

Proof. ∥ψ∥H⋆ = ∥⟨·, fψ⟩∥H⋆ = ∥fψ∥H by Proposition 2.5.

Another useful idea that follows from the Riesz Representation Theorem is defining inner products
on dual spaces, as seen in this Corollary:

Corollary 2.3.2. The dual H⋆ is a Hilbert space H is itself a Hilbert space.

Proof. We know that the dual of a Banach space is a Banach space. So, we just need to define
an inner product consistent with the norm on H⋆ to show that it is a Hilbert space. By the Riesz
Representation Theorem (Theorem 2.3), for every ψ, ϕ ∈ H⋆, there exist unique fψ, fϕ ∈ H such
that ψ(x) = ⟨x, fψ⟩H and ϕ(x) = ⟨x, fϕ⟩H . So, we may define

⟨ψ, ϕ⟩H⋆ = ⟨fϕ, fψ⟩H

One may check that this is a valid inner product. To check that this inner product is consistent
with the operator norm on H⋆, take ϕ = ψ ∈ H⋆. Then, by Corollary 2.3.1,

⟨ψ,ψ⟩H⋆ = ⟨fψ, fψ⟩H = ∥fψ∥2H = ∥ψ∥2H⋆

So, ⟨ψ,ψ⟩H⋆ = ∥ψ∥2H⋆ . Thus, the norm and inner product are consistent.
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The Riesz Representation Theorem, in conjunction with Corollaries 2.3.1 and 2.3.2, gives rise to the
reflexivity of Hilbert spaces and allows us to represent quantum states as functionals in a Hilbert
dual space (as we will see in Section 4).

Theorem 2.4. Hilbert spaces are reflexive.

Proof. We use the definition of reflexivity to show that an arbitrary Hilbert space H is reflexive.
Specifically, we need to show that the natural embedding x 7→ ϕx from H to H⋆⋆ defined by
ϕx(ψ) = ψ(x) is an isometric surjection.

Surjectivity: Given an arbitrary ϕ ∈ H⋆⋆, the Riesz Representation theorem tells us that there
is a unique gϕ ∈ H⋆ such that for all ψ ∈ H⋆,

ϕ(ψ) = ⟨ψ, gϕ⟩H⋆

Applying the Riesz Representation Theorem again, there is a unique fgϕ ∈ H and a unique fψ ∈ H
such that

gϕ(x) = ⟨x, fgϕ⟩H and ψ(x) = ⟨x, fψ⟩H
for all x ∈ H. So, fgϕ ∈ H 7→ ϕ ∈ H⋆⋆. Using the inner product definition on dual spaces in
Corollary 2.3.2),

ϕ(ψ) = ⟨ψ, gϕ⟩H⋆ = ⟨fgϕ , fψ⟩H = ψ(fgϕ)

Thus,
ϕ = ϕfgϕ

So, for all ϕ ∈ H⋆⋆, there is an element x ∈ H such that x 7→ ϕ and ϕ(ψ) = ψ(x). So, x 7→ ϕx is
surjective.

Isometry: Applying Corollary 2.3.1 twice implies that x 7→ ϕx is an isometry.

So, x 7→ ϕx is an isometric surjective embedding, i.e. an isomorphism. Thus, H is reflexive.

So far, we have studied the properties of normed spaces, examined Banach and Hilbert spaces, and
understood why dual spaces - especially dual Hilbert spaces - are important. We may dive even
deeper into these spaces and introduce new notions of topologies on them. This next section covers
two types of topologies - the weak and weak⋆ topologies - on the dual spaces of normed topological
vector spaces.

2.3 Weak and Weak⋆ Topologies

Note: This section is self-contained - it is an interesting construction of topologies on the dual space,
but it is not integral to understanding the formulation of quantum systems in this paper. Nonethe-
less, it provides us with additional insight into what are called the weak and weak⋆ topologies of
dual spaces. A reason we care about these topologies is that they make otherwise non-compact
spaces in the norm topology, compact.

