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One way of interpreting the probability, P (A), of an event A is as the (long-run) proportion
of times that the event occurred when sequentially repeating the experiment in question. For
example, when we say that “the probability that a fair coin lands Heads (H) equals 1/2”, we
can interpret that as follows:

If we flip a coin over and over again, then the long-run proportion of times that it landed
H equals 1/2.

If we let Xi = 1 if the ith flip lands H and Xi = 0 if it lands T , then we can express this as

lim
n→∞

1

n

n∑
i=1

Xi = E(X) =
1

2
. (1)

A precise and general mathematical statement of this notion is called the Strong Law of
Large Numbers (SLLN):

Theorem 1.1 (Strong Law of Large Numbers(SLLN)) If {Xi : i ≥ 1} is any iid se-
quence of random variables with E|X| < ∞, then with probability one (wp1) it holds that

lim
n→∞

1

n

n∑
i=1

Xi = E(X), (2)

by which we mean that

P
(
lim
n→∞

1

n

n∑
i=1

Xi = E(X)
)
= 1.

In words: “With probability one, the empirical average of the {Xi} equals the expected value.”

Note that for any iid sequence {Xi} and any real-valued function g = g(x), the sequence
{g(Xi)} too forms an iid sequence and hence if E|g(X)| < ∞, then wp1,

lim
n→∞

1

n

n∑
i=1

g(Xi) = E(g(X)).

For example, if for a fixed subset A ⊂ R, one defines g(Xi) = I{Xi ∈ A}, the indicator,
then we get

lim
n→∞

1

n

n∑
i=1

I{Xi ∈ A} = P (X ∈ A);

“The proportion of times that Xi falls in A is equal to P (X ∈ A).”
An immediate application is to rolling a die over and over, with Xi the outcome of the ith

roll Xi ∈ {1, 2, 3, 4, 5, 6}. Then wp1,

lim
n→∞

1

n

n∑
i=1

I{Xi = k} = P (X = k) =
1

6
, k ∈ {1, 2, 3, 4, 5, 6}.
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1.1 Proving the SLLN

We will be satisfied to prove a weaker version of SLLN, known as the Weak Law of Large
Numbers (WLLN) which gives ample intuition as to why the SLLN must hold. For notation,
we let µ = E(X), σ2 = V ar(X) and define

X(n)
def
=

n∑
i=1

Xi, n ≥ 1 (3)

X(n)
def
=

1

n
X(n) =

1

n

n∑
i=1

Xi, n ≥ 1. (4)

Proposition 1.1 (WLLN) If {Xi : i ≥ 1} is any iid sequence of random variables with finite
variance σ2 = V ar(X) < ∞, then for all ϵ > 0, no matter how small,

P (|X(n)− µ| > ϵ) ≤ σ2

nϵ2
→ 0, as n → ∞.

Equivalently,

P (|X(n)− µ| ≤ ϵ) ≥ 1− σ2

nϵ2
→ 1, as n → ∞.

Proof : Recall Markov’s inequality P (|X| > x) ≤ E(X)
x , x > 0, specifically the version P (|X| >

x) ≤ E(X2)
x2 , x > 0. Note that by linearity of expectation, E(X(n)) = 1

nE(X(n)) = 1
n(nµ) = µ,

and by independence of the Xi (and recalling V ar(cX) = c2V ar(X) for any constance c), we
have

E|X(n)− µ|2 = V ar(X(n))

=
1

n2
V ar(X(n))

=
1

n2
V ar(X1 + · · ·+Xn)

=
1

n2
nV ar(X)

=
σ2

n
.

Finally, from Markov’s inequality,

P (|X(n)− µ| > ϵ) ≤ E|X(n)− µ|2

ϵ2
=

σ2

nϵ2
.

In words, this result says that for any ϵ > 0, the probability that X(n) differs from µ by
more than ϵ tends to 0 as the “sample size” n increases.
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1.2 Application to Monte Carlo simulation

Suppose we wish to compute an integral

α =

∫ 1

0
g(x)dx,

for a function g that has no known antiderivative.
Observe that if U ∼ unif(0, 1), then the expected value of the random variable g(U) is equal

to the desired integral1:

E(g(U)) =

∫ 1

0
g(x)dx = α.

Thus if we take an iid sequence of the uniforms {Ui : i ≥ 1} and define Xi = g(Ui), the
SLLN asserts that wp1,

lim
n→∞

1

n

n∑
i=1

Xi = E(X) = α. (5)

This immediately yields an approximation for α: Choose a “large” value of n, and use

α ≈ X(n) =
1

n

n∑
i=1

Xi. (6)

The implementation would be carried out by your computer, which can sequentially “gen-
erate/simulate” the Ui. This is known as Monte Carlo simulation.

