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Abstract: Partition functions are ubiquitous objects of study in statistical physics, quan-

tum mechanics, and quantum field theory. The appearance and use of partition functions

in each of these sectors of physics motivates the thesis of this article: to translate between

descriptions of partition functions in each of these sectors. To do so, I first introduce a

path integral formulation of quantum mechanics. I then use this to show that the partition

function of a canonical ensemble of microstates in thermal equilibrium at inverse tempera-

ture β is equivalent to the partition function of an ensemble of quantum mechanical fields

that are periodic in time, with period −iβℏ. Finally, I describe how this equivalence can

be used to calculate the Hawking temperature of Schwarzschild black holes.
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1 From Statistical Mechanics to Quantum Mechanics

Suppose we have a canonical ensemble of microstates in thermal equilibrium with a heat

bath at temperature kBT = 1/β. The probability that this system will be in a state with

energy Ei is given by the Boltzmann weight

p(Ei) =
e−βEi

Z
, (1.1)

where β = 1/(kBT ) is the temperature of the system (with dimensions of the inverse

energy) and Z is the partition function

Z =
∑
i

p(Ei) =
∑
i

e−βEi . (1.2)

Here, i indexes the microstates of the system. Suppose further that each energy Ei

of the system is an eigenvalues of the Hamilton H, with some corresponding set of eigen-

vectors. Label each (orthonormal) eigenvector of H by |n⟩. Then, the partition function

becomes

Z = Tr
(
e−βH

)
=
∑
n

⟨n|e−βH |n⟩. (1.3)

Suppose also that we have a continuous set of position eigenstates |q⟩. Then, we know
that

∫
dq|q⟩⟨q| = 1. Inserting this into Eq.1.3, we get

Z =

∫
dq
∑
n

⟨n|q⟩⟨q|e−βH |n⟩ (1.4)

=

∫
dq
∑
n

⟨q|e−βH |n⟩⟨n|q⟩ (1.5)

=

∫
dq⟨q|e−βH

(∑
n

|n⟩⟨n|

)
|q⟩ (1.6)
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=

∫
dq⟨q|e−βH

1|q⟩ (1.7)

=

∫
dq⟨q|e−βH |q⟩ (1.8)

We could have deduced that Z =
∫
dq⟨q|e−βH |q⟩ by noting that the partition function

is simply the trace of the operator e−βH , so it does not matter if we take this trace with

respect to the energy basis {|n⟩} or the position basis {|q⟩}.

With some foresight, let us identify β with a variable t, defined by β = it/ℏ. Then, if
we identify t as a time-coordinate, then the operator e−βH = e−itH/ℏ is the time-evolution

operator from quantum mechanics! We can then write the partition function as

Z =

∫
dq⟨q|e−itH/ℏ|q⟩ (1.9)

This expression looks like an integral over all paths q such that |q⟩ is an eigenvector of H,

i.e. H|q⟩ = λq|q⟩. In the next section, we use the language of propagators and Feynman

path integrals to make the path integral description of the partition function more explicit.

2 The Path Integral

The time evolution of a quantum state |ψ(t)⟩ from a time t′ to another time t is given by

|ψ(t′)⟩ = e−i(t−t′)H/ℏ|ψ(t′)⟩. In the position representation,

⟨q|ψ(t)⟩ = ⟨q|e−i(t−t′)H/ℏ|ψ(t′)⟩ =
∫
dq′⟨q|e−i(t−t′)H/ℏ|q′⟩⟨q′|ψ(t′)⟩, (2.1)

where in the last equality we simply inserted the identity operator
∫
dq′|q⟩⟨q′|. We can

rewrite this as ⟨q|ψ(t)⟩ =
∫
dq′K(q, t; q′, t′)⟨q′|ψ(t′)⟩, where we have defined the “propaga-

tor”

K(q, t; q′, t′) ≡ ⟨q|e−i(t−t′)H/ℏ|q′⟩. (2.2)

The propagator K(q, t; q′, t′) is interpreted as a transition amplitude, which when

squared yields the probability of the system to transition from state |q′⟩ at time t′ to

|q⟩ at time t. To see this, define |q, t⟩ ≡ eiHt/ℏ|q⟩. Then,

K(q, t; q′, t′) = ⟨q|e−i(t−t′)H/ℏ|q′⟩

= ⟨q|e−itH/ℏei
′tH/ℏ|q′⟩

=
(
eitH/ℏ|q⟩

)† (
ei

′tH/ℏ|q′⟩
)

= (|q, t⟩)†
(
|q′, t′⟩

)
= ⟨q, t|q′, t′⟩.

