Entanglement, Teleportation, and Quantum Computing

Arjun Kudinoor

Instructions to code along with me are at the QR Code or at arjunkudinoor.com/quantum

You will need to create an IBM Quantum account at <u>quantum-computing.ibm.com</u>

Society of Physics Student | Columbia University October 27, 2022

TOPICS

- 1) Entanglement and the EPR Paradox
- 2) 2-Photon Entanglement Experiment
- 3) Entanglement on a Quantum Computer
- 4) Teleportation An Application of Entanglement

ENTANGLEMENT

QUBIT ENTANGLEMENT

2-level Quantum State: $|\psi\rangle = c_0|0\rangle + c_1|1\rangle$

QUBIT ENTANGLEMENT

2-level Quantum State: $|\psi\rangle = c_0|0\rangle + c_1|1\rangle$

2-Qubit State:
$$|\psi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$

QUBIT ENTANGLEMENT

2-level Quantum State: $|\psi\rangle = c_0|0\rangle + c_1|1\rangle$

2-Qubit State:
$$|\psi\rangle = a|00
angle + b|01
angle + c|10
angle + d|11
angle$$

A 2-qubit quantum state is entangled if it cannot be separated into two distinct qubit states

Example:
$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \neq |a\rangle \otimes |b\rangle$$

1) PREPARE AN ENTANGLED PAIR OF PARTICLES

1) PREPARE AN ENTANGLED PAIR OF PARTICLES \bullet = $\hat{\phi}$ $\hat{\phi}$

2) SEPARATE THEM BY A LARGE DISTANCE

 \bullet = ϕ

1) PREPARE AN ENTANGLED PAIR OF PARTICLES

OR

2) SEPARATE THEM BY A LARGE DISTANCE

3) MAKE A MEASUREMENT ON ONE PARTICLE

 \bullet = $\hat{\bullet}$

1) PREPARE AN ENTANGLED PAIR OF PARTICLES

OR

2) SEPARATE THEM BY A LARGE DISTANCE

3) MAKE A MEASUREMENT ON ONE PARTICLE

"SPOOKY ACTION AT A DISTANCE"

- Quantum Mechanics violates the principle of locality
- To reconcile this, Einstein, Podalsky, and Rosen theorize the existence of "hidden variables"
- Hidden variables predetermine the states of entangled particles before a measurement is made the states are just hidden from us

BELL'S COUNTERARGUMENT

In 1964, John Bell published a paper in response to EPR's hidden-variable reconciliation of the EPR paradox. Bell's paper showed that the hidden variable description of quantum mechanics was incorrect and that quantum mechanics was inherently non-local. This was done by examining the correlation between measurements of entangled particles.

BELL'S COUNTERARGUMENT

In 1964, John Bell published a paper in response to EPR's hidden-variable reconciliation of the EPR paradox. Bell's paper showed that the hidden variable description of quantum mechanics was incorrect and that quantum mechanics was inherently non-local. This was done by examining the correlation between measurements of entangled particles.

A hidden variable theory would predict correlations with certain bounds. A violation of these bounds would demonstrate that quantum mechanics is non-local via entanglement.

2-PHOTON ENTANGLEMENT THE EXPERIMENT

2-PHOTON ENTANGLEMENT THE EXPERIMENT

Nobel Prize, 2022 Aspect, Clauser, Zeilinger

YOU CAN DO THIS AT COLUMBIA!

ENTANGLEMENT SETUP

In QuTools, our first step is to create a pair of entangled photons.

We perform entanglement on the polarization property of our photons with the aid of two spontaneous parametric down-conversion crystals.

> $|H\rangle_p \rightarrow |V\rangle_1 |V\rangle_2$ $|V\rangle_p \rightarrow |H\rangle_1 |H\rangle_2$

Figure 1: Inner details of laser pump assembly (quED manual)

ENTANGLEMENT SETUP

In QuTools, our first step is to create a pair of entangled photons.

We perform entanglement on the polarization property of our photons with the aid of two spontaneous parametric down-conversion crystals.