As a nice example for illustrating the method, suppose you wish to estimate the value of π.
We know that π is the area of the unit disk in R2. So it can be obtained as

π = 4

∫ 1

0

√
1− x2dx.

In other words, we can implement Monte Carlo simulation by using the function g(x) =

4
√
1− x2, x ∈ (0, 1):

π ≈ 4

n

n∑
i=1

√
1− U2

i .

Sample code in Python:

summ = 0
n = 1000 #sample size
for i in range(n):

U = numpy.random.uniform(0,1)
summ += 4*math.sqrt(1-math.pow(U,2))

summ/n

Using n = 1000 as an example yielded (one run of it) π ≈ 3.1622, increasing to n = 10, 000
yielded π ≈ 3.1415 which is exact to 4 decimal places.

Note that each time you run a simulation you will obtain slightly different answers; for
example if you used n = 1000 again (using different iid uniforms), you might get π ≈ 3.1422,
and so on.

1More generally, if X has a density f(x) on (0, 1) then E(g(X)) =
∫ 1

0
g(x)f(x)dx. The density of U is f(x) = 1
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In our next section, we will address the general issue of how accurate is the SLLN approxi-
mation

E(X) ≈ X(n).

This involves what is called the Central Limit Theorem which in turn involves the normal
probability distribution.

1.2.1 Normal distribution with mean µ and variance σ2: N(µ, σ2)

We start with a rv Z which has a normal distribution with mean 0 and variance 1. It is denoted
by N(0, 1) and has probability density function denoted by ϕ(x):

ϕ(x) =
1√
2π

e−x2/2, x ∈ R.

This function ϕ(x) is symmetric about 0, ϕ(−x) = ϕ(x), and its graph yields the famous
“bell curve”. Such a random variable Z with this distribution is called a standard or unit normal,
and we denote this by writing “Z ∼ N(0, 1)”. This distribution is one of the most fundamental
and important ones in all of probability theory and statistics, with numerous applications. The
CDF is not explicit (i.e., we can’t integrate it out explicitly), we denote it by Φ(x);

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy, x ∈ R.

For each x, Φ(x) is the area under the curve ϕ to the left of x. Numerical methods are used to
compute Φ(x) to any desired level of accuracy, and Tables are available in the back of statistics
textbooks with useful values of Φ(x). For example,
P (Z ≤ 1) = Φ(1) = 0.8413, P (Z ≤ 2) = Φ(2) = 0.9772, P (Z ≤ 3) = Φ(3) = 0.99987.

By symmetry P (Z ≤ −x) = P (Z > x) for any x ≥ 0, and P (Z ≤ 0) = P (Z ≥ 0) = 0.5. We
thus can obtain from the above values that

P (−1 ≤ Z ≤ 1) ≈ 0.68, P (−2 ≤ Z ≤ 2) ≈ 0.95, P (−3 ≤ Z ≤ 3) ≈ 0.99, (7)

or equivalently that

P (|Z| ≤ 1) ≈ 0.68, P (|Z| ≤ 2) ≈ 0.95, P (|Z| ≤ 3) ≈ 0.99, (8)

This is very revealing: in particular it tells us that essentially all the mass of Z lies within
the interval [−3, 3]; i.e., it is rare that a rv Z would take on a value above 3 or below −3:
P (|Z| > 3) < 0.01. Since the standard deviation of Z is σ = 1, we can say in words that

99% of the mass of Z lies within 3 standard deviations of its mean.

That ϕ(x) integrates to 1, hence indeed defines a probability density function, is proved by
using polar coordinates: Letting

S =

∫ ∞

−∞
ϕ(x)dx,
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observe that

S2 =
(∫ ∞

−∞
ϕ(x)dx

)(∫ ∞

−∞
ϕ(y)dy

)
=

1

2π

∫ ∞

−∞

∫ ∞

−∞
e

−(x+y)2

2 dxdy

=
1

2π

∫ 2π

0

∫ ∞

0
e−r2/2rdrdθ.

=

∫ ∞

0
e−r2/2rdr

=

∫ ∞

0
e−udu

= 1,

where the last integral was derived by a simple change of variables u = r2/2, du = rdr. Thus
S = 1.

It is immediate that E(Z) = 0, since∫ 0

−∞
xϕ(x)dx = −

∫ ∞

0
xϕ(x), dx

and (u = x2/2 change of variables),∫ ∞

0
xe−x2/2dx =

∫ ∞

0
e−udu = 1 < ∞.

Thus V ar(Z) = E(Z2), and by using integration by parts it follows that 1 = E(Z2) =∫∞
−∞ x2ϕ(x)dx.

