Preference for Commitment

Mark Dean

ECON 2090 - Brown University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Preference Over Menus

- In order to discuss preference for commitment we need to be able to discuss preferences over menus
- Let C be a compact metric space
- $\Delta(C)$ set of all measures on the Borel σ -algebra of C (i.e. all lotteries
- Endow $\Delta(C)$ with topology of weak convergence
- Z all non empty compact subsets of Δ(C) (Hausdorff topology)
- Let \succeq be a preference relation on Z
 - Interpretation: preference over menus from which you will later get to choose
- Let \supseteq be a preference relation on $\Delta(C)$
 - Interpretation: preferences when asked to choose from a menu

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• For $x, y \in Z$ and $\alpha \in (0, 1)$ define

$$\alpha x + (1 - \alpha)y$$

= { $p = \alpha q + (1 - \alpha)r | q \in x, r \in y,$ }

• E.g. if $x = \{\delta_a\}$, $y = \{\delta_b, \delta_c\}$ the

$$= \begin{cases} \alpha x + (1-\alpha)y \\ \alpha a + (1-\alpha)b \\ \alpha a + (1-\alpha)c \end{cases}$$

Axiom 1 (Preference Relations) \succeq , \succeq are complete preference relations

Axiom 2 (Independence) $x \succeq y$ implies $\alpha x + (1 - \alpha)z \succeq \alpha y + (1 - \alpha)z \forall x, y, z \in Z,$ $\alpha \in (0, 1)$

- Interpretation of independence: Standard Independence + Indifference to Timing of Uncertainty
 - Imagine we extended \succeq to preferences over lotteries over menus
 - Independence would now say that, if we prefer choosing from x to choosing from y then we prefer choosing from x α% of the time (and z (1 α)% of the time) to choosing from y α% of the time (and z (1 α)% of the time) to the
 - Randomization occurs before choosing at second stage
 - In our definition of mixing, randomization occurs *after* second stage choice
 - There is an equivalence between choosing a contingent plan in the former case and a lottery over outcomes in the second case
 - So if you buy 'standard' independence and don't care about timing of resolution, you get Axiom 2

Basic Axioms

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Example

$$\frac{1}{2}x + \frac{1}{2}y$$
$$x = \{x_1, x_2\}, y = \{y_1, y_2\}$$

• Gul-Pesendorfer: a menu of

$$\left\{ \begin{array}{c} \frac{1}{2}x_1 + \frac{1}{2}y_1 \\ \frac{1}{2}x_2 + \frac{1}{2}y_1 \\ \frac{1}{2}x_1 + \frac{1}{2}y_2 \\ \frac{1}{2}x_2 + \frac{1}{2}y_2 \end{array} \right\}$$

- Contingent plan: choose either x₁ or x₂ from x and either y₁ or y₂ from y
- Provides same menu of lotteries

Axiom 3 (Sophistication) $x \cup \{p\} \succ x \Leftrightarrow p \rhd q \forall q \in x$ Axiom 4 (Continuity) Three continuity conditions:

- (Upper Semi Continuity): The sets $\{z \in Z | z \succeq x\}$ and $\{p \in \Delta(C) | p \trianglerighteq q\}$ are closed for all x and q
- ② (Lower vNM Continuity): $x \succ y \succ z$ implies $\alpha x + (1 - a)z \succ y$ for some $\alpha \in (0, 1)$
- **③** (Lower Singleton Continuity): The sets $\{p : \{q\} \succeq \{p\}\}$ are closed for every q

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The Standard Model of preference over menus

$$U(z) = \max_{p \in z} u(p)$$

for some linear, continuous utility $u: \Delta(\mathcal{C}) \to \mathbb{R}$ such that

- U represents ∠
- *u* represents ⊵
- Equivalent to axioms 1-4 and

$$x \succeq y \Rightarrow x \cup y \sim x$$

The Gul Pesendorfer Model

· Preference over menus given by

$$U(x) = \max_{p \in x} \left[u(p) + v(p) \right] - \max_{q \in x} v(q)$$

- *u* : 'long run' utility
 - Choice over singleton choice sets
- v : 'temptation' utility
 - Can lead to preference for smaller choice sets
- Interpretation:
 - Choose p to maximize u(p) + v(p)
 - Suffer temptation cost v(p) v(q)

Why Preference for Smaller Choice Sets?

