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1 Black-Scholes option pricing formula

As we saw previously in lecture, the option price, C0, of certain kinds of derivatives of
stock (such as a European call option), with expiration date t = T , when using the
binomial lattice model (BLM), turns out to be a discounted expected value of payoff at
time t = T , CT , under the so-called “risk neutral” probability p∗;

C0 = (1 + r)−TE∗(CT ),

where r > 0 is the interest rate, and E∗ denotes expected value when the “up” probability
for the stock is

p = p∗ =
1 + r − d
u− d

,

where (non-arbitrage assumption)

0 < d < 1 + r < u,

ensures that indeed p∗ ∈ (0, 1).
This elegant result involves the fact that p∗ is the unique value for p ∈ (0, 1) making

the discounted stock price process {(1 + r)−nSn : n ≥ 0} form a martingale, implying
that on average, under p∗, the stock yields the same rate of return as the risk-free asset
at rate r: E(Sn) = S0(1 + r)n.

Our proof of this option pricing formula was based on a replication method: Find
an alternative investment (portfolio) (α, β) of stock and risk-free asset, such that it
yields (e.g., replicates) the same payoff as the option. Since they yield the same payoff,
they must cost the same, and since the cost of (α, β) is simply αS0 + β, we are done;
C0 = αS0 + β. It then turned out that this cost could be re-written as (1 + r)−nE∗(Cn).

This motivates how to price such derivatives when the stock pricing follows a geo-
metric BM S(t) = S0e

σB(t)+µt for which the BLM was an approximation. Choosing the
drift term µ of the underlying BM to be µ∗ = r−σ2/2, results in e−rtS(t) forming a MG;
E∗(S(t)) = ertS0; on average, under µ∗, the stock yields the same rate of return as the
risk-free asset at rate r. Following this logic, we obtain, for (say) a European call option
(strike price K, expiration date T )

C0 = e−rtE∗(S(T )−K)+,

where E∗ denotes expectation when µ = µ∗.
Our purpose in these notes is to show that this is correct, but more generally to

introduce the reader to the general theory of option pricing; the classic work attributed
to Fisher Black, Myron S. Scholes and Robert C. Merton1 in the 1970’s and for which
Scholes and Merton earned the Nobel Prize in Economics in 1997;
http://www.nobel.se/economics/laureates/1997/. We will do so by using SDE’s and once
again a replication method: we will construct a portfolio that changes over time (due to
following an investment strategy that allows us to re-balance our investment continuously
during (0, T ]) in such a way that it replicates the option payoff.

1Robert C. Merton was an undergraduate student in Engineering at Columbia University, earning a
BS in the 1960’s in what was then the division of Applied Math and Operations Research.
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1.1 The model for a European call option and beyond

We have two continuous time processes.

1. The stock price per share: S(t) = S0e
σB(t)+µt; the SDE for this geometric BM is

dS(t) = µS(t)dt+ σS(t)dB(t), where µ = µ+ σ2/2.

2. The risk-free asset (bond (say)) per share: b(t) = ert, a deterministic function
of t where r > 0 is the interest rate; the differential equation for this asset is
db(t) = rb(t). (We can view this asset as costing $1 per share (always) and b(t) = ert

is the number of shares we get at time t if we bought one share at time 0.)

The payoff at expiration date t = T of the option is a function of the stock price S(T )
at that time; (S(T )−K)+, where K ≥ 0 is the strike price.

We wish to construct a portfolio (α(t), β(t)), denoting the number of shares of stock
and risk-free asset we have at any time t ∈ [0, T ], the value of which matches the option
payoff. At any given time t ∈ [0, T ] the value of our portfolio is V (t) = α(t)S(t)+β(t)b(t).
Our objective is to buy some initial shares at time t = 0, (α0, β0), and then continuously
readjust our portfolio in such a way that at time T we have V (T ) = (S(T ) −K)+; for
then we can conclude that the cost of the option is given by C0 = V (0) = α0S0 + β0.