The more general N(µ, σ2) dstribution

For any µ ∈ R and any σ > 0, we can define a new rv

X = σZ + µ, (9)

the distribution of which is called the normal distribution with mean µ and variance σ2. We
denote this by writing, “X ∼ N(µ, σ2)”. Because E(Z) = 0 and V ar(Z) = 1, we see from
(9) (and recalling the properties of expected value and variance) that indeed E(X) = µ, and
V ar(X) = σ2. All we have done is shift the mean of Z to be µ and modified its variance to
be σ2. Since F (x) = P (X ≤ x) = P (Z ≤ (x − µ)/σ) = Φ((x − µ)/σ), we can compute F (x)
by using the values for the unit normal CDF Φ(x) = P (Z ≤ x). Moreover, we immediately
conclude using a change of variables (u = σy + µ, du = σdy) that the CDF is given by

F (x) =
1

σ
√
2π

∫ x

−∞
e−

(y−µ)2

2σ2 dy, x ∈ R,

and by taking the derivative f(x) = F ′(x) the density is given by

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , x ∈ R.
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f(x) is symmetric about its mean µ and again has a bell-shaped curve. Moreover, by using
(9), (7) generalizes to

P (µ− σ ≤ X ≤ µ+ σ) ≈ 0.68 (10)

P (µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 0.95 (11)

P (µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 0.99. (12)

Just as we saw for Z, this says that essentially 99% of the mass of any X ∼ N(µ, σ2) lies within
3 standard deviations of its mean. Note that the larger the value of the variance σ2 is, the
larger are the intervals containing the mass. That is because a larger variance makes the value
of X less predictable; its average distance from the mean µ becomes larger.

1.3 Chebyshev’s inequality

Using a variation of Markov’s inequality, we obtain for any random variable X with finite
variance σ2 that it holds for integers k ≥ 1 that

P (|X − µ| > kσ) ≤ σ2

k2σ2
=

1

k2
,

known as Chebyshev’s inequality. Equivalently,

P (|X − µ| ≤ kσ) ≥ 1− 1

k2
. (13)

This is an upper bound on how much of the distribution of X lies within k standard
deviations from its mean µ. Using k = 3 we thus get

P (|X − µ| ≤ kσ) ≥ 1− 1

32
=

8

9
= 0.89.

As we just saw in the previous section, for the special case when X ∼ N(µ, σ2), the true
probability for k = 3 is even higher, 0.99. But it is nice to know that regardless of the
distribution, it must be at least 0.89.

2 The Central Limit Theorem

While the SLLN asserts for an iid sequence {Xi}, that wp1

X(n) =
1

n

n∑
i=1

Xi → µ = E(X),

as n → ∞, it does not address the issue of how good an approximation to µ the empirical

average X(n) is for a given n. Recalling that E(X(n)) = µ = E(X) and V ar(X(n)) = σ2

n ,

where σ2 = V ar(X), the Central Limit Theorem (CLT) fills in this gap. It asserts that

For n large, the probability distribution of X(n) is approximately N(µ, σ
2

n ).
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Since we can represent a rv having the N(µ, σ
2

n ) distribution as σ√
n
Z+µ, with Z ∼ N(0, 1), we

then have for n large that X(n) ≈ σ√
n
Z + µ, hence subtracting µ and dividing by σ√

n
implies

that

Zn
def
=

X(n)− µ
σ√
n

≈ Z ∼ N(0, 1)

Note that by multiplying the numerator and denominator of Zn by n, we equivalently can
re-write Zn as

Zn =
X(n)− nµ

σ
√
n

,

and so we can also express the result as

X(n)− nµ

σ
√
n

≈ Z ∼ N(0, 1), for n large.

Here is the rigorous statement:

Theorem 2.1 (Central Limit Theorem) For any iid sequence of rvs {Xi} with finite and

non-zero variance, 0 < σ2 < ∞, it holds that as n → ∞ the distribution of Zn = X(n)−µ
σ√
n

=

X(n)−nµ
σ
√
n

converges to N(0, 1):

lim
n→∞

P (Zn ≤ z) = Φ(z) = P (Z ≤ z), z ∈ R.

A proof of this result (in such generality) is beyond the scope of these notes; but for some
special cases we will give some proofs later (Section 4).

The importance of the CTL can not be understated: For any probability distribution
F (x) = P (X ≤ x) (for the Xi) with finite non-zero variance 0 < σ2 < ∞, Zn becomes exactly
N(0, 1) as n → ∞.

We can use this to compute how close X(n) is to µ: Recalling Equation (8), we know that
P (|Z| ≤ 2) ≈ 0.95.