Suppose we want to define a topology on the dual space of X that makes every functional in
X⋆ continuous in the “weakest” possible way, i.e. our topology should only define the minimum
number of open sets in X⋆ for which all functionals in X⋆ are continuous.
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Definition. Let X be a set, Y be a topological space, and F be a nonempty family of mappings
from X to Y . Define the topology τF on X to be the collection of all unions and finite intersections
of sets f−1(V ) for f ∈ F and open sets V ∈ Y .

The reason why this new quantity τF defines a topology on X is because all maps f ∈ F are now
continuous and all properties of a topology (like ϕ, Y ∈ τF , closure under finite intersections, closure
under arbitrary unions) are satisfied. Note that τF is the smallest (or coarsest) possible topology
for which all f ∈ F are continuous.

Definition. The weak topology on a normed TVS X is τX⋆ , i.e. the coarsest topology on X such
that all functionals f : X → K in X⋆ remain continuous on X.

Now, we extend this concept of weak topologies to define a topology on the dual space X⋆ of a
normed TVS X such that it is the coarsest topology on X⋆ such that all maps in X⋆⋆ remain
continuous.

Definition. The weak⋆ topology on the dual space X⋆ of a normed TVS is τX⋆⋆ , i.e. the coarsest
topology on X⋆ such that all maps ϕx : X⋆ → K for x ∈ X, defined by ϕx(f) = f(x) remain
continuous. Here, the map ϕx ∈ X⋆⋆ is the natural embedding from X into X⋆⋆.

Remark. The weak⋆ topology is coarser than the weak topology, which is itself coarser than the
norm topology [4]. If X is reflexive, then the weak and weak⋆ topologies on X⋆ coincide.

An important consequence of weak⋆ topologies is the fact that certain non-compact spaces in the
norm topology are compact in the weak⋆ topology. The Banach-Alaoglu Theorem is a great example
of this idea.

Theorem 2.5 (Banach-Alaoglu). Let X be a normed TVS. Then, the closed unit ball in X⋆ is
compact in the weak⋆ topology.

Proof. Although we will not prove this theorem here, it relies on Tychonoff’s Theorem and thinking
about the weak⋆ topology as a product topology. You can find the proof for the Banach-Alaoglu
Theorem at [5] and [6].

Example 2.1. The closed unit ball in (ℓ1)⋆ is compact in the weak⋆ topology. However, the closed
unit ball in (ℓ1)⋆ is not compact in the norm topology of ℓ∞.

Proof. By the Banach-Alaoglu Theorem, the closed unit ball in (ℓ1)⋆ is weak⋆compact. For the
norm topology case, let en be the sequence of all 0s and a 1 in the nth coordinate. Then, ∥en∥∞ = 1
and is in the closed unit ball of ℓ∞. Each sequence en converges to 0, but ∥en − em∥ = 1 for all
n ̸= m. So, {en} has no convergent subsequence in the closed unit ball in ℓ∞. Thus, the closed
unit ball in ℓ∞ is not sequentially compact, and so not compact.

Now that we have some understanding of Hilbert and Banach spaces, their duals, and their topolo-
gies, we will venture into a new topic integral to the mathematical foundation of quantum systems:
C* algberas.

3 C* Algebras

In this section, we will build up an understanding of C* algebras and self-adjoint operators on
Hilbert spaces that will be very useful in our exploration of quantum systems in Section 4.
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3.1 C* Algebra Basics

Definition. A Banach algebra is an associative algebra over a field K = R or C that is also a
Banach space.

Definition. A C* algebra C (pronounced “C-star” algebra, not to be confused with the dual star ⋆
of a normed space) is a Banach algebra with a map x 7→ x∗ that satisfies the following properties:

1. It is an involution, i.e. x∗∗ = (x∗)∗ = x

2. For all x, y ∈ C, (x+ y)∗ = x∗ + y∗ and (xy)∗ = y∗x∗

3. For all a ∈ K, x ∈ C, (ax)∗ = ax∗

4. For all x ∈ C, ∥x∗x∥ = ∥x∥∥x∗∥

Definition. For C, a C* algebra, Her(C) = {x ∈ C | x∗ = x}. We say the elements of this set are
hermitian.

