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Preference Over Menus

• In order to discuss preference for commitment we need to be
able to discuss preferences over menus

• Let C be a compact metric space
• ∆(C ) set of all measures on the Borel σ-algebra of C (i.e. all
lotteries

• Endow ∆(C ) with topology of weak convergence
• Z all non empty compact subsets of ∆(C ) (Hausdorff
topology)

• Let � be a preference relation on Z
• Interpretation: preference over menus from which you will later
get to choose

• Let D be a preference relation on ∆(C )
• Interpretation: preferences when asked to choose from a menu



Mixing

• For x , y ∈ Z and α ∈ (0, 1) define

αx + (1− α)y

= {p = αq + (1− α)r |q ∈ x , r ∈ y , }

• E.g. if x = {δa}, y = {δb , δc} the

αx + (1− α)y

=

{
αa+ (1− α)b
αa+ (1− α)c

}



Basic Axioms

Axiom 1 (Preference Relations) �, D are complete preference
relations



Basic Axioms

Axiom 2 (Independence) x � y implies
αx + (1− α)z � αy + (1− α)z ∀ x , y , z ∈ Z ,
α ∈ (0, 1)

• Interpretation of independence: Standard Independence +
Indifference to Timing of Uncertainty
• Imagine we extended � to preferences over lotteries over
menus

• Independence would now say that, if we prefer choosing from x
to choosing from y then we prefer choosing from x α% of the
time (and z (1− α)% of the time) to choosing from y α% of
the time (and z (1− α)% of the time) to the

• Randomization occurs before choosing at second stage
• In our definition of mixing, randomization occurs after second
stage choice

• There is an equivalence between choosing a contingent plan in
the former case and a lottery over outcomes in the second case

• So if you buy ‘standard’independence and don’t care about
timing of resolution, you get Axiom 2



Basic Axioms

• Example
1
2
x +

1
2
y

x = {x1, x2}, y = {y1, y2}
• Gul-Pesendorfer: a menu of

1
2x1 +

1
2y1

1
2x2 +

1
2y1

1
2x1 +

1
2y2

1
2x2 +

1
2y2


• Contingent plan: choose either x1 or x2 from x and either y1
or y2 from y

• Provides same menu of lotteries



Basic Axioms

Axiom 3 (Sophistication) x ∪ {p} � x ⇔ p B q ∀ q ∈ x
Axiom 4 (Continuity) Three continuity conditions:

1 (Upper Semi Continuity): The sets
{z ∈ Z |z � x} and {p ∈ ∆(C )|p D q} are
closed for all x and q

2 (Lower vNM Continuity): x � y � z implies
αx + (1− a)z � y for some α ∈ (0, 1)

3 (Lower Singleton Continuity): The sets
{p : {q} � {p}} are closed for every q



Standard Model

• The Standard Model of preference over menus

U(z) = max
p∈z

u(p)

for some linear, continuous utility u : ∆(C )→ R such that

• U represents �
• u represents D

• Equivalent to axioms 1-4 and

x � y ⇒ x ∪ y ∼ x



The Gul Pesendorfer Model

• Preference over menus given by

U(x) = max
p∈x

[u(p) + v(p)]−max
q∈x

v(q)

• u : ‘long run’utility
• Choice over singleton choice sets

• v : ‘temptation’utility
• Can lead to preference for smaller choice sets

• Interpretation:
• Choose p to maximize u(p) + v(p)
• Suffer temptation cost v(p)− v(q)



Why Preference for Smaller Choice Sets?
Commitment

• Consider p, q, such that

u(p) > u(q)

u(q) + v(q) > u(p) + v(p)

• Then

U({p}) = u(p)

U({p, q}) = u(q) + v(q)− v(q) = u(q)
U({q}} = u(q)

• Interpretation: give in to temptation and choose q
• ‘Weak set betweenness’

{p} � {p, q} ∼ {q}



Why Preference for Smaller Choice Sets?
Avoid ‘Willpower Costs’

• Consider p, q, such that

u(p) > u(q)

v(q) > v(p)

u(p) + v(p) > u(q) + v(q)