Thus for n large, P (|Zn| ≤ 2) ≈ 0.95. Re-writing this we get

P (|X(n)− µ| ≤ 2
σ√
n
) ≈ 0.95

For example, choosing n = 100, and using (say) σ = 1, we get

P (|X(n)− µ| ≤ 1

5
) ≈ 0.95,

which we can re-write further as

P (X(n)− 0.20 ≤ µ ≤ X(n) + 0.20) ≈ 0.95,

which means that with probability 0.95, the true (unknown) mean µ lies within the interval

[X(n)− 0.20, X(n) + 0.20]. (14)

This is an example of what is known as a 95% confidence interval for estimating µ, which in
general is given by X(n)±2 σ√

n
. By using a larger sample size n, not only will X(n) change to a
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more accurate estimate for µ, but will yield an even smaller interval with the same confidence
level. For example, if n = 10, 000, with σ = 1, then 2 σ√

n
= 0.02, ten times smaller; (14) becomes

X(n) ± 0.02. We could also use P (|Z| ≤ 3) = 0.99 instead of P (|Z| ≤ 2) = 0.95, so as to get
a higher probability 0.99, for our estimate interval which would change to X(n)± 3 σ√

n
; a 99%

confidence interval. This would enlarge the interval size, however; interval (14) becomes

[X(n)− 0.30, X(n) + 0.30], (15)

but again by increasing the sample size we can bring it down again. Using n = 10, 000 yields

[X(n)− 0.03, X(n) + 0.03], (16)

and it is now a 99% confidence interval.

2.1 Practical considerations

Sample size n

In practice, a large sample size n for constructing a confidence interval might not be available;
it might involve for example, rare medical data in which very few people have a certain disease
(n = 10 (say)), or some other application in which samples are very expensive or difficult to
acquire. As a rule of thumb one needs about n ≥ 36, so as to ensure that the CLT is kicking in.
In Monte Carlo simulation, however, the samples are generated by your computer and typically
can be very large if needed.

Confidence interval size relative to what is being measured

One also needs to be careful not to get a useless confidence interval. For example if we are
trying to estimate the average weight of a certain animal, then we would not want an interval
like 5.3±500 pounds, which is useless. One would want the interval length to be a small fraction
of what is being measured, such as 5.3± 0.1 pounds.

More precise Z values for constructing confidence intervals

When constructing 95% and 99% confidence intervals using (8), we used the values 2 and 3
only for simplicity so as to offer a simple ‘rule of thumb’ that is easy to remember. In practice
we would use the precise values 1.96 and 2.58:

P (|Z| ≤ 1.96) = 0.95, P (|Z| ≤ 2.58) = 0.99. (17)

This then leads to

95% and 99% confidence intervals

X(n)± 1.96
σ√
n
, X(n)± 2.58

σ√
n
. (18)

In general a 100(1 − α)% confidence interval (where α ∈ (0, 1)) is obtained by using the
value of z, denoted by zα, such that P (|Z| ≤ zα) = 1− α yielding the interval

X(n)± zα
σ√
n
.

Using α = 0.05 and 0.01 yields the desired values z0.05 = 1.96 and z0.01 = 2.58 for 95% and
99% confidence intervals respectively. In general the various zα are called z-scores.
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2.1.1 One-sided (upper/lower) confidence intervals

We have been constructing two-sided intervals X(n)±, but one can also construct one-sided
intervals (regions) such as the upper µ ≤ X(n) + 1.645 σ√

n
, where Φ(1.646) = P (Z ≤ 1.646) =

0.95.
This says that we are 95% confident that the true value of µ lies below X(n) + 1.645 σ√

n
.

The lower one: we are 95% confident that the true value of µ lies above X(n) − 1.645 σ√
n
.

Φ(2.33) = P (Z ≤ 2.33) = 0.99 for obtaining the analogous one-sided 99% confidence intervals.
Such one-sided intervals are particularly useful in hypothesis testing situations (you will learn

about this when taking a course in statistics). For example if you wish to test the hypothesis
that the public voting support of a particular proposal is at least 51%, or you wish to test the
hypothesis that a new beverage contains at most 40 gms of sugar per bottle.

2.1.2 Sample variance s2(n)

If we are trying to estimate an unknown mean µ, then in general we also would not know
the variance σ2, and hence we would need a good estimate of it so as to explicitly construct
a confidence interval such as X(n) ± 1.96 σ√

n
. This is provided by what is called the sample

variance

s2(n) =
1

n− 1

n∑
i=1

(Xi −X(n))2, (19)

which uses exactly the same n data points used for the sample mean. It can be proved that for
iid data {Xi : i ≥ 1},

σ2 = lim
n→∞

s2(n), wp1 (s2(n) is a consistent estimator for σ2) (20)

σ2 = E(s2(n)), n ≥ 2 (s2(n) is an unbiased estimator for σ2). (21)

The definition of s2(n) has the division by n− 1 instead of by n because (it turns out) that is
(mathematically) required to ensure that s2(n) is an unbiased estimator.