Proposition 3.1. For C, a C* algebra, Her(C) is a closed R-subspace of C.

Proof. Let {xi} ⊆ Her(C) be a sequence that converges to x. Then, x∗i → x∗. Since xi ∈ Her(C),
x∗i = xi. So, x

∗ = x. So, x ∈ Her(C). Thus, Her(C) is closed.

Additionally, for an element x ∈ Her(C), and a ∈ K,

ax ∈ Her(C) =⇒ (ax)∗ = ax∗ = ax

But, (ax)∗ = ax because ax is hermitian. So, a = a. Thus, a ∈ R.

Therefore, Her(C) is a closed R-subspace of C.

Remark. A closed *-subalgebra of a C* algebra is also a C* algebra. We may call such a *-
subalgebra a C*-subalgebra. So, Her(C) is a real C*-subalgebra of C.

3.2 Operators on Hilbert Spaces as C* Algebras

We will associate quantum systems with C* algebras of operators on a Hilbert space in Section 4.
So, let us examine how continuous linear operators on Hilbert spaces form C* algebras.

Definition. The adjoint of an operator f in CL(H) = CL(H,H) on a Hilbert space H is defined
to be the map f∗ such that ⟨f(x), y⟩H = ⟨x, f∗(y)⟩H for all x, y ∈ H.

The adjoint of a map is well-defined and exists by the Riesz Representation Theorem (Theorem
2.3). If we let f ∈ CL(H), and fix y ∈ H, then x 7→ ⟨f(x), y⟩ is a functional in H⋆ - call it ψ. Then,
by the Riesz Representation Theorem (Theorem 2.3), there is a unique fψ ∈ H such that

ψ(x) = ⟨f(x), y⟩ = ⟨x, fψ⟩

We define f∗ : H → H by f∗(y) = fψ. Then,

⟨f(x), y⟩H = ⟨x, f∗(y)⟩H
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Example 3.1. The set of continuous operators CL(H) = {f : H → H | f is continuous and linear}
on a Hilbert space H is a C* algebra with f∗ denoting the adjoint of f .

Proof. We know that CL(H) is a Banach space by Proposition 1.3 with continuous addition and
multiplication - so it is a Banach algebra. We simply check each of the four properties of the map
f 7→ f∗ for f ∈ CL(H).

1. Given f ∈ CL(H), and x, y ∈ H,

⟨f(x), y⟩ = ⟨x, f∗(y)⟩ = ⟨f∗(y), x⟩ = ⟨y, f∗∗(x)⟩ = ⟨f∗∗(x), y⟩

So, f∗∗ = f .

2. Given f, g ∈ CL(H), and x, y ∈ H,

⟨(f + g)(x), y⟩ = ⟨f(x), y⟩+ ⟨g(x), y⟩
= ⟨x, f∗(y)⟩+ ⟨x, g∗(y)⟩
= ⟨x, (f∗ + g∗)(y)⟩

So, (f + g)∗ = f∗ + g∗.
Additionally,

⟨(fg)(x), y⟩ = ⟨f(g(x)), y⟩ = ⟨g(x), f∗(y)⟩
= ⟨x, g∗(f∗(y))⟩ = ⟨x, (g∗f∗)(y)⟩

So, (fg)∗ = g∗f∗.

3. Given a ∈ K, f ∈ CL(H),

⟨(af)(x), y⟩ = a⟨x, f∗(y)⟩ = ⟨x, af∗(y)⟩

So, (af)∗ = af∗.

