A Representation Theorem for Utility Maximization

Mark Dean

GR5211 - Microeconomic Analysis 1

From Choice to Preferences

- Our job is to show that, if choices satisfy *α* and *β* then we can find a preference relation \succ which is
	- \bullet Complete, transitive and reflexive
	- Represents choices

Theorem

A Choice Correspondence can be represented by a complete, transitive, reflexive preference relation if satisfies axioms *α* and β

From Choice to Preferences

- How should we proceed?
	- \bullet Choose a candidate binary relation \triangleright
	- 2 Show that it is complete, transitive and reflexive
	- **3** Show that it represents choice

Guessing the Preference Relation

- If we observed choices, what do we think might tell us that x is preferred to y ?
- How about if x is chosen when the only option is y ?
- Let's try that!
- We will **define** \triangleright as saying

$$
x \trianglerighteq y \text{ if } x \in C(x, y)
$$

• Remember this translation!

- Whenever I ask "what does it mean that $x \trianglerighteq y$ "
- You reply "x was chosen from the set $\{x, y\}$ "
- \bullet Okay, great, we have defined \triangleright
- But we need it to have the right properties
- \bullet Is \triangleright complete?
- Yes!
- For any set $\{x, y\}$ either x or y must be chosen (or both)
- In the former case $x \trianglerighteq y$
- In the latter $y \trianglerighteq x$
- $Is \geq$ reflexive?
- Yes! (though we have been a bit cheeky)
- Let $x = y$, so then $C(x, x) = C(x) = x$
- \bullet Implies $x \triangleright x$
- Is \triangleright transitive?
- Yes! (though this requires a little proving)
- Assume not, then

 $x \ge y, y \ge z$ but not $x \geq z$

- We need to show that this cannot happen
- i.e. it violates *α* or *β*
- These are conditions on the data, so what do we need to do?
- Understand what this means for the data

Transitivity

- Translating to the data
	- $x \triangleright y$ means that $x \in C(x, y)$
	- $y \trianglerighteq z$ means that $y \in C(y, z)$
	- not $x \trianglerighteq z$ means that $x \notin C(x, z)$
- Claim: such data cannot be consistent with *α* and *β*
- Why not?

Transitivity

- What would the person choose from $\{x, y, z\}$
- \bullet x ?
	- No! Violation of α as x not chosen from $\{x, z\}$
- \bullet y?
	- No! This would imply (by α) that $y \in C(x, y)$
	- By β this means that $x \in C(x, y, z)$
	- Already shown that this can't happen
- \bullet \overline{z} ?
	- No! This would imply (by α) that $z \in C(y, z)$
	- By β this means that $y \in C(x, y, z)$
	- Already shown that this can't happen
- If we have $x \triangleright y$, $y \triangleright z$ but not $x \triangleright z$ then the data cannot satisfy *α* and *β*
- Thus if α and β are satisfied, we know that \triangleright must be transitive!
- Thus, we can conclude that, if α and β are satisfied \trianglerighteq must have all three right properties!

Representing Choices

• Finally, we need to show that \triangleright represents choices - i.e.

$$
C(A) = \{x \in A | x \ge y \text{ for all } y \in A\}
$$

- How do we do this?
- Well, first note that we are trying to show that two sets are equal
	- The set of things that are chosen
	- The set of things that are best according to \trianglerighteq
- We do this by showing two things

1 That if x is in $C(A)$ it must also be $x \triangleright y$ for all $y \in A$ **2** That if $x \triangleright y$ for all $y \in A$ then x is in $C(A)$

Things that are Chosen must be Preferred

- Say that $x \in C(A)$
- For \trianglerighteq to represent choices it must be that $x \trianglerighteq y$ for every $y \in A$
- Note that, if $y \in A$, $\{x, y\} \subset A$
- So by *α* if

$$
\begin{array}{rcl} x & \in & C(A) \\ \Rightarrow & x \in C(x, y) \end{array}
$$

• And so, by definition

 $x \trianglerighteq y$

Things that are Preferred must be Chosen

- Say that $x \in A$ and $x \triangleright y$ for every $y \in A$
- Can it be that $x \notin C(A)$
- No! Take any $y \in C(A)$
- \bullet By $\alpha, \gamma \in C(x, y)$
- As $x \geq y$ it must be the case that $x \in C(x, y)$
- So, by β , $x \in C(A)$
- Contradiction!

Done!

Q.E.D.