It turns out that the CLT still holds if we replace σ2 by s2(n) (and use s(n)
def
=

√
s2(n)).

Recalling (18), the confidence intervals for estimating µ are then

95% and 99% confidence intervals: using the sample variance

X(n)± 1.96
s(n)√

n
, X(n)± 2.58

s(n)√
n
. (22)

2.2 Using the CLT to approximate sums of iid random variables

Given iid rvs {Xi : 1 ≤ i ≤ n} with 0 < σ2 < ∞, we know from the CLT that for n large,

Zn
def
= X(n)−µ

σ√
n

≈ Z ∼ N(0, 1), and thus the sum

X(n)
def
=

n∑
i=1

Xi ≈ σ
√
nZ + nµ ∼ N(nµ, nσ2).

10



Therefore we can explicitly approximate the CDF of the sum X(n) in terms of the N(0, 1) CDF
Φ(z) = P (Z ≤ z):

P (X(n) ≤ x) ≈ P (σ
√
nZ + nµ ≤ x)

= P (Z ≤ x− nµ

σ
√
n

)

= Φ
(x− nµ

σ
√
n

)
, x ∈ R. (23)

Similarly, letting Φ(z) = 1− Φ(z) = P (Z > z), we have the tail approximation,

P (X(n) > x) ≈ Φ
(x− nµ

σ
√
n

)
, x ∈ R. (24)

Using these approximations can be very useful since in general such probabilities might be
very difficult to compute directly.

2.2.1 The normal approximation to the binomial distribution

A famous example is to approximate a binomial (n, p) distribution, valid because such a random
variable has the representation as a sum of iid rvs;

X(n) =

n∑
i=1

Xi,

where the {Xi} are iid Bernoulli (p) rvs. µ = E(Xi) = p, σ2 = V ar(Xi) = p(1 − p). We thus
conclude, for example, that (for n sufficiently large),

P (X(n) > x) ≈ Φ
( x− np√

np(1− p)

)
, x ∈ R. (25)

For example, suppose that p = 0.4 and n = 500, and we wish to estimate
P (X(500) > 215), the probability that out of 500 trials, there are > 215 successes.

Then we can use the approximation

P (X(500) > 215) ≈ Φ
(215− (500)(0.4)√

500(0.4)(0.6)

)
= Φ(1.37) = P (Z > 1.37). (26)

Using a Z table or Z calculator we obtain P (Z > 1.37) = 0.085.

2.2.2 Continuity correction for the binomial distribution

We can refine the binomial approximation in Equation (25) by using what is called a conti-
nuity correction based on the fact that since a binomial is discrete, we have, for example that
P (X(n) > 215) = P (X(n) > 215.5).

This is particularly important when using the approximation for the probability mass
function P (X(n) = k), for then otherwise we always would get 0, since Z is continuous;
P (Z = x) = 0 for any x. So instead we use

P (X(n) = k) = P (k − 0.5 < X(n) < k + 0.5) (27)

≈ P
(k − 0.5− np√

np(1− p)
< Z <

k + 0.5− np√
np(1− p)

)
. (28)
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P (X(n) > k) = P (X(n) > k + 0.5) ≈ P
(
Z >

k + 0.5− np√
np(1− p)

)
. (29)

P (X(n) < k) = P (X(n) < k − 0.5) ≈ P
(
Z <

k − 0.5− np√
np(1− p)

)
. (30)

For example, we can use it to refine approximation (26),

P (X(500) > 215) = P (X(500) > 215.5) ≈ P (Z > 1.41) = 0.079,

and

P (X(500) = 215) = P (214.5 < X(500) < 215.5) ≈ P (1.32 < Z < 1.41) = 0.0142.

As the reader can check (using computational software for the binomial distribution), the
true answers are 0.0789 and 0.0142 respectively, in particular this continuity correction yields
a more accurate answer than before for P (X(500) > 215).

One can also use ≤, to obtain a common (equivalent) variation of continuity correction:

P (X(n) ≥ k) = P (X(n) ≥ k − 0.5) ≈ P
(
Z >

k − 0.5− np√
np(1− p)

)
. (31)

P (X(n) ≤ k) = P (X(n) ≤ k + 0.5) ≈ P
(
Z <

k + 0.5− np√
np(1− p)

)
. (32)

This is equivalent to what we already presented because P (X(n) > k) = P (X(n) ≥ k+ 1) and
P (X(n) ≤ k) = P (X(n) < k + 1).