4. We first show that given f ∈ CL(H), ∥f∗∥ = ∥f∥. ∥f∗(x)∥2 = ⟨f∗(x), f∗(x)⟩ = ⟨(ff∗)(x), x⟩ ≤
∥(ff∗)(x)∥∥x∥ ≤ ∥f∥∥f∗(x)∥∥x∥ (using Cauchy-Schwarz inequality). So,

∥f∗(x)∥ ≤ ∥f∥∥x∥ =⇒ ∥f∗∥ ≤ ∥f∥

Then, adjoint once more to get
∥f∗∗∥ = ∥f∥ ≤ ∥f∗∥

Thus, ∥f∥ = ∥f∗∥. So,
∥f∗f∥ ≤ ∥f∗∥∥f∥ = ∥f∥2

By above, ∥f∗(x)∥2 ≤ ∥(ff∗)(x)∥∥x∥ ≤ ∥(ff∗)∥∥x∥2. So, ∥f∗∥2 ≤ ∥ff∗∥. Adjoint to get
∥f∗∗∥2 = ∥f∥2 ≤ ∥f∗f∗∗∥ = ∥f∗f∥. Thus,

∥f∗f∥ = ∥f∥2 = ∥f∥∥f∥ = ∥f∥∥f∗∥

Therefore, CL(H) is a C* algebra.
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Remark. Note that CL(H) is a Banach space, but not a Hilbert space due to Propositions 1.3
and 1.5.

A special class of operators on a Hilbert space H is the set of self-adjoint operators. In fact, these
are quantities that will represent physical observables in a quantum system.

Definition. An operator f on a Hilbert space H is self-adjoint if f∗ = f . Equivalently, f ∈
Her(CL(H)), i.e. f is hermitian.

Proposition 3.2. Her(CL(H)) for a Hilbert space H is a real Banach space.

Proof. By Proposition 3.1, Her(CL(H)) is a closed R-subspace of CL(H), which is Banach. So, by
Proposition 1.1, Her(CL(H)) is a real Banach space.

The fact the the set of hermitian or self-adjoint operators on a Hilbert space forms a real Banach
space is great! If we want to talk about real measurable observables as self-adjoint operators on a
Hilbert space, they better be elements of a real vector space.

Remark. Since Her(CL(H)) is a closed R-subspace of CL(H), it is also a real C*-subalgebra of
CL(H). This is a point to remember when we visit the Gelfand-Naimark Theorem in Section 4. It
draws a correspondence between arbitrary C* algebras and C*-subalgebras of CL(H), which will
allow us to formulate quantum mechanics in two equivalent ways - one formulation with reference to
operators on Hilbert spaces, and another with reference to elements of C* algebras. If this doesn’t
parse now, don’t worry about it - we’ll dive into it in Section 4.

Something we may want to do now is draw a correspondence between arbitrary C* algebras and
continuous linear (or equivalently bounded linear) maps on Hilbert spaces. That would allow us to
talk about C* algebras in the language of Hilbert space operators.

4 Quantum Systems

In quantum mechanics, we may describe physical systems as C* algebras with a unit element. We
may apply our knowledge of Banach spaces, Hilbert spaces, dual spaces, and C* algebras gained so
far to define states and measurable quantities (called observables) on these systems.

4.1 Dirac-von Neumann Formulation

Definition. Let C be a unital C* algebra. A Quantum System (or Operator System) is a *-closed
subspace Q of C that contains 1.

Given a quantum system Q, we can write down a set of axioms, known as the Dirac-von Neumann
axioms, that define physical quantities on Q.

Axioms 4.1 (Dirac-von Neumann or Operator Algebra Formulation). Given a quantum system
Q ⊆ C, a closed C*-subalgebra of C* algebra C over a field K,

1. An observable A on a quantum system Q is a hermitian element of Q, i.e. A∗ = A.

2. Quantum states:
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• A state ψ on a quantum system Q is a positive functional on Q such that ψ(1) = 1, i.e.
ψ : Q → K, ψ(x∗x) ≥ 0, ψ(0∗0) = ψ(0) = 0 and ψ(1) = 1. Call the space of states S(Q).

• A state that satisfies ∥ψ∥ = 1 is called a pure state - call the space of pure states PS(Q).

3. For a state ψ on Q, the expectation value of an observable A is ψ(A).

Our task now is to make sure that these axioms yield a “good” formulation of Quantum Mechanics.
One check is to make sure that expectation values of observables yield real values so that they
are actually measurable. Then, we might want to draw a correspondence between this Dirac-von
Neumann formulation of Quantum Mechanics and another called the Hilbert space formulation that
is more commonly used by physicists.