• Then

U({p}) = u(p)

U({p, q}) = u(p) + v(p)− v(q)
U({q}} = u(q)

• Interpretation: fight temptation, but this is costly
• ‘Strict set betweenness’

{p} � {p, q} � {q}



Temptation and Self Control

• We say that q tempts p if {p} � {p, q}
• This implies that v(q) > v(p)

• We say that a decision maker exhibits self control at y if there
exists x , z such that x ∪ z = y and

{x} � {y} � {z}

• {x} � {y} implies there exists something in z which is
tempting relative to items in x

• {y} � {z} implies tempting item not chosen



Limiting Case: No Willpower

• Imagine that differences in v are large relative to differences in
u

• In the limit, model reduces to

U(x) = max
p∈x

u(p) s.t. v(p) ≥ v(q) ∀ q ∈ x

• This is the ‘Strolz’model
• Implies not strict set betweenness, and not self control
• β− δ model is of this class



Axiomatic Characterization of GP Model

• Set Betweenness: for any x , y s.t x � y

x � x ∪ y � y

• Necessesity:
• x � y implies that

u(px ) + v(px )− v(qx ) ≥ u(py ) + v(py )− v(qy )

where pi = argmaxp∈i u(p) + v(p) and qi = argmaxq∈i v(q)
• NTS x � x ∪ y
• Two cases:

u(px ) + v(px ) ≥ u(py ) + v(py )

v(qx ) ≤ v(qy )



Axiomatic Characterization of GP Model

• Case 1: u(px ) + v(px ) ≥ u(py ) + v(py )

u(px ) + v(px ) ≥ u(py ) + v(py )⇒
u(px ) + v(px ) = u(px∪y ) + v(px∪y )⇒

u(px ) + v(px )− v(qx ) ≥ u(px∪y ) + v(px∪y )− v(qx∪y )

• Case 2: v(qx ) ≤ v(qy ) (assume also that
u(px ) + v(px ) < u(py ) + v(py ))

u(py ) + v(py ) = u(px∪y ) + v(px∪y )

v(qx∪y ) = v(qy )⇒
u(px∪y ) + v(px∪y )− v(qx∪y ) = u(py ) + v(py )− v(qy )

≤ u(px ) + v(px )− v(qx )



Axiomatic Characterization of GP Model

Theorem
� satisfies Axioms 1, 2, 4 and set betweenness if and only if it has
a Strolz representation or a G-P representation

Theorem
The proper relation � and D satisfy Axioms 1-4 and set
betweenness if and only if

• � has a Stroltz representation and p D q if and only if
v(p) > v(q) or v(p) = v(q) and u(p) ≥ u(q)

• or � has a G-P representation and u(p) + v(p) represents D



Sketch of Proof that Axioms Imply Representation

• Lemma 1: Axioms 1, 2, 4 imply a linear U : Z → R that
represents � and is continuous on singleton sets
• This is standard, and makes use of the mixture space axioms



Sketch of Proof that Axioms Imply Representation

• Lemma 2: Show that

U(x) = max
p∈x

min
q∈x

U({p, q})

= min
q∈x

max
p∈x

U({p, q})

• Utility depends only on ‘chosen element’, and ‘most tempting
element

• Proof: Let ū = maxp∈x minq∈x U({p, q}) = U({p∗, q∗})
• Note that U({p∗, q}) ≥ ū ∀ q ∈ A
• Set betweenness implies U(A) = U(∪q∈A{p∗, q}) ≥ ū
• Also, for every p ∈ A, ∃ qp ∈ A such that U({p, qp}) ≤ ū
• By set betweenness U(A) = U(∪p∈A {p, qp}) ≤ ū



Sketch of Proof that Axioms Imply Representation

• Lemma 3: Show that

U({x}) > U({x , y}) > U({y})
U({a}) > U({a, b}) > U({b})

implies

U(α {x , y}+ (1− α) {a, b})
= U({αx + (1− α)a), αy + (1− α)b)})

• This comes straight from super independence and the fact that
αx + (1− α)a) is the best and αy + (1− α)b) the most
tempting element



