A Representation Theorem for Utility Maximization

Mark Dean

GR5211 - Microeconomic Analysis 1

From Choice to Preferences

- Our job is to show that, if choices satisfy α and β then we can find a preference relation \succeq which is
 - Complete, transitive and reflexive
 - Represents choices

Theorem

A Choice Correspondence can be represented by a complete, transitive, reflexive preference relation if satisfies axioms α and β

From Choice to Preferences

- How should we proceed?
 - Choose a candidate binary relation ⊵
 - 2 Show that it is complete, transitive and reflexive
 - 3 Show that it represents choice

Guessing the Preference Relation

- If we observed choices, what do we think might tell us that x is preferred to y?
- How about if x is chosen when the only option is y?
- Let's try that!
- We will define ≥ as saying

$$x \ge y$$
 if $x \in C(x, y)$

Remember this translation!

- Whenever I ask "what does it mean that x ≥ y"
- You reply "x was chosen from the set {x, y}"
- Okay, great, we have defined ⊵
- But we need it to have the right properties

- Is \geq complete?
- Yes!
- For any set {x, y} either x or y must be chosen (or both)
- In the former case $x \ge y$
- In the latter $y \ge x$

- Is ⊵ reflexive?
- Yes! (though we have been a bit cheeky)
- Let x = y, so then C(x, x) = C(x) = x
- Implies $x \ge x$

- Is ⊵ transitive?
- Yes! (though this requires a little proving)
- Assume not, then

$$x \supseteq y, y \supseteq z$$

but not $x \supseteq z$

- We need to show that this cannot happen
- i.e. it violates α or β
- These are conditions on the data, so what do we need to do?
- Understand what this means for the data

- Translating to the data
 - $x \ge y$ means that $x \in C(x, y)$
 - $y \ge z$ means that $y \in C(y, z)$
 - not $x \ge z$ means that $x \notin C(x, z)$
- Claim: such data cannot be consistent with α and β
- Why not?

Transitivity

- What would the person choose from $\{x, y, z\}$
- x?
 - No! Violation of α as x not chosen from $\{x, z\}$
- y?
 - No! This would imply (by α) that $y \in C(x, y)$
 - By β this means that $x \in C(x, y, z)$
 - Already shown that this can't happen
- z?
 - No! This would imply (by α) that $z \in C(y, z)$
 - By β this means that $y \in C(x, y, z)$
 - Already shown that this can't happen

- If we have $x \trianglerighteq y$, $y \trianglerighteq z$ but not $x \trianglerighteq z$ then the data cannot satisfy α and β
- Thus if α and β are satisfied, we know that ≥ must be transitive!
- Thus, we can conclude that, if α and β are satisfied ≥ must have all three right properties!

Representing Choices

• Finally, we need to show that ⊵ represents choices - i.e.

$$C(A) = \{ x \in A | x \trianglerighteq y \text{ for all } y \in A \}$$

- How do we do this?
- Well, first note that we are trying to show that two **sets** are equal
 - The set of things that are chosen
 - The set of things that are best according to \unrhd
- We do this by showing two things

1 That if x is in C(A) it must also be $x \ge y$ for all $y \in A$ 2 That if $x \ge y$ for all $y \in A$ then x is in C(A)

Things that are Chosen must be Preferred

- Say that $x \in C(A)$
- For ≥ to represent choices it must be that x ≥ y for every y ∈ A
- Note that, if $y \in A$, $\{x, y\} \subset A$
- So by α if

$$\begin{array}{rcl} x & \in & C(A) \\ \Rightarrow & x \in C(x, y) \end{array}$$

And so, by definition

 $x \ge y$

Things that are Preferred must be Chosen

- Say that $x \in A$ and $x \supseteq y$ for every $y \in A$
- Can it be that $x \notin C(A)$
- No! Take any $y \in C(A)$
- By α, y ∈ C(x, y)
- As $x \ge y$ it must be the case that $x \in C(x, y)$
- So, by β , $x \in C(A)$
- Contradiction!

Done!

Q.E.D.