- Well, unfortunately we are not really done
- We wanted to test the model of **utility maximization**
- So far we have shown that *α* and *β* are equivalent to preference maximization
- Need to show that preference maximization is the same as utility maximization

Theorem

If a preference relation \succeq on a finite X is complete, transitive and reflexive then there exists a utility function $u: X \to \mathbb{R}$ which represents \succ , i.e.

$$
u(x) \geq u(y) \Longleftrightarrow x \succeq y
$$

Proof By Induction

- We are going to proceed using **proof by induction**
	- We want to show that our statement is true regardless of the size of X
	- We do this using induction on the size of the set
	- Let $n = |X|$, the size of the set
- Induction works in two stages
	- Show that the statement is true if $n = 1$
	- Show that, if it is true for n, it must also be true for any $n+1$
- This allows us to conclude that it is true for n
	- \bullet It is true for $n = 1$
	- If it is true for $n = 1$ it is true for $n = 2$
	- If it is true for $n = 2$, it is true for $n = 3...$
- You have to be a bit careful with proof by induction
	- Or you can prove that all the horses in the world are the same color
- So in this case we have to show that we can find a utility representation if $|X| = 1$
	- **•** Trivial
- And show that if a utility representation exists for $|X|=n$, then it exists for $|X| = n + 1$
	- Not trivial
- Take a set such that $|X| = n + 1$ and a complete, transitive reflexive preference relation \succ
- Remove some $x^* \in X$
- Note that the new set X/x^* has size n
	- And that the binary relation \succ restricted to this set is still complete, transitive and reflexive
- So. by the inductive assumption, there exists some $v: X/x^* \to \mathbb{R}$ such that

$$
v(x) \geq v(y) \Longleftrightarrow x \succeq y
$$

- \bullet So now all we need to do is assign a utility number to x^* which makes it work with v
- How would you do this?

Step 2

- Four possibilities **1** $x^* \sim y$ for some $y \in X/x^*$ • Set $v(x^*) = v(y)$ 2 x^* $>$ y for all $y \in X/x^*$ • Set $v(x^*) = \max_{y \in X / x^*} v(y) + 1$ **3** $x^* \prec y$ for all $y \in X/x^*$ • Set $v(x^*) = min_{y \in X/x^*} v(y) - 1$
	- **4** None of the above
- What do we do in case 4?
- We divide X in two: those objects better than x^* and those worse than x^\ast

$$
X_* = \{y \in X / x^* | x^* \succeq x\}
$$

$$
X^* = \{ y \in X / x^* | x \succeq x^* \}
$$

• Figure out the highest utility in X_* and the lowest utility in X^{\ast} and fit the utility of x^{\ast} in between them

$$
v(x^*) = \frac{1}{2} \min_{y \in X^*} v(y) + \frac{1}{2} \max_{y \in X_*} v(y)
$$

- Note that everything in X^\ast has higher utility than everything in X_{*}
	- Pick an $x \in X^*$ and $y \in X_*$
	- $x \succeq x^*$ and $x^* \succeq y$
	- Implies $x \succeq y$ (why?)
	- and so $v(x) \ge v(y)$
	- In fact, because we have ruled out indifference $v(x) > v(y)$
- This implies that

$$
v(x) > v(x^*) > v(y)
$$

- And so
	- The utility of everything better than x^* is higher than $v(x^*)$
	- The utility of everything worse than x^* is lower than $v(x^*)$
- Verify that v represents \succeq in all of the four cases
- That sounds exhausting
- I'll leave it for you to do for homework

Done!

Q.E.D.

- The final step is to show that, if a choice correspondence has a utility representation then it satisÖes *α* and *β*
- This closes the loop and shows that all the statements are equivalent
	- **•** A choice correspondence satisfies *α* and *β*
	- A choice correspondence has a preference relation
	- A choice correspondence has a utility representation
- Will leave you to do that for homework!

- We now know that if α and β are satisfied, we can find **some** utility function that will explain choices
- Is it the only one?

- These choices could be explained by $u(J) = 3$, $u(K) = 2$, $u(L) = 1$
- What about $u(J) = 100000$, $u(K) = -1$, $u(L) = -2$?
- Or $u(J) = 1$, $u(K) = 0.9999$, $u(L) = 0.998$?

In fact, if a data set obeys α and β there will be **many** utility functions which will rationalize the data

Theorem

Let $u: X \to \mathbb{R}$ be a utility representation for a Choice Correspondence C. Then $v : X \to \mathbb{R}$ will also represent C if and only if there is a strictly increasing function T such that

$$
v(x) = T(u(x)) \ \forall \ x \in X
$$

 Strictly increasing function means that if you plug in a bigger number you get a bigger number out

- \bullet v is a strictly increasing transform on u , and so represents the same choices
- \bullet *w* is not, and so doesn't
	- For example think of the choice set $\{k, l\}$
	- *u* says they should choose kit cat
	- \bullet *w* says they should choose lays

Why Does This Matter?

- It is important that we know how much the data can tell us about utility
	- Or other model objects we may come up with
- For example, our results tell us that there is a point in designing a test to tell whether people maximize utility
- But there is **no** point in designing a test to see whether the utility of Kit Kats is **twice** that of Lays
	- **•** Assuming α and β is satisfied, we can always find a utility function for which this is true
	- And another one for which this is false!
- We can use choices to help us determine that the utility of Kit Kats is higher than the utility of Lays
- But nothing in our data tells us **how much** higher is the utility of Kit Kats