Proposition 4.1. Let Q be a quantum system on a field K. Given a state ψ : Q → K and an
observable A ∈ Her(Q), ψ(A) is real.

Proof. We know from Proposition 3.1 that Her(Q) is a closed R-subspace of Q. So, Her(Q) is a
real C*-subalgebra of Q. So, ψ|Her(Q) : Her(Q) → R. Thus, ψ(A) ∈ R.

Now that we know that the Dirac-von Neumann axioms are consistent with real measurements of
observables, we may turn toward expressing this formulation of Quantum Mechanics using Hilbert
spaces - a more commonly used formulation. To do so, we will study the relationship between states
on a C* algebra and vectors in a Hilbert space, and observables in a C* algebra and operators on
a Hilbert space.

4.2 Hilbert Space Representations

4.2.1 Representation of States

We know from Example 3.1 that CL(H) is a C* algebra and that Her(CL(H)) is a C*-subalgebra
of CL(H). So, let us try to represent vectors in a Hilbert space as pure state functionals on the C*
algebra CL(H).

Proposition 4.2 (Pure state representation in a Hilbert space). If ϕ ∈ H for some Hilbert space
H, then ψϕ : CL(H) → K defined by ψϕ(A) = ⟨Aϕ, ϕ⟩H is a pure state if and only if ∥ϕ∥H = 1.

Proof. ( =⇒ ) : If ψϕ is a pure state, then ψϕ(1) = ⟨ϕ, ϕ⟩ = ∥ϕ∥H = 1. Thus, ∥ϕ∥H = 1.

( ⇐= ) : If ∥ϕ∥H = 1, then ψϕ is a pure state because:

1. ψϕ(1) = ⟨ϕ, ϕ⟩ = ∥ϕ∥H = 1

2. ψϕ(0) = ⟨0, ϕ⟩ = 0

3. ψϕ(T
∗T ) = ⟨T ∗T (ϕ), ϕ⟩ = ⟨T (ϕ), T (ϕ)⟩ = ∥T (ϕ)∥2H ≥ 0

So, for a unit vector ϕ in a Hilbert space H, there is a pure state representation ψϕ ∈ PS(Q) in the
dual space (CL(H))⋆ such that ψϕ(A) = ⟨Aϕ, ϕ⟩H .
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Remark. Although every unit vector ϕ in a Hilbert space has a corresponding pure state of the
form ψϕ from above, not all pure states f have a corresponding unit vector representation ϕf in
the Hilbert space [7].

We may write this more formally using the state-space notation from the Dirac-von Neumann
axioms 4.1. Let U(H) be the set of unit vectors in H. Define

α : H → S(Q) by α(ϕ) = ψϕ

with ψϕ as in Proposition 4.2, then we may say

α(U(H)) ⊆ PS(CL(H)) ⊆ S(CL(H)) ⊆ (CL(H))⋆

4.2.2 Hilbert Space Representation of Observables

Just as we can represent elements of a Hilbert space H as states on the C* algebra (or quantum
system) CL(H), we can represent bounded/continuous linear operators on H as elements of a C*
algebra (or quantum system) with the following definition and theorem:

Definition. A continuous linear (or equivalently bounded linear) operator η : C 7→ D between C*
algebras C and D is a *-homomorphism if:

1. For all x, y ∈ C, η(xy) = η(x)η(y)

2. For all x ∈ C, η(x∗) = (η(x))∗

If η is a bijective *-homomorphism, then we say η is a *-isomorphism.

Theorem 4.1 (Gelfand-Naimark). An arbitrary C* algebra C is isometrically *-isomorphic to a
C* subalgebra of CL(H) for some Hilbert space H.

Proof. Although we will not prove this theorem here, the proof uses concepts of state representation
as discussed in Proposition 4.2. You can get a sense of the proof structure at [8].

By the Gelfand-Naimark Theorem (Theorem 4.1), quantum systems may be equivalently described
by C*-subalgebras of CL(H), the set of bounded/continuous linear operators on some corresponding
Hilbert space H.