What about the Poisson approximation to the binomial?

Recall that we also have another approximation to the binomial; the Poisson dis-
tribution with mean α = np, but that is only useful when n is large and p is small. The
normal approximation only requires that n be large; any p is ok as long as n is large enough.
As a rule of thumb: to use the normal approximation for the binomial distribution
make sure that np(1 − p) ≥ 10. For example if p = 0.5, then n should be ≥ 40. If p = .01,
then n should be ≥ 1000.

When the distribution is a continuous one, as a general rule of thumb it is
suggested to use n ≥ 36.

For example: suppose we wish to approximate P (X(50) > 55.8) when the Xi are iid expo-
nentials at rate λ = 1: P (X ≤ x) = 1− e−x, x ≥ 0. µ = E(X) = 1 and σ2 = 1.

P (X(50) > 55.8) ≈ P (Z >
55.8− nµ

σ
√
n

) = P (Z >
5.8√
50

) = P (Z > 0.820) = 0.206.

3 Simulating from the normal distribution

As we well know, given a Z ∼ N(0, 1) we can transform it into an X ∼ N(µ, σ2) via setting
X = σZ + µ. Thus it suffices to have a simulation algorithm for generating iid copies of
Z ∼ N(0, 1).

The N(0, 1) density is

ϕ(x) =
1√
2π

e
−x2

2 , x ∈ R, (33)
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and the CDF is

Φ(x) = P (Z ≤ x) =

∫ x

−∞
ϕ(y)dy x ∈ R.

The inverse transform method can’t be used to simulate a Z because we do not have an explicit
functional form of the CDF Φ(x) let alone its inverse Φ−1(y). One might first try to approximate
Φ−1(y) by an explicit tractable function so as to use the inverse transform method to obtain
approximate copies of Z, and that is an approach sometimes used in practice. However, we can
actually exactly simulate copies of Z using a clever different approach called the polar method.
What is interesting about this method is that it requires the use of 2 iid Unif(0, 1) rvs and in
return hands you back 2 iid copies of Z, X = Z1, Y = Z2.

Polar Method

Suppose that X and X are iid copies of N(0, 1). If we graph the vector (X,Y ) in the Cartesian
x− y plane and then transform it into polar coordinates,

R2 = X2 + Y 2 ∈ IR+ (34)

Θ = arctan (Y/X) ∈ [0, 2π), (35)

then from classical multi-dimensional calculus, we can compute the joint density of (R2,Θ)
by using the Jacobian matrix/determinant of the invertible polar coordinates transformation h
given by

(x, y) −→ h(x, y) = (h1(x, y), h2(x, y)) = (x2 + y2, arctan (y/x)).

When this is done (proof below), we conclude that the joint density of (R2,Θ) denoted by
g(u, θ) (i.e., u = r2 = x2 + y2), is given by a product of an exponential density at rate 1/2
(mean 2), and a Uniform(0, 2π) density :

g(u, θ) =
1

2
e−u/2 · 1

2π
, u > 0, θ ∈ (0, 2π). (36)

Summarizing:

1. R2 has an exponential distribution at rate 1/2 (mean 2).

2. Θ has a continuous uniform distribution over the interval [0, 2π).

3. R2 and Θ are independent random variables.

Proof of Equation (36)

Proof : The joint density of f(x, y) of (X,Y ) is given by the product of two N(0, 1) densities
(Equation (33)):

f(x, y) = ϕ(x)ϕ(y) =
1

2π
e

−(x2+y2)
2 =

1

2π
eu/2.

From 2-dimensional calculus involving inverse transformations, the density of g(u, θ) is therefore
given by

g(u, θ) =
1

2π
eu/2 × |J |−1,

where |J | denotes the determinant of the Jacobian matrix J of partial derivatives

J =

[
∂h1
∂x

∂h1
∂y

∂h2
∂x

∂h2
∂y

]
=

[
2x 2y

−y/x2

1+(y/x)2
1/x

1+(y/x)2

]
=

[
2x 2y
−y

x2+y2
x

x2+y2

]
. (37)

13



It is immediately verified that |J | = 2, and hence |J |−1 = 1/2 yielding the joint density in (36).