> $|H\rangle_p \rightarrow |V\rangle_1 |V\rangle_2$ $|V\rangle_p \rightarrow |H\rangle_1 |H\rangle_2$

Sending in pump light in an equal superposition:

$$\frac{1}{\sqrt{2}} \left(|H\rangle_p + |V\rangle_p \right) \rightarrow \frac{1}{\sqrt{2}} (|V\rangle_1 |V\rangle_2 + |H\rangle_1 |H\rangle_2)$$

Figure 1: Inner details of laser pump assembly (quED manual)

POLARIZATION CORRELATION

We now measure the photons' polarization in different (rotated) bases $\langle \pm_{\alpha} |$

The probability of measuring the polarization in this basis is

 $P_{\pm\pm}(\alpha,\beta) = \left| \langle \pm_{\alpha} | \langle \pm_{\beta} | | \psi \rangle \right|^2$

POLARIZATION CORRELATION

We now measure the photons' polarization in different (rotated) bases $\langle \pm_{\alpha} |$

The probability of measuring the polarization in this basis is

 $P_{\pm\pm}(\alpha,\beta) = \left| \langle \pm_{\alpha} | \langle \pm_{\beta} | | \psi \rangle \right|^2$

We may use this probability to define a correlation

 $E(\alpha, \beta) = P_{++} + P_{--} - P_{+-} - P_{-+}$ = cos(2(\alpha - \beta)) [theory]

POLARIZATION CORRELATION

pump and source

We now measure the photons' polarization in different (rotated) bases $\langle \pm_{\alpha} |$

The probability of measuring the polarization in this basis is

 $P_{\pm\pm}(\alpha,\beta) = \left| \langle \pm_{\alpha} | \langle \pm_{\beta} | | \psi \rangle \right|^2$

We may use this probability to define a correlation

 $E(\alpha, \beta) = P_{++} + P_{--} - P_{+-} - P_{-+}$ = cos(2(\alpha - \beta)) [theory]

We can use this to define a second measure of correlation

$$S(\alpha, \alpha', \beta, \beta') = E(\alpha, \beta) - E(\alpha, \beta') + E(\alpha', \beta) + E(\alpha', \beta')$$

= cos(2(\alpha - \beta)) - cos(2(\alpha - \beta')) + cos(2(\alpha' - \beta)) + cos(2(\alpha' - \beta'))

Figure 2: Architecture of quED optical setup (quED manual)

THE PUNCHLINE

A local theory of quantum mechanics - one with EPR's hidden variables - predicts bounds on the correlation S. In particular,

$|S| \leq 2$

THE PUNCHLINE

A local theory of quantum mechanics - one with EPR's hidden variables - predicts bounds on the correlation S. In particular,

$|S| \leq 2$

IF we measure correlations S larger than 2 in our experiment, then Bell's inequality is violated, and entanglement is non-local...

RESULTS

Non-Entangled Photons

Plots of S, with error (Is it >2 for entangled?!)

Entangled Photons

Change of S, dS with integration timescale, w/ waveplate Change of S, dS with integration timescale, w/o waveplate 2.12 1.51 2.10 1.50 1.49 2.08 S v 1.48 2.06 1.47 2.04 1.46 1.45 3500 1000 1500 2000 2500 3000 4000 2000 2500 3000 3500 1000 1500 4000 Integration time (ms) Integration time (ms)

EXPERIMENT SUMMARY

- Entangle photons displayed values of S>2 consistently
- Unentangled photons displayed values of S<2
- Errors in S (and lack of smoothness in correlation plot) caused by background noise from the environment, and laser misalignment

EXPERIMENT SUMMARY

- Entangle photons displayed values of S>2 consistently
- Unentangled photons displayed values of S<2
- Errors in S (and lack of smoothness in correlation plot) caused by background noise from the environment, and laser misalignment

Quantum Mechanics is non-local

ENTANGLEMENT ON A QUANTUM COMPUTER

PHYSICAL IMPLEMENTATION

We will encode quantum circuits on IBM's cloud quantum computing platform, Qiskit.

IBM's circuits are based on superconducting qubits called "transmons". They use the first two levels of a quantum anharmonic oscillator.

Krantz, Philip, et al. "A quantum engineer's guide to superconducting qubits." Applied Physics Reviews 6.2 (2019): 021318.