An important observation: Let C(t, S(t)) denote the (apriori unknown) price of the
option at time t ∈ [0, T ]: Imagine that at time t you wish to sell the option that you
bought at time 0; this price is what we denote by C(t, S(t)). We know that C(T, S(T )) =
(S(T )−K)+, and we want to find the value of C0 = C(0, S(0)). But clearly, C(t, S(t)) is
the same as the price of a European call option with the same strike price but expiration
date T − t and initial price S(t). We see that it should hold that V (t) = C(t, S(t))
for all t not just for t = T . Thus we are looking for a deterministic function C(t, x),
denoting the cost of the option when the expiration date is T − t and the current price
is x ≥ 0, t ∈ [0, T ]. This implies that the stochastic processes, α(t) and β(t) also can be
expressed by deterministic functions, fα(t, x) and fβ(t, x), since at any time t their values
only will depend on the values T − t and S(t); α(t) = fα(t, S(t)) and β(t) = fβ(t, S(t)).

1.2 Self-financing

If we are to truly replicate our option investment via initially spending α0 + β0 which is
to be identical to the cost of the option, then we can not allow any cash flow (in or out)
during (0, T ) for our portfolio readjustments, meaning, for example, that we can not buy
new shares of assets with an outside source of cash along the way: any change in V (t)
must equal the profit or loss due to changes in the price of the two assets themselves.
For example, if at time t we have α(t)S(t) = $500, then we can exchange α(t)/2 shares
of stock for $250 worth of risk-free asset (so V (t) does not change), but we can’t just sell
the α(t)/2 shares and remove this money from the portfolio.

Formally, we call this a self-financing strategy, and it can be mathematically enforced
by assuming that

dV (t) = α(t)dS(t) + β(t)db(t), self-financing condition. (1)

Note that using Ito’s formula on the Ito process V would yield several additional
terms for dV (t); the self-financing condition demands that they total 0 thus restricting
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the kind of process that V can be. In integral form, this condition is given by

V (t) = α0S0 + β0 +

∫ t

0

α(s)dS(s) +

∫ t

0

β(s)db(s).

1.3 Black-Scholes PDE

In the following, we generalize to allow for general derivative of the stock, not just
European call options. Thus we let f(t, x) denote the price of such a derivative at time
t if S(t) = x. f plays the general role of our C(t, x) above. Initial conditions would
have to be specified for each specific derivative. For example, f(t, 0) = 0, t ∈ [0, T ] and
f(T, x) = (x−K)+, x ≥ 0 are the initial conditions for the European call option.

Theorem 1.1 (Black-Scholes Partial Differential Equation (PDE)) Let f(t, x) de-
note the price at time t of a derivative of stock (such as a European call option) when
S(t) = x. Then f must satisfy the partial differential equation:

∂f

∂t
+
∂f

∂x
rx+

1

2

∂2f

∂x2
σ2x2 = rf.

Before we prove this, note that the equation, hence the solution, does not depend
on the drift µ of the underlying BM. Also note that if, for example, we chose the stock
itself as our derivative so that f(t, x) = x, then indeed it satisfies the PDE. We could
also choose the risk-free asset itself, f(t, x) = ert, and it too satisfies the PDE. But more
importantly, it tells us that the price of our European call option (or any other derivative)
MUST too satisfy the PDE, so together with the initial conditions C(t, 0) = 0, t ∈ [0, T ]
and C(T, x) = (x−K)+, x ≥ 0, we now have a way of solving for the prices.

Proof :[Black-Scholes PDE]
Using our differentials dS(t) and db(t) together with the self-financing condition yields

dV (t) = α(t)[µS(t)dt+ σS(t)dB(t)] + β(t)rb(t)dt (2)

= (α(t)µS(t) + β(t)rb(t))dt+ α(t)σS(t)dB(t). (3)

We are looking for a function f(t, x) and portfolio factors α(t) and β(t) such that for
V (t) = α(t)S(t) + β(t)b(t), we also have V (t) = f(t, S(t)), t ∈ [0, T ]