Squaring the final expression above yields the probability of transition from |q′, t′⟩ to |q, t⟩,
as desired. Now, let’s evaluate the propagator. First, we partition the time interval [t′, t]
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into N subintervals of each of size ∆t = (t− t′)/N . Let {tk}k=N
k=0 define the partition, where

t0 = t′, tN = t, and tk = t′ + k∆t. Then,

K(q, t; q′, t′) = ⟨q|e−i(t−t′)H/ℏ|q′⟩ = ⟨q|e−iN∆tH/ℏ|q′⟩ = ⟨q|

(
N∏
k=0

e−i∆tH/ℏ

)
|q′⟩ (2.3)

Trading concision for understanding, we expand

K(q, t; q′, t′) = ⟨q|e−i∆tH/ℏ · · · e−i∆tH/ℏ|q′⟩

=

∫
dq1dq2 · · · dqN−1⟨q|e−i∆tH/ℏ|qN−1⟩⟨qN−1|e−i∆tH/ℏ|qN−2⟩ · · · ⟨q1|e−i∆tH/ℏ|q′⟩

=

∫ (N−1∏
k=1

dqk

)
⟨q, t|qN−1, tN−1⟩⟨qN−1, tN−1|qN−2, tN−2⟩ · · · ⟨q1, t1|q′, t′⟩

In the second line of the above set of equations, we inserted N copies of the identity op-

erator 1 =
∫
dqk|qk⟩⟨qk| between each of the time-evolution operators. In the third line,

we identified each of the factors in the integrand as transition amplitudes for the system

to transition from state |qk⟩ at time tk to state |qk+1⟩ at time tk+1. How do we interpret

this? At each time step tk, we allow for the system to be in any state |qk⟩. So, we integrate
over all possible values qk that the system could be in at that time step. We repeat this

for each time step and get an integral over all possible paths that the system can take in

this discretely partitioned time interval [t′, t].

Now, let us calculate the transition amplitude ⟨qk, tk|qk−1, tk−1⟩ for a single subinterval

of time. To make our lives easier, we will enforce that the number of partitions N is

asymptotically large, i.e. our discretization of the time interval [t′, t] should be infinitesimal.

As N → ∞, ∆t→ 0. So, we can Taylor expand the time-evolution operator e−i∆tHℏ around

∆t = 0. Then,

⟨qk, tk|qk−1, tk−1⟩ = ⟨qk|e−i∆tH/ℏ|qk−1⟩

= ⟨qk|
(
1− i

ℏ
∆tH +O(∆t2)

)
|qk−1⟩

= ⟨qk|qk−1⟩ −
i

ℏ
∆t⟨qk|H|qk−1⟩+O(∆t2)

= δ(qk − qk−1)−
i

ℏ
∆t⟨qk|H|qk−1⟩+O(∆t2),

where in the last line we used the fact that the states {|qk⟩} are orthonormal. To evaluate

⟨qk|H|qk−1⟩, we recall that at each time step tk, the Hamiltonian H = p2/(2m)+V (q) has

momentum eigenstates {|pk⟩} such that p|pk⟩ = pk|pk⟩. So,

H|pk⟩ =
(
p2

2m
+ V (q)

)
|pk⟩ =

(
p2k
2m

+ V (q)

)
|pk⟩. (2.4)
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Additionally, recall that

⟨p|q⟩ = 1√
2πℏ

e−ipq/ℏ. (2.5)

We insert the identity 1 =
∫
dpk|pk⟩⟨pk| into ⟨qk|H|qk−1⟩ to get

⟨qk|H|qk−1⟩ =
∫
dpk⟨qk|H|pk⟩⟨pk|qk−1⟩

=
1√
2πℏ

∫
dpke

−ipkqk−1/ℏ⟨qk|H|pk⟩⟨pk|

=
1√
2πℏ

∫
dpke

−ipkqk−1/ℏ⟨qk|
(
p2

2m
+ V (q)