Proposition 4.3. By the Gelfand-Naimark Theorem, let Q be a quantum system isometrically
*-isomorphic to O, a C*-subalgebra of CL(H) for some Hilbert space H. Call this *-isomorphism
κ : Q → O. Then, for all observables A ∈ Q, κ(A) ∈ O ⊆ CL(H) is self-adjoint.

Proof. Let A be an observable in Q. Then, A∗ = A. Since κ is a *-isomorphism,

κ(A) = κ(A∗) = (κ(A))∗

So, κ(A) is self-adjoint in O ⊆ CL(H).

So, we may talk about the observables of a quantum system as bounded linear (or continuous linear)
operators on a Hilbert space.
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Remark. Since we can represent all observables (hermitian elements) of a quantum system C*
algebra Q by a self-adjoint element in O ⊆ CL(H) for some Hilbert space H,

κ(Her(Q)) ⊆ Her(O) ⊆ Her(CL(H)) ⊆ CL(H)

However, it is not necessarily true that all self-adjoint elements in CL(H) have a hermitian repre-
sentation in Q.

4.3 Hilbert Space Formulation

Now, we combine all our results so far from Proposition 4.2 and 4.3 to define a set of Axioms similar
to the Dirac-von Neumann Axioms in the language of Hilbert spaces instead of C* algebras.

Axioms 4.2 (Hilbert Space Formulation). Let Q be a quantum system isometrically *-isomorphic
to O ⊆ CL(H), a C*-subalgebra of CL(H) for some Hilbert space H. Then,

1. An observable T ∈ O is a self-adjoint operator on H.

2. A state in our quantum system is given by a unit vector ϕ, up to scalar multiples, in the
Hilbert space H.

3. For a state ϕ ∈ H, the expectation value of an observable T is ⟨Tϕ, ϕ⟩ = ⟨ϕ, Tϕ⟩.

It is important to recall that

• For the set of unit vectors U(H) on a Hilbert space H, U(H) ↪→ PS(CL(H))

• For a quantum system C*algebra Q, Her(Q) ↪→ Her(CL(H)) for some Hilbert space H

So, although they are not exactly the same formulation, one may move between the Gelfand-
Naimark formulation of quantum systems and the Hilbert Space formulation using what’s called
the Gelfand-Naimark-Segal Construction [9].

4.4 Some Physics

Having constructed both the Dirac von-Neumann and Hilbert space formulations of Quantum sys-
tems, let us talk a little bit of quantum mechanics.

4.4.1 Eigenstates and Eigenvalues

Definition. Working with the Hilbert space formulation over a field K, let T ∈ CL(H) be an
observable and ϕ ∈ H be a state. Then, we say ϕ is an eigenstate of T with eigenvalue λ ∈ K if
T (ϕ) = λϕ.

In quantum mechanics, states that are eigenstates of observable operators in the Hilbert space
formulation are of significant importance. This is because the state of a system collapses upon
measurement to an eigenstate of the observable being measured.

For example, we would like to know the position of a particle in a box. Before we measure its
position, our lack of prior information on its whereabouts allow us to define its state as a combina-
tion of all possible positions in the box - it could be anywhere. Upon measurement, we collapse this
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state down to a single point in the box - this is the particle’s “eigenstate of position”. We call it an
eigenstate of position because this collapsed state of the particle has an eigenvalue of its position
associated with it. Mathematically, for some Hilbert space H, we would write this as

x̂(ϕx) = xϕx

where x̂ ∈ CL(H) is the position measurement operator (an observable), ϕx ∈ H is the eigenstate
of position (a unit vector in H) associated with the position x in space, the eigenvalue of ϕx upon
position measurement.

Remark. In quantum mechanics, operators on a Hilbert space are sometimes denoted by a “hat”
ˆ over them because the letter associated with them represents their eigenvalues that are denoted
by the same letter.

Since measurements of real objects should yield real values, we should check that the eigenvalues
associated with observables are real.

Proposition 4.4. Let T be an observable on some Hilbert space H and ϕ ∈ H be an eigenstate of
T with eigenvalue λ. Then, λ ∈ R.