Using the above facts in reverse we conclude that if R2 has an exponential distribution with
mean 2, and independently Θ has a continuous uniform distribution over the interval (0, 2π),

then (converting back into Cartesian coordinates), with radius R =
√
R2, we have that the

following 2 rvs X,Y are iid N(0, 1):

X = R cosΘ

Y = R sinΘ

Letting U1, U2 be iid Unif(0, 1), we can generate our exponential via R2 = −2 ln (U1) and
our uniform via Θ = 2πU2 leading to

Polar Algorithm

1. Generate two iid Unif(0, 1) rvs, U1, U2

2. Set R2 = −2 ln (U1), Θ = 2πU2 and set R =
√
R2.

3. Set

X = R cosΘ

Y = R sinΘ.

4. Stop. Output X, Y .

Remark 3.1 Using the Jacobian matrix J with the reciprocal of its determinant |J |−1 (via
g(u, θ) = f(x, y)|J |−1) is simply a multi-dimensional version of what we would do in one dimen-
sion. For example, consider X ∼ exp(λ). Let us use the transformation h(x) = x2, x > 0 and
then Y = h(X) = X2. What is the density of X2? We can first derive it directly by computing
its CDF and then differentiating it:
FY (y) = P (Y ≤ y) = P (X ≤ √

y) = 1− e−λ
√
y.

fY (y) = F ′(y) = λ
2
√
ye

−λ
√
y.

But this is the same as starting with the density of X, fX(x) = λe−λx = λe−λ
√
y, and

multiplying it by (h′(x))−1 = 1
h′(x) : h′(x) = 2x = 2

√
y, and so (h′(x))−1 = 1

2
√
y ; indeed the

product yields fY (y) =
λ

2
√
ye

−λ
√
y.

4 Some proofs of the CLT in special cases

A classic method of proof for the CLT is to show that the moment generating function (MGF)
of Zn converges to that of Z ∼ N(0, 1), as n → ∞, that is, that as n → ∞,

MZn(s) = E(esZn) → E(esZ) = MZ(s), s ∈ R.
By MGF theory,2 such convergence implies that Zn converges to Z in distribution.

We first will derive MZ(s), and then use the above approach to prove the CLT in some
special cases, such as when the iid Xi are Poisson distributed.

2For some probability distributions, a MGF does not exists (it is infinite for all s ̸= 0), an example being the

Weibull distribution P (X > x) = eλ
√
x, x ≥ 0; if Y ∼ exp(λ), then X = Y 2 has such a distribution. Thus more

generally, we use the characteristic function, ϕ(s) = E(eisX), s ∈ R, where i =
√
−1; it is complex valued and

always exists: eix
def
= cos(x) + i sin(x); |eix| = 1; |E(eisX)| ≤ E(|eisX |) = 1.
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4.1 MGF of the normal distribution

Proposition 4.1 For Z ∼ N(0, 1),

MZ(s) = e
s2

2 , s ∈ R.

More generally if X ∼ N(µ, σ2), then

MX(s) = e
s2σ2

2
+sµ, s ∈ R.

Proof :

MZ(s) = E(esZ) (38)

=

∫ ∞

−∞
esxϕ(x)dx (39)

=

∫ ∞

−∞

1√
2π

esxe
−x2

2 dx. (40)

=

∫ ∞

−∞

1√
2π

e
−x2+2sx

2 dx (41)

=

∫ ∞

−∞

1√
2π

e
−(x−s)2+s2

2 dx (42)

= e
s2

2

∫ ∞

−∞

1√
2π

e
−(x−s)2

2 dx (43)

= e
s2

2

∫ ∞

−∞

1√
2π

e
−u2

2 du (change of variables u = x− s, du = dx) (44)

= e
s2

2

∫ ∞

−∞
ϕ(u)du (45)

= e
s2

2 × 1 (46)

= e
s2

2 , (47)

where the second to last line follows since ϕ is a density hence integrates to 1.
We can express X ∼ N(µ, σ2) as σZ + µ and thus

MX(s) = E(esσZ+sµ) (48)

= esµesσZ (49)

= esµMZ(sσ) (50)

= esµe
s2σ2

2 (51)

= e
s2σ2

2
+sµ. (52)

From the above, we see that a MGF proof of the CLT is to prove that

lim
n→∞

E(esZn) = e
s2

2 , s ∈ R.
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4.2 MGF of independent sums

If X1, X2 are independent rvs, then so are esX1 and esX2 ; thus

MX1+X2(s) = E(es(X1+X2)) (53)

= E(esX1esX2) (54)

= E(esX1)E(esX2) (55)

= MX1(s)MX2(s). (56)

More generally:

Proposition 4.2 If {Xi : 1 ≤ i ≤ n} are independent, then

M∑n
i=1 Xi(s) =

n∏
i=1

MXi(s);

The MGF of an independent sum equals the product of the n individual MGFs. In particular,
if the n rvs are independent and identically distributed (iid) copies of X, then

M∑n
i=1 Xi

(s) = (MX(s))n.