Using Ito’s formula (Theorem 1.2 in Lecture Notes 7) on V (t) = f(t, S(t)) where
(dS(t))2 = σ2S2(t)dt denotes the quadratic variation term for geometric BM (S(t) is an
Ito process with H(t) = σS(t) and K(t) = µS(t)):

df(t, S(t)) =
∂f

∂t
dt+

∂f

∂x
dS(t) +

1

2

∂2f

∂x2
(dS(t))2 (4)

df(t, S(t)) =
∂f

∂t
dt+

∂f

∂x
dS(t) +

1

2

∂2f

∂x2
σ2S2(t)dt (5)

=
[∂f
∂t

+
1

2

∂2f

∂x2
σ2S2(t) +

∂f

∂x
µS(t)

]
dt+

∂f

∂x
σS(t)dB(t). (6)
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Equating the dB(t) coefficients from (3) and (6) yields

α(t) =
∂f

∂x
(t, S(t)).

Similarly equating the two dt coefficients yields

β(t) =
1

rb(t)

(∂f
∂t

(t, S(t)) +
1

2

∂2f

∂x2
(t, S(t))σ2S2(t)

)
.

Finally, plugging in these values for α(t) and β(t) while equating α(t)S(t)+β(t)b(t) =
f(t, S(t)) then replacing S(t) with x yields the Black-Scholes PDE as was to be shown.

1.4 Solution to Black-Scholes PDE for the European call option

Except for some special cases, there is no analytical solution to the Black-Scholes PDE,
but the European call option is such a special case and it is known as the famous

Theorem 1.2 (Black-Scholes option pricing formula) The solution to the Black-
Scholes PDE for the European call option with strike price K and expiration date T is
given by f(t, S) = C(t, S), t ∈ [0, T ], S ≥ 0 where

C(t, S) = SΘ(c1(t))−Ke−r(T−t)Θ(c2(t)),

where Θ(z) = P (Z ≤ z) is the cdf for the unit normal N(0, 1), and the constants c1(t)
and c2(t) are given by

c1(t) =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

c2(t) =
ln(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

= c1(t)− σ
√
T − t.

Note how time shows up as remaining time T − t, as makes sense. Also note that
when t = 0 we get the initial price C0 that we originally asked for :

The price of a European call option with strike price K and expiration date T is given
by

C0 = C0(S0, T,K, σ, r) = S0Θ(c1)−Ke−rTΘ(c2),

where

c1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

c2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

.

This price can be re-expressed as the discounted expected payoff of the option under
the risk-neutral probability for the geometric BM: change µ to µ∗ = r − σ2/2, and let
X∗(t) = σB(t) + µ∗t and S∗(t) = S0e

X∗(t); {e−rtS∗(t) : t ≥ 0} is then a Martingale and

C0 = e−rTE(S∗(T )−K)+.
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To prove this, one merely needs to compute the integral

e−rtE(S∗(T )−K)+ =
1√
2π

∫ ∞
−∞

(S0e
σ
√
Tx+µ∗T −K)+e−

x2

2 dx,

and see that indeed it yields C0 above. Without going thru the detailed calculation
showing this, let us study the second piece in the price, Ke−rTΘ(c2). Note that

Θ(c2) = P (Z ≤ c2)

= P (σ
√
TZ − (r − σ2/2)T ≤ ln(S0/K))

= P (σ
√
TZ + (r − σ2/2)T ≥ ln(K/S0))

= P (eσ
√
TZ+(r−σ2/2)T ≥ K/S0)

= P (S0e
σ
√
TZ+(r−σ2/2)T ≥ K)

= P (S∗(T ) ≥ K)

= P
(

(S∗(T )−K)+ > 0
)
.

In other words, Θ(c2) is the probability (under the risk-neutral probability), that the
option will be excercised. Thus Ke−rTΘ(c2) can be realized as the price of K shares
of a digital option that pays $1 if S(T ) > K and 0 otherwise: The payoff (at time T )
for one share is I{S(T ) > K} and its discounted expected value under the risk-neutral
probability is e−rTΘ(c2); that is its price.
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