Proof. Since T is an observable, T ∗ = T . Since ϕ is a state, ∥ϕ∥2 = ⟨ϕ, ϕ⟩ = 1. So, by axiom 3 of
the Hilbert space formulation,

λ = λ⟨ϕ, ϕ⟩ = ⟨T (ϕ), ϕ⟩ = ⟨ϕ, T (ϕ)⟩ = λ∗⟨ϕ, ϕ⟩ = λ∗

Thus, λ = λ∗ =⇒ λ ∈ R.

So, we know by Propositions 4.1 and 4.4 that the expectation values of observables and the actual
measurements of observables will yield real values - great! But, what exactly do we mean by
“measurement”? It’s a word used a lot in this section, but never really discussed mathematically.

4.4.2 Measurements

We said a quantum system with some original state ϕ may collapse onto an eigenstate ϕ′ after a
measurement is made. So, before measurement, there is a probability that the system will be found
in state ϕ′ upon measurement. So, the state before measurement and the probabilities of collapse
associated with each possible state of the system fully characterize what a measurement is.

Axioms 4.3 (The Born Rule). Working with the Hilbert space formulation, for a quantum system
in state ϕ ∈ H, the probability of finding the system in a state ϕ′ upon measurement is given by
|⟨ϕ′, ϕ⟩|2.

We may translate the Born Rule axiom above into the Dirac-von Neumann formulation as such:
Define Pϕ′ : H → H by Pϕ′(ϕ) = ⟨ϕ, ϕ′⟩ϕ′. Pϕ′ is the projection operator - it projects states on the
ϕ′ vector in the Hilbert space H. Then,

|⟨ϕ′, ϕ⟩|2 = ⟨ϕ, ϕ′⟩⟨ϕ′, ϕ⟩ = ⟨Pϕ′(ϕ), ϕ⟩

Let ψϕ ∈ PS(CL(H)) be the Dirac-von Neumann state representation of ϕ given by Proposition 4.2
and κ : Q → O be the *isomorphism from the associated quantum system Q to the C*-subalgebra
O of CL(H). Then,

|⟨ϕ′, ϕ⟩|2 = ⟨Pϕ′(ϕ), ϕ⟩ = ψϕ
(
κ−1(Pϕ′)

)
18



This is true provided Pϕ′ has a representation in Q, the associated quantum system C* algebra.
The probability associated with finding the system in a state ϕ′ upon measurement is just the
expectation value of the C* algebra representation of the projection operator onto ϕ′.

Therefore, we may think of measurements as projections of original states onto other possible
states of the system.

4.4.3 Commentary on the use of both formulations

Both the Dirac-von Neumann and the Hilbert Space formulations of quantum systems are impor-
tant to quantum physics.

The Hilbert space formulation is more commonly used and taught in simple quantum systems
where quantities like particle number don’t change, references frames are inertial, etc. It also pro-
vides an easier understanding of quantum systems because one can use the niceties of linear algebra
to talk about physical measurements on quantum states as inner products of linear operators act-
ing on state vectors in a Hilbert space. This is as opposed to describing physical measurements as
functionals acting on elements of a C* algebra in the Dirac-von Neumann formulation.

However, the Dirac-von Neumann formulation is very useful when analyzing more complicated
quantum systems, where quantities like particle number and reference frame accelerations change.
For example, (in Minkowski spacetime) a quantum system in its lowest energy (ground) state with
no particles as seen by an inertial observer may be seen to have a “thermal bath” of infinitely many
particles by an accelerating observer. It is difficult to describe this system and the disconnect be-
tween observers’ measurements using the Hilbert space formulation of quantum mechanics because
the operators and state spaces themselves are different for each observer.

However, there is a C* algebra that is isometrically *-isomorphic to the *subalgebra of bounded
linear operators on both observers’ Hilbert spaces by the Gelfand-Naimark Theorem. So, this C*
algebra captures both observers’ Hilbert space representations of the system. So, it is advantageous
to use the Dirac-von Neumann formulation of quantum mechanics when talking about complicated
variable (particle number/mass/acceleration dependent) systems - this is the case in Quantum Field
Theory and General Relativity [10].
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