)
|pk⟩

=
1√
2πℏ

∫
dpke

−ipkqk−1/ℏ⟨qk|pk⟩
(
p2k
2m

+ V (qk)

)

=
1

2πℏ

∫
dpke

ipk(qk−qk−1)/ℏ
(
p2k
2m

+ V (qk)

)
Substituting this back into the expression for ⟨qk, tk|qk−1, tk−1⟩, we see that

⟨qk, tk|qk−1, tk−1⟩ =
1

2πℏ

∫
dpke

ipk(qk−qk−1)/ℏ
(
1− i

ℏ
∆t

(
p2k
2m

+ V (qk)

)
+O(∆t2)

)

=
1

2πℏ

∫
dpke

ipk(qk−qk−1)/ℏe
−i∆t/ℏ

(
p2k
2m

+V (qk)

)

=
1

2πℏ

∫
dpke

i∆t/ℏ
(
pk

(qk−qk−1)

∆t
− p2k

2m
−V (qk)

)

We now recall that we took N → ∞, and we also assume that q changes continuously.

Then, (qk − qk−1)/∆t→ q̇k. Thus,

⟨qk, tk|qk−1, tk−1⟩ =
1

2πℏ

∫
dpke

i∆t/ℏ
(
pk q̇k−

p2k
2m

−V (qk)

)
(2.6)

We evaluate the integral over the terms containing pk first.

1

2πℏ

∫ ∞

−∞
dpke

i∆t/ℏ
(
pk q̇k−

p2k
2m

)
=

√
m

2πiℏ∆t
e

i
ℏ∆t

m ˙qk
2

2 . (2.7)

Thus,

⟨qk, tk|qk−1, tk−1⟩ =
√

m

2πiℏ∆t
e

i
ℏ∆t

(
m ˙qk

2

2
−V (qk)

)
=

√
m

2πiℏ∆t
e

i
ℏ∆tL(qk,q̇k), (2.8)

where L(q, q̇) is the Lagrangian of our system, given by L = pq̇ −H.

We now substitute this into our expression for the propagator to see

K(q, t; q′, t′) =

∫ (N−1∏
k=1

dqk

)
⟨q, t|qN−1, tN−1⟩⟨qN−1, tN−1|qN−2, tN−2⟩ · · · ⟨q1, t1|q′, t′⟩
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=

∫ (N−1∏
k=1

√
m

2πiℏ∆t
dqk

)
e

i
ℏ∆tL(q,q̇)e

i
ℏ∆tL(qN−1,q̇N−1) · · · e

i
ℏ∆tL(q1,q̇1)

=

∫ (N−1∏
k=1

√
m

2πiℏ∆t
dqk

)
e

i
ℏ
∑N

k=1 ∆tL(qk,q̇k)

=

∫ (N−1∏
k=1

√
m

2πiℏ∆t
dqk

)
e

i
ℏ
∫
dtL,

where in the last line we took ∆ → 0 and identified the sum with an integral over t. Define

the “path integral measure”∫
Dq(t) ≡ lim

N→∞

∫ (N−1∏
k=1

√
m

2πiℏ∆t
dqk

)
dq′ (2.9)

Thus, the propagator can be written as an integral over all field configurations q(t) that

our system can assume. ∫
dq′K(q, t; q′, t′) =

∫
Dq(t)e

i
ℏ
∫
dtL (2.10)

3 From Quantum Mechanics to Statistical Mechanics

Finally, let us connect this path integral formulation to our expression of the partition

function from statistical mechanics. Suppose that we require that all paths q(t) of our

system be periodic in t. In particular, for T ≡ −iβℏ, we require that q(T ) = q(0). Here,

β = 1/(kBT ) is the inverse temperature of the system. Then,

Z =

∫
dq′⟨q′|e−βH |q′⟩

=

∫
dq′⟨q′|e−iT H/ℏ|q′⟩

=

∫
dq′K(q′, T ; q′0)

=

∫
q(0)=q(T )

Dq(t)e
i
ℏ
∫
dtL.

