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Introduction (1)

Suppose our computer could hand us, upon demand, numbers,

U1,U2, . . . ,Un,

that were independent and identically distributed (iid) samples from
the continuous uniform distribution on the unit interval (0,1):

P(U ≤ x) = x , x ∈ (0,1).

The density function is given by

f(x) = 1, x ∈ (0,1), f(x) = 0, x < (0,1).

QUESTION: What useful/practicle things can we do with these
numbers?
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Introduction (2)

ANSWER: As we shall see, by using the Ui to construct random
variables X with any desired distribution, F(x) = P(X ≤ x), we can
then

I construct various stochastic processes (random walks, point
processes, Markov chains, Brownian motion, etc.) so that we can

I simulate complicated models (queueing models in
telecommunications, insurance risk models, asset price models,
etc.) and numerically estimate quantities of interest (average
delay at a call center, probability of ruin, price of an exotic option
or derivative).
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Outline

I Simple integration example; strong law of large numbers, the
central limit theorem, confidence intervals for justifying the
method.

I Basics techniques of stochastic simulation: Inverse transform
method, acceptance rejection, polar method for generating
random numbers X via using uniforms U.

I Simulating a Poisson process, and more generally a renewal
process, Markov chains

I The binomial lattice model (BLM) for risky assets; some option
pricing

I Simulating Brownian motion, geometric Brownian motion
I Markov Chain Monte Carlo (MCMC) method
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Integration (1)

Suppose we wish to compute an integral

α =

∫ 1

0
g(x)dx ,

for a function g that has no known antiderivative.
Observe that if U ∼ unif(0,1), then the expected value of the random
variable g(U) is in fact the integral:

E(g(U)) =

∫ 1

0
g(x)dx .

This follows from the more general basic fact in probability that if X is
a rv with density function f(x), then the expected value of the random
variable g(X), for a function g is given by

E(g(X)) =

∫
g(x)f(x)dx .
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Integration (2)

In the following we shall be applying Xi = g(Ui), where the Ui hence
the Xi are iid rvs with mean E(X) = α =

∫ 1
0 g(x)dx .

The famous and fundamental Strong Law of Large Numbers (SLLN)
in probability theory asserts that:

Theorem (SLLN)
For any iid sequence of random variables X1, X2, . . . with finite mean
E(X), it holds that with probability 1:

lim
n→∞

1
n

n∑
j=1

Xj = E(X).

Thus

E(X) ≈
1
n

n∑
j=1

Xj , for n large
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Integration (3)

Thus, using our computer’s iid numbers U1, U2, . . . ,Un, for large n,
and defining X1 = g(U1), . . . ,Xn = g(Un), yields an approximation for
our integral: ∫ 1

0
g(x)dx ≈

1
n

n∑
j=1

g(Uj).
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Integration (4)

This is an example of Monte Carlo Simulation: We can numerically
estimate an integral by first expressing it as an expected value, and
then applying the SLLN.
This method works for multidimensional integrals as well: For
example the 3 − d integral∫ 1

0

∫ 1

0

∫ 1

0
g(x , y , z)dxdydz = E(g(U1,U2,U3)).

We then define X1 = g(U1,U2,U3), X2 = g(U4,U5,U6) and so on and
once again use the approximation

1
n

n∑
j=1

Xj .

The precision of this method does not depend on the dimension of
the integral!!
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Integration (5)

The integration limits
∫ 1

0 can be more generally
∫ b

a by using the
change of variables y = (x − a)/(b − a), x ∈ (a,b). For example∫ b

a
g(x)dx = (b − a)

∫ 1

0
g(a + (b − a)y)dy .
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Monte Carlo method

The general theme: We need to compute something which
equivalently can be expressed as an expected value, E(X), for some
(perhaps very complicated) rv X . We ask the computer to simulate iid
copies of X , then use the SLLN to estimate E(X) as an empirical
average. We will give other examples soon, but first let us recall the
notion and usefulness of confidence intervals.
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Review of confidence intervals in statistics (1)

In statistics, we estimate an unknown mean µ = E(X) of a
distribution by collecting n iid samples from the distribution, X1, . . . ,Xn
and using the sample mean

X(n) =
1
n

n∑
j=1

Xj . (1)

This estimate is justified by the SLLN. But how good is our estimate?
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Review of confidence intervals in statistics (2)

Letting σ2 = Var(X) denote the variance of the distribution, we have

Var(X(n)) =
σ2

n
. (2)

The Central Limit Theorem asserts that as n→∞,

Zn
def
=

√
n
σ

(X(n) − µ),

converges in distribution to N(0,1), the unit normal distribution.
Letting Z denote a N(0,1) rv, we conclude that for n sufficently large,
Zn ≈ Z in distribution, meaning that P(Zn ≤ x) ≈ Θ(x) for any x ∈ R.
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Review of confidence intervals in statistics (3)

This allows us to construct confidence intervals for our estimate:
(letting zα/2 be such that P(Z > zα/2) = α/2):

we say that the interval X(n) ± zα/2 σ
√

n
is a 100(1 − α)%

confidence interval for the mean µ.

Typically, we would use (say) α = 0.05 in which case
zα/2 = z0.025 = 1.96, and we thus obtain a 95% confidence interval
X(n) ± (1.96) σ

√
n
.
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Review of confidence intervals in statistics (4)

We would not know σ in practice, so we instead use an estimate for it,
the sample variance s2(n) defined by

s2(n) =
1

n − 1

n∑
j=1

(Xj − X(n))2.

It can be shown that s2(n)→ σ2, with probability 1, as n→∞ and
that E(s2(n)) = σ2, n ≥ 2.
So, in practice we would use s(n) is place of σ when constructing our
confidence intervals. For example, a 95% confidence interval is given
by X(n) ± (1.96)

s(n)
√

n
.
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Review of confidence intervals in statistics (5)

The following recursions can be derived; they are useful when
implementing a simulation requiring a confidence interval:

X(n + 1) = Xn +
Xn+1 − X(n)

n + 1
,

S(n + 1)2 =
(
1 −

1
n

)
S2(n) + (n + 1)(X(n + 1) − X(n))2.

15/17



Inverse transform method

Theorem
If F(x) = P(X ≤ x) is the cumulative distribution of a desired rv, and if

F−1(y) = min{x : F(x) ≥ y}, y ∈ [0,1],

(the generalized inverse), then setting X = F−1(U) yields a rv
distributed exactly as F.
For example, if X has the exponential distribution at rate λ,
F(x) = 1 − e−λx , then this leads to the algorithm

X = −λ−1 ln(U).

This method requires having an explicit closed form for F−1 which is
not always possible (consider the normal distribution for example).
Other methods: acceptance-rejection, polar method, and so on.
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Inverse-transform method for discrete random
variables

Consider a non-negative discrete rv X with probability mass function
(pmf) p(k ) = P(X = k ), k ≥ 0. In this case, the construction
X = F−1(U) is explicitly given by: X = 0 if U ≤ p(0),

X = k , if
k−1∑
i=0

p(i) < U ≤
k∑

i=0

p(i), k ≥ 1.

This is known as the discrete inverse-transform method.
For example, if P(X = 1) = p and P(X = 0) = 1 − p is a Bernoulli (p)
rv, then we can generate it via Set X = 0 if U ≤ 1 − p, set X = 1 if
U > 1 − p.
We also could do this via: Set X = 1 if U ≤ p, set X = 0 if U > p.
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