APPENDIX

One-Sided Probabilities for *z*-Scores of the Standard Normal Distribution

Z		.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	1	.5000	.5034	.5080	.5120	.5160	.5200	.5239	.5279	.5319	.5359
0.1	i	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5754
0.2	i.	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	i.	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	Í.	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	Í.	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	Í.	.7258	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7518	.7549
0.7	Ì	.7580	.7612	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	1	.7881	.7910	.7939	.7967	.7996	.8023	.8051	.8079	.8106	.8133
0.9	1	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	1	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	1	.8643	.8665	.8686	.8708	.8729	.8749	.8771	.8790	.8810	.8830
1.2	1	.8849	.8869	.8888.	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	1	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	1	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	1	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9430	.9441
1.6	1	.9452	.9463	.9474	.9485	.9495	.9505	.9515	.9525	.9535	.9545
1.7	1	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	1	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9700	.9706
1.9	1	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9762	.9767
2.0		.9773	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1		.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2		.9861	.9865	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3		.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4		.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5		.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6		.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7		.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8		.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9980	.9980	.9981
2.9		.9981	.9982	.9983	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0		.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1		.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2		.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3		.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4		.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998	.9998
3.5		.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998

The numbers in the body of the table represent the area under the normal curve to the left of the standardized z-value. As the standard normal curve is symmetric around the mean of zero, 50% of the area under the normal curve lies to the left of the z-value of zero.

Steps in determining probability values associated with specific *z*-values of a normally distributed test-statistic:

- Convert the (normally distributed) test statistic into a standardized z-score: $z = \frac{x \mu}{\sigma}$.
- Truncate the obtained *z*-score to the nearest lower *z*-value in the table. For example, a *z*-value of 2.432 can be approximated by the value 2.43 in the table.
- Locate the area under the curve to the left of this *z*-value in the body of the table at the intersection of the row value representing *z*-increment of 0.1 and the column value representing *z*-increments of 0.01. For example, the area under the curve associated with a *z*-value of 2.43 can be found at the intersection of the row labeled "2.4" and the column labeled ".03": it is 0.9925.
- As the table shows the area under the normal curve *below* the indicated *z*-value, the probability of obtaining a *z*-score of 2.43 or *larger* for a normally distributed test statistic is *p* ≤ .0075 (1 − .9925).
- For *negative z*-scores, the table entries indicate the area under the normal curve to the right of the *z*-score. For example, with a *z*-score of -2.43, the area under the curve to the right of this *z*-score covers 0.9925.
- To obtain the *two-sided probability* that a test statistic differs from the null-hypothesis value of zero by the *absolute value* of the *z*-score in either direction, we multiply the one-sided probability by 2, as the normal distribution is symmetric. For example, the probability of obtaining a *z*-score of +2.43 or larger or -2.43 or smaller equals $p \le .015 (.0075 \times 2)$.