Therefore,

Z =

∫
q(0)=q(−iβℏ)

Dq(t)e
i
ℏ
∫
dtL. (3.1)

The fact that a statistical ensemble in thermal equilibrium corresponds to a theory of

quantum mechanical fields q(t) that are periodic with period −iβℏ has some really cool

consequences. We explore one such consequence below – deriving the Hawking temperature

of a black hole!
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4 Black Hole Temperature From Quantum Statistical Mechanics

Suppose we have a quantum matter system in thermal equilibrium in Minkowski spacetime

R1,3.

ds2 = −dt2 + dx⃗2. (4.1)

We can write the partition function of this system as

Z =

∫
q(0)=q(−iβℏ)

Dq(t)eiS/ℏ, (4.2)

where we have identified S =
∫
dtL as the action functional of our system. To remove some

annoying factors of i in our expression of the action, let us move to a coordinate system

with imaginary time τ , i.e. t→ −iτ . Then, the action transforms as iS → −SE , where SE
is the “Euclidean action”. So, our partition function becomes∫

q(0)=q(βℏ)
Dq(τ)e−SE [q(τ)], (4.3)

where SE [q] and q are defined on Euclidean space S1 × R3

ds2E = dτ2 + dx⃗2, τ ∼ τ + βℏ. (4.4)

In the second expression above, the periodicity of τ is denoted τ ∼ τ + βℏ.

We note that this metric describes a regular Euclidean manifold and β is a free param-

eter that we can vary. Therefore, our quantum system can freely assume any temperature

in this flat spacetime. However, let us now consider a region of spacetime that is very much

not flat, like near a Schwarzschild black hole.

The metric of spacetime in the presence of a Schwarzschild black hole of mass M is

given by

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ2

2, (4.5)

where f(r) = 1 − rs
r , where rs = 2GNM is the Schwarzschild radius of the black hole.

Note that we are assuming c = 1. Moving to imaginary time t → −iτ , the Euclidean

Schwarzschild metric is

ds2E = f(r)dτ2 +
1

f(r)
dr2 + r2dΩ2

2. (4.6)

Let’s try to understand the regularity of this Euclidean manifold by looking at the

metric close to the event horizon, i.e. close to r = rs. Close to the horizon, the proper

distance ρ for r ≳ rs is given by

dρ =
dr√
f
=

dr√
f(rs) + (r − rs)f ′(rs) +O((r − rs)2)

=
dr√

(r − rs)f ′(rs) +O((r − rs)2)
,

(4.7)
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where we Taylor expanded f(r) around rs and noted that f(rs) = 0. Solving this for ρ,

ρ(r) =
2√
f ′(rs)

√
r − rs + . . . . (4.8)

To leading order in the expansion of (r−rs), we can write the Euclidean Schwarzschild

metric near the event horizon r ≳ rs as

ds2E = κ2ρ2dτ2 + dρ2 + r2sdΩ
2
2 = ρ2dθ2 + dρ2 + r2sdΩ

2
2, (4.9)

where θ ≡ κτ and κ = 1
4GNM is the surface gravity of the black hole. The global structure

of the (ρ, θ) space depends on the periodicity of θ. If θ has periodicity 2π, then the (ρ, θ)

space is R2. Otherwise, this space has a concical singularity at the event horizon, i.e. at

ρ = 0. Thus, regularity of this spacetime manifold requires that

θ ∼ θ + 2π =⇒ τ ∼ τ +
2π

κ
. (4.10)

Now, suppose we have a quantum matter system in thermal equilibrium in this black

hole geometry. Then, Since the quantum fields q(τ) that describe this system must be

periodic in τ , we have an additional constraint on the periodicity of τ , namely τ ∼ τ + βℏ.
So,

βℏ =
2π

κ
=⇒ T =

ℏκ
2πkB

=
ℏ

8πGNMkB
. (4.11)

Restoring factors of c, we find that

TH =
ℏc3

8πGNMkB
. (4.12)

The subscript H in TH is to label TH as the “Hawking temperature” of the black hole.

Recall that the time-coordinate t is the proper time of an observer asymptotically far

away from the black hole at r = ∞. To such an observer, a quantum matter system in the

black hole geometry can be in thermal equilibrium only at a single temperature, namely

TH . This must also be the temperature of the black hole, since otherwise the total system

would not be in thermal equilibrium.

To learn more, about calculating black hole temperatures using regularization tech-

niques for Euclidean manifolds, check out Hong Liu’s lectures on String Theory and Holo-

graphic Duality at Ref.[1].
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