QUANTUM GATES

Classical Bits	Qubits	INDUT	OUTDUT
Boolean logic (0 or 1) $ \psi\rangle = c_0 0\rangle + c_1 1\rangle$		INPUT	OUTPUT
NOT GATE	X GATE	А	NOT A
Input - Output	Input – X – Output	0	1
		1	0

QUANTUM GATES

Classical Bits	Qubits	INDUT	OUTPUT
Boolean logic (0 or 1)	$ \psi angle=c_{0} 0 angle+c_{1} 1 angle$	INPUT	UUIPUI
NOT GATE	X GATE	А	NOT A
Input - Output	Input – X – Output	0	1
		1	0
$\sigma_x = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$			

QUANTUM GATES

Classical Bits	Qubits	INDUT	OUTDUT
Boolean logic (0 or 1)	$ \psi angle=c_0 0 angle+c_1 1 angle$		UUIPUI
NOT GATE	X GATE	А	NOT A
Input - Output	Input – X – Output	0	1
		1	0

$$\sigma_x = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \sigma_y = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$\sigma_z = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

These are the Pauli Matrices!

GATES RELEVANT TO ENTANGLEMENT

THE HADAMARD GATE (SINGLE QUBIT)

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \begin{array}{c} |0\rangle \rightarrow |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ |1\rangle \rightarrow |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{array} \qquad - H \qquad - H$$

GATES RELEVANT TO ENTANGLEMENT

THE HADAMARD GATE (SINGLE QUBIT)

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad \begin{array}{c} |0\rangle \rightarrow |+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ |1\rangle \rightarrow |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{array} \qquad - H - H$$

THE CNOT GATE (TWO QUBITS)

$$\text{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

 $\text{CNOT}_{01}|ij\rangle = \text{CNOT}(|i\rangle \otimes |j\rangle) = |i\rangle \otimes |(i+j) \mod(2)\rangle$

Before		After		
Control	Target	Control	Target	
0 angle	0 angle	0 angle	0 angle	
0 angle	1 angle	0 angle	1 angle	
1 angle	0 angle	1 angle	1 angle	
1 angle	1 angle	1 angle	0 angle	

TWO-QUBIT STATE: $|q_0q_1\rangle$

TWO-QUBIT STATE: $|q_0q_1\rangle$

$CNOT_{01}H_0|00\rangle = CNOT_{01}|+0\rangle$

TWO-QUBIT STATE: $|q_0q_1\rangle$

$CNOT_{01}H_0|00\rangle = CNOT_{01}|+0\rangle$ $= \frac{1}{\sqrt{2}}CNOT_{01}(|00\rangle + |10\rangle)$

TWO-QUBIT STATE: $|q_0q_1\rangle$

н

$$CNOT_{01}H_0|00\rangle = CNOT_{01}|+0\rangle$$
$$= \frac{1}{\sqrt{2}}CNOT_{01}(|00\rangle + |10\rangle)$$
$$= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

LET'S ENCODE IT ON QISKIT!

TELEPORTATION FOR THE MASSES (QUANTUM TELEPORTATION WITHOUT EQUATIONS!)

QUANTUM TELEPORTATION (REALLY INFORMATION TRANSFER)

STATE PREPARATION

Alice

Entangled Pair

SHARED ENTANGLED STATE

Alice

ALICE ENTANGLES HER QUBITS

(INCOMPLETE) INFORMATION IS TRANSFERRED TO BOB VIA ENTANGLEMENT

ALICE MAKES A MEASUREMENT AND RELAYS IT TO BOB

ALICE MAKES A MEASUREMENT AND RELAYS IT TO BOB

BOB APPLIES CONDITIONAL GATES ON HIS QUBIT

BOB RECOVERS ALICE'S ORIGINAL QUBIT

WHAT JUST HAPPENED?

- Alice transferred the quantum information in her qubit to Bob
- Neither Alice nor Bob needed to know what the original state was
- Quantum information about states was never known by any party
- Classical information transfer was necessary compatible with special relativity
- Alice's original state was completely transferred, NOT cloned onto Bob's qubit

State Preparation

Alice Entangles her qubit with one entangled qubit

Alice makes a measurement and relays it to Bob

Bob applies conditional gates on his qubit Arjun Kudinoor

We measure the final state to check if the protocol worked

LET'S TEST IT ON QISKIT!

Thank You! Questions?