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Introduction (1)

Suppose our computer could hand us, upon demand, numbers,
U1/ U2/' °oyp Un/

that were independent and identically distributed (iid) samples from
the continuous uniform distribution on the unit interval (0, 1):

P(U<x)=x, xe€(0,1).
The density function is given by
f(x)=1, xe(0,1), f(x)=0, x¢(0,1).

QUESTION: What useful/practicle things can we do with these
numbers?
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Introduction (2)

ANSWER: As we shall see, by using the U, to construct random
variables X with any desired distribution, F(x) = P(X < x), we can
then

» construct various stochastic processes (random walks, point
processes, Markov chains, Brownian motion, etc.) so that we can

» simulate complicated models (queueing models in
telecommunications, insurance risk models, asset price models,
etc.) and numerically estimate quantities of interest (average
delay at a call center, probability of ruin, price of an exotic option
or derivative).
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Outline

» Simple integration example; strong law of large numbers, the
central limit theorem, confidence intervals for justifying the
method.

» Basics techniques of stochastic simulation: Inverse transform
method, acceptance rejection, polar method for generating
random numbers X via using uniforms U.

» Simulating a Poisson process, and more generally a renewal
process, Markov chains

» The binomial lattice model (BLM) for risky assets; some option
pricing

»  Simulating Brownian motion, geometric Brownian motion

» Markov Chain Monte Carlo (MCMC) method

4/17



Integration (1)

Suppose we wish to compute an integral

]
a:j(; g(x)dx,

for a function g that has no known antiderivative.
Observe that if U ~ unif(0, 1), then the expected value of the random
variable g(U) is in fact the integral:

1
E(g(U)) = fo g(x)dx.

This follows from the more general basic fact in probability that if X is
a rv with density function f(x), then the expected value of the random
variable g(X), for a function g is given by

E(g(X)) = f g(x)f(x)ak.
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Integration (2)

In the following we shall be applying X; = g(U;), where the U; hence
the X; are iid rvs with mean E(X) = a = f01 g(x)dx.

The famous and fundamental Strong Law of Large Numbers (SLLN)
in probability theory asserts that:

Theorem (SLLN)

For any iid sequence of random variables Xy, Xo, ... with finite mean
E(X), it holds that with probability 1:
1 n
lim — » X; = E(X).

n—oo N
=1

Thus .
1
E(X) =~ - Z} Xj, for n large
}:
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Integration (3)

Thus, using our computer’s iid numbers Uy, Us, ..., Uy, for large n,
and defining X; = g(U), ..., Xn = g(Up), yields an approximation for
our integral:
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Integration (4)

This is an example of Monte Carlo Simulation: We can numerically
estimate an integral by first expressing it as an expected value, and
then applying the SLLN.

This method works for multidimensional integrals as well: For
example the 3 — d integral

1 1 1
f f f a(x,y, 2)dxdydz = E(g(Us, Us, Us)).
0 0 0

We then define Xy = g(Uy, Uz, Us), Xo = g(Us, Us, Ug) and so on and
once again use the approximation

1 n
52X
=

The precision of this method does not depend on the dimension of
the integral!!
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Integration (5)

The integration limits fo1 can be more generally f: by using the
change of variables y = (x —a)/(b — a), x € (a, b). For example

b 1
f g(x)dx = (b - a) fo o(a+ (b-a)y)dy.
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Monte Carlo method

The general theme: We need to compute something which
equivalently can be expressed as an expected value, E(X), for some
(perhaps very complicated) rv X. We ask the computer to simulate iid
copies of X, then use the SLLN to estimate E(X) as an empirical
average. We will give other examples soon, but first let us recall the
notion and usefulness of confidence intervals.
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Review of confidence intervals in statistics (1)

In statistics, we estimate an unknown mean u = E(X) of a
distribution by collecting n iid samples from the distribution, Xj, ..., X,
and using the sample mean

X =Y X, (1)
=

This estimate is justified by the SLLN. But how good is our estimate?
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Review of confidence intervals in statistics (2)

Letting 0% = Var(X) denote the variance of the distribution, we have

02

Var(X(n)) = - (2)
The Central Limit Theorem asserts that as n — oo,
def VN —
Z, = 7(X(”) - 1),

converges in distribution to N(0, 1), the unit normal distribution.
Letting Z denote a N(0, 1) rv, we conclude that for n sufficently large,
Z, = Z in distribution, meaning that P(Z, < x) ~ ©(x) for any x € R.
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Review of confidence intervals in statistics (3)

This allows us to construct confidence intervals for our estimate:
(letting z,/2 be such that P(Z > z,,2) = a/2):
we say that the interval X(n) + Zoj2 5= 1521001 — )%
confidence interval for the mean .

Typically, we would use (say) @« = 0.05 in which case
Zaj2 = 20,025 = 1.96, and we thus obtain a 95% confidence interval

X(n) + (1.96) .
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Review of confidence intervals in statistics (4)

We would not know ¢ in practice, so we instead use an estimate for it,
the sample variance s?(n) defined by

$2(m) = —= Y04 X(m)2
=1

It can be shown that s?(n) — o2, with probability 1, as n — c and
that E(s?(n)) = 02, n> 2.

So, in practice we would use s(n) is place of ¢ when constructing our
confidence intervals. For example, a 95% confidence interval is given

by X(n) + (1.96)%).
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Review of confidence intervals in statistics (5)

The following recursions can be derived; they are useful when
implementing a simulation requiring a confidence interval:

Xn+1 _Y(n)
n+1

7

X(n+1) =X, +

.1

S(n+1)2:(1—5

)Sz(n) +(n+ DX(n+ 1) = X(n))2.
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Inverse transform method

Theorem
If F(x) = P(X < x) is the cumulative distribution of a desired rv, and if

F~'(y) = min{x : F(x) >y}, y € [0,1],

(the generalized inverse), then setting X = F~'(U) yields a rv
distributed exactly as F.

For example, if X has the exponential distribution at rate A,
F(x) = 1 — e~ then this leads to the algorithm

X =-A""In(U).

This method requires having an explicit closed form for F~' which is
not always possible (consider the normal distribution for example).
Other methods: acceptance-rejection, polar method, and so on.
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Inverse-transform method for discrete random
variables

Consider a non-negative discrete rv X with probability mass function
(pmf) p(k) = P(X = k), k > 0. In this case, the construction
X = F~1(U) is explicitly given by: X = 0 if U < p(0),

k
X =k, if Zp u<Y p(i), k>1.

i=0

This is known as the discrete inverse-transform method.

For example, if P(X =1) = pand P(X =0) =1 — pis a Bernoulli (p)
rv, then we can generate itviaSet X =0if U<1-p,set X =1 if
U>1-np.

We also could do this via: Set X =1if U< p,set X =0if U > p.
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