- Well, unfortunately we are not really done
- We wanted to test the model of **utility maximization**
- So far we have shown that α and β are equivalent to preference maximization
- Need to show that preference maximization is the same as utility maximization

Theorem

If a preference relation \succeq on a finite X is complete, transitive and reflexive then there exists a utility function $u : X \to \mathbb{R}$ which represents \succeq , i.e.

$$u(x) \ge u(y) \Longleftrightarrow x \succeq y$$

Proof By Induction

- We are going to proceed using proof by induction
 - We want to show that our statement is true regardless of the size of X
 - We do this using induction on the size of the set
 - Let n = |X|, the size of the set
- Induction works in two stages
 - Show that the statement is true if *n* = 1
 - Show that, if it is true for n, it must also be true for any n+1
- This allows us to conclude that it is true for *n*
 - It is true for n = 1
 - If it is true for n = 1 it is true for n = 2
 - If it is true for n = 2, it is true for n = 3....
- You have to be a bit careful with proof by induction
 - Or you can prove that all the horses in the world are the same color

- So in this case we have to show that we can find a utility representation if $\left|X\right|=1$
 - Trivial
- And show that if a utility representation exists for |X| = n, then it exists for |X| = n + 1
 - Not trivial

- Take a set such that |X| = n + 1 and a complete, transitive reflexive preference relation \succeq
- Remove some $x^* \in X$
- Note that the new set X/x^* has size *n*
 - And that the binary relation
 <u>⊢</u> restricted to this set is still complete, transitive and reflexive
- So, by the inductive assumption, there exists some $v: X/x^* \to \mathbb{R}$ such that

$$v(x) \geq v(y) \Longleftrightarrow x \succeq y$$

- So now all we need to do is assign a utility number to x* which makes it work with v
- How would you do this?

Step 2

4 None of the above

- What do we do in case 4?
- We divide X in two: those objects better than x^{*} and those worse than x^{*}

$$X_* = \{y \in X / x^* | x^* \succeq x\}$$

$$X^* = \{y \in X/x^* | x \succeq x^*\}$$

 Figure out the highest utility in X_{*} and the lowest utility in X^{*} and fit the utility of x^{*} in between them

$$v(x^*) = \frac{1}{2} \min_{y \in X^*} v(y) + \frac{1}{2} \max_{y \in X_*} v(y)$$

- Note that everything in X* has higher utility than everything in X*
 - Pick an $x \in X^*$ and $y \in X_*$
 - $x \succeq x^*$ and $x^* \succeq y$
 - Implies $x \succeq y$ (why?)
 - and so $v(x) \ge v(y)$
 - In fact, because we have ruled out indifference v(x) > v(y)
- This implies that

$$v(x) > v(x^*) > v(y)$$

- And so
 - The utility of everything better than x^* is higher than $v(x^*)$
 - The utility of everything worse than x^* is lower than $v(x^*)$

- Verify that v represents \succeq in all of the four cases
- That sounds exhausting
- I'll leave it for you to do for homework

Done!

Q.E.D.

- The final step is to show that, if a choice correspondence has a utility representation then it satisfies α and β
- This closes the loop and shows that all the statements are equivalent
 - A choice correspondence satisfies α and β
 - A choice correspondence has a preference relation
 - A choice correspondence has a utility representation
- Will leave you to do that for homework!

- We now know that if α and β are satisfied, we can find **some** utility function that will explain choices
- Is it the only one?

Croft's Choices			
Available Snacks	Chosen Snack		
Jaffa Cakes, Kit Kat	Jaffa Cakes		
Kit Kat, Lays	Kit Kat		
Lays, Jaffa Cakes	Jaffa Cakes		
Kit Kat, Jaffa Cakes, Lays	Jaffa Cakes		

- These choices could be explained by u(J) = 3, u(K) = 2, u(L) = 1
- What about u(J) = 100000, u(K) = -1, u(L) = -2?
- Or u(J) = 1, u(K) = 0.9999, u(L) = 0.998?

• In fact, if a data set obeys α and β there will be **many** utility functions which will rationalize the data

Theorem

Let $u : X \to \mathbb{R}$ be a utility representation for a Choice Correspondence C. Then $v : X \to \mathbb{R}$ will also represent C if and only if there is a strictly increasing function T such that

$$v(x) = T(u(x)) \ \forall \ x \in X$$

 Strictly increasing function means that if you plug in a bigger number you get a bigger number out

Snack	и	V	W
Jaffa Cake	3	100	4
Kit Kat	2	10	2
Lays	1	-100	3

- *v* is a strictly increasing transform on *u*, and so represents the same choices
- w is not, and so doesn't
 - For example think of the choice set {k, l}
 - *u* says they should choose kit cat
 - w says they should choose lays

Why Does This Matter?

- It is important that we know how much the data can tell us about utility
 - Or other model objects we may come up with
- For example, our results tell us that there **is** a point in designing a test to tell whether people maximize utility
- But there is **no** point in designing a test to see whether the utility of Kit Kats is **twice** that of Lays
 - Assuming α and β is satisfied, we can always find a utility function for which this is true
 - And another one for which this is false!
- We can use choices to help us determine that the utility of Kit Kats is higher than the utility of Lays
- But nothing in our data tells us how much higher is the utility of Kit Kats