Sketch of Proof that Axioms Imply Representation

• Define

u(p) = U({p})

v(s; p, q, δ) =
U({p, q})− U({p, (1− δ)q + δs})

δ

• u is the long run utility
• v is a measure of how tempting p is relative to q and r



Sketch of Proof that Axioms Imply Representation

• Lemma 4: Show that,

U({p}) > U({p, (1− δ)r + δs}) > U({(1− δ)r + δs})

for all s ∈ ∆(C ), then

1 U({p}) > U({p, s}) > U(s)⇒ v(s; p, q, δ) =
U({p, q})− U({p, s})

2 v(p; p, q, δ) = U({p, q})− U ({p})
• Follows from Lemma 3



Sketch of Proof that Axioms Imply Representation

• Lemma 5: Show that, if

U({p}) ≥ U({p, q}) ≥ U({q})

and for some r and δ

U({p}) > U({p, (1− δ)r + δs}) > U({(1− δ)r + δs})

for all s ∈ ∆(C ), then

U({p, q})
= max

w∈{p,q}
[u(w) + v(w ; p, r , δ)]− max

z∈{p,q}
[v(z ; p, r , δ)]



Sketch of Proof that Axioms Imply Representation

• Proof (assuming)

U({p}) > U({p, q}) > U({q})

• By previous lemma

v(q; p, r , δ) = U({p, r})− U({p, q})
≥ U({p, r})− U({p})
= v(p; p, r , δ)

and so

u(p) + v(p; p, r , δ)− v(q; p, r , δ)
= U({p}) + U({p, r})− U({p, q})− U({p, r}) + U({p})
= U ({p, q}) (1)



Sketch of Proof that Axioms Imply Representation

• Finally, pick p, q such that

U({p}) > U({p, q}) > U({q})

(if such exists) and pick δ such that

U({p}) > U({p, (1− δ)q + δs}) > U({(1− δ)q + δs})

for all s (which we can do by continuity)

• Define v(s) as v(s; p, q, δ), and show that v(s; p, q, δ)
doesn’t depend on the specifics of the last three parameters.

• Lemma 5 therefore gives

U({p, q}) = max
w∈{p,q}

[u(w) + v(w)]− max
z∈{p,q}

[v(z)]

• Lemma 2 then extends this result to an arbitrary set A



Discussion: Linearity

• Imagine

{p} � {p, q} � {q} � {q, r} � {r}

• Implies

u(p) > u(q) > u(r)

v(r) > v(q) > v(p)

u(p) + v(p) > u(q) + v(q) > u(r) + v(r)

• Which in turn implies

{p} � {p, r} � {r}

• ‘Self Control is Linear’



Discussion: What is Willpower?

• It seems that the following statement is meaningful:
• Person A has the same long run preferences as person B
• Person A has the same temptation as person B
• Person A has more willpower than person B

• Yet this is not possible in the GP more.
• Alternative: Masatlioglu, Nakajima and Ozdenoren [2013]

U(z) = max
p∈z

u(p)

subject to max
q∈z

v(q)− v(p) ≤ w



Discussion: Strict Set Betweenness and Random Strolz

• Does {p} � {p, q} � {q} imply self control?
• Imagine that you are a Strolz guy with u(p) > u(q), but are
not sure that you will be tempted

• Half the time
v(p) = v(q)

half the time
v(p) < v(q)

• Implies

U({p}) = u(p)

U({p, q}) =
u(p) + u(q)

2
U({q}) = u(q)

• Strict set betweenness without self control



Discussion: Optimism

• Say with probability ε won’t be tempted so

Û(z) = (1− ε)U(z) + εmax
p∈z

u(p)

• Can lead to violations of set betweenness.
• Let g = gym, j = jog , t = tv

u(g) > u(j) > u(t)

v(g) < v(j) < v(t)

u(j) + v(j) > u(t) + v(t) > u(g) + v(g)



Discussion: Optimism

• For ε small
{t, j} � {t, g}

as

U({t, j}) = u(j) + v(j)− v(t)
U({t, g}) = u(t)

• but
{t, j , g} � {t, j}

as with probability ε no temptation and will go to the gym