The above provides a quick proof that the sum of independent normals is normal:

Proposition 4.3 If {Xi : 1 ≤ i ≤ n} are independent N(µi, σ
2
i ) rvs, then the sum is normal:∑n

i=1Xi ∼ N(µ, σ2), where µ =
∑n

i=1 µi and σ2 =
∑n

i=1 σ
2
i . In particular, If the {Xi} are iid,

then for each n ≥ 1, Zn ∼ N(0, 1): There is no limit required, as n → ∞, for applying the
CLT, Zn is already exactly normal for each n ≥ 1.

Proof : The proof is immediate by applying Proposition 4.2. For the first part: The MGF of
the sum is the MGF of a N(µ, σ2), with µ =

∑n
i=1 µi and σ2 =

∑n
i=1 σ

2
i ; uniqueness of MGMs

implies that the sum is indeed distributed as N(µ, σ2). Now applying this to the iid case (all
are distributed as N(µ, σ2) for a given fixed µ and σ2), then X(n) ∼ N(nµ, nσ2). Thus we can

write X(n) = σ
√
nZ + nµ and hence Zn = X(n)−nµ

σ
√
n

= Z ∼ N(0, 1).

4.3 MGF of the Poisson distribution

We next derive the MGF of the Poisson distribution with mean α;

P (X = k) = e−αα
k

k!
, k ≥ 0.

Proposition 4.4
MX(s) = eα(e

s−1), s ≥ 0. (57)
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Proof :

MX(s) = E(esX)

= e−α
∞∑
k=0

esk
αk

k!

= e−α
∞∑
k=0

(αes)k

k!

= e−αeαe
s

= eαe
s−α

= eα(e
s−1).

Now we use Proposition 4.2 on the Poisson distribution to prove that the independent sum
of Poisson rvs is Poisson:

Corollary 4.1 If {Xi : 1 ≤ i ≤ 1} are independent Poisson (αi) rvs, then Y =
∑n

i=1Xi is
Poisson (α) where α =

∑n
i=1 αi. In particular, if the Xi are iid with the same mean α, then Y

has a Poisson distribution with mean nα.

Proof : Using Proposition 4.2 with Equation (57) we have

MY (s) =
n∏

i=1

MXi(s) (58)

=
n∏

i=1

eαi(e
s−1) (59)

= e
∑n

i=1 αi(e
s−1) (60)

= eα(e
s−1). (61)

Thus Y has the MGF of a Poisson at rate α =
∑n

i=1, and so by uniqueness of MGFs, the result
follows.

4.4 Proof of the CLT when the Xi are iid Poisson distributed

We now prove the CLT when the Xi are iid with a Poisson distribution. It is proved in a more
general framework, but that is explained right after the proof.

Proposition 4.5 (CLT for the Poisson distribution) Let X(β) denote a rv with a Poisson
distribution with mean β. Then as β → ∞,

X(β) − β√
β

=⇒ N(0, 1) in distribution.

Proof : Using Proposition 4.4,

E(e
s(X

(β)−β√
β

)
) = e−s

√
βE(e

s√
β
X(β)

) (62)

= e−s
√
βeβ(e

s√
β −1); (63)
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we wish to prove that the above converges to e
s2

2 as β → ∞. Taking natural logarithms this is
equivalent to showing that

−s
√
β + β(e

s√
β − 1) → s2

2
.

Replacing β by β2 equivalently we need to show that

−sβ + β2(e
s
β − 1) → s2

2
.

Using the Taylor’s series expansion, e
s
β = 1 + s

β + s2

2β2 +
∑∞

k=3
sk

k!βk , we have

−sβ + β2(e
s
β − 1) =

s2

2
+ β2

∞∑
k=3

sk

k!βk
(64)

=
s2

2
+

β2s3

β3

∞∑
k=3

sk−3

k!βk−3
(65)

=
s2

2
+

s3

β

∞∑
k=3

sk−3

k!βk−3
. (66)

But the error term tends to 0 for each s:

s3

β

∞∑
k=3

sk−3

k!βk−3
≤ s3

β

∞∑
k=0

( sβ )
k

k!
(67)

=
s3

β
e

s
β (68)

→ 0, as β → ∞. (69)

The result follows.

Note that if the {Xi} are iid Poisson (α), then X(n) ∼ Poisson(nα) by Corollary 4.1;

E(X(n)) = nα and V ar(X(n)) = nα. So Zn = X(n)−nα√
nα

. Since nα → ∞ as n → ∞, the above

theorem (using β = nα) proves that the CLT holds when the iid rvs are Poisson with any given
mean α.
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