Commitment

• Consider p, q, such that

$$u(p) > u(q)$$

$$u(q) + v(q) > u(p) + v(p)$$

Then

$$U(\{p\}) = u(p) U(\{p,q\}) = u(q) + v(q) - v(q) = u(q) U(\{q\}\} = u(q)$$

- Interpretation: give in to temptation and choose q
- 'Weak set betweenness'

$$\{p\} \succ \{p,q\} \sim \{q\}$$

Why Preference for Smaller Choice Sets?

Avoid 'Willpower Costs'

• Consider p, q, such that

$$u(p) > u(q)$$

 $v(q) > v(p)$
 $u(p) + v(p) > u(q) + v(q)$

Then

$$U(\{p\}) = u(p) U(\{p,q\}) = u(p) + v(p) - v(q) U(\{q\}\} = u(q)$$

- Interpretation: fight temptation, but this is costly
- 'Strict set betweenness'

$$\{p\} \succ \{p,q\} \succ \{q\}$$

Temptation and Self Control

- We say that q tempts p if $\{p\} \succ \{p, q\}$
 - This implies that v(q) > v(p)
- We say that a decision maker exhibits self control at y if there exists x, z such that x ∪ z = y and

$$\{x\} \succ \{y\} \succ \{z\}$$

- {x} ≻ {y} implies there exists something in z which is tempting relative to items in x
- $\{y\} \succ \{z\}$ implies tempting item not chosen

- Imagine that differences in v are large relative to differences in u
- In the limit, model reduces to

$$U(x) = \max_{p \in x} u(p) \text{ s.t. } v(p) \ge v(q) \ \forall \ q \in x$$

- This is the 'Strolz' model
- Implies not strict set betweenness, and not self control
- $\beta \delta$ model is of this class

Axiomatic Characterization of GP Model

• Set Betweenness: for any x, y s.t $x \succeq y$

$$x \succeq x \cup y \succeq y$$

- Necessesity:
 - $x \succeq y$ implies that

$$\begin{split} u(p^{x}) + v(p^{x}) - v(q^{x}) &\geq u(p^{y}) + v(p^{y}) - v(q^{y}) \\ \text{where } p^{i} &= \arg\max_{p \in i} u(p) + v(p) \text{ and } q^{i} &= \arg\max_{q \in i} v(q) \\ \bullet \text{ NTS } x \succeq x \cup y \\ \intercal \end{split}$$

Two cases:

$$\begin{array}{rcl} u(p^x) + v(p^x) & \geq & u(p^y) + v(p^y) \\ v(q^x) & \leq & v(q^y) \end{array}$$

Axiomatic Characterization of GP Model

• Case 1:
$$u(p^{x}) + v(p^{x}) \ge u(p^{y}) + v(p^{y})$$

 $u(p^{x}) + v(p^{x}) \ge u(p^{y}) + v(p^{y}) \Rightarrow$
 $u(p^{x}) + v(p^{x}) = u(p^{x \cup y}) + v(p^{x \cup y}) \Rightarrow$
 $u(p^{x}) + v(p^{x}) - v(q^{x}) \ge u(p^{x \cup y}) + v(p^{x \cup y}) - v(q^{x \cup y})$

• Case 2: $v(q^x) \le v(q^y)$ (assume also that $u(p^x) + v(p^x) < u(p^y) + v(p^y)$)

$$u(p^{y}) + v(p^{y}) = u(p^{x \cup y}) + v(p^{x \cup y})$$
$$v(q^{x \cup y}) = v(q^{y}) \Rightarrow$$
$$u(p^{x \cup y}) + v(p^{x \cup y}) - v(q^{x \cup y}) = u(p^{y}) + v(p^{y}) - v(q^{y})$$
$$\leq u(p^{x}) + v(p^{x}) - v(q^{x})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Axiomatic Characterization of GP Model

Theorem

 \succeq satisfies Axioms 1, 2, 4 and set betweenness if and only if it has

a Strolz representation or a G-P representation

Theorem

The proper relation \succeq and \trianglerighteq satisfy Axioms 1-4 and set betweenness if and only if

- \succeq has a Stroltz representation and $p \trianglerighteq q$ if and only if v(p) > v(q) or v(p) = v(q) and $u(p) \ge u(q)$
- or \succeq has a G-P representation and u(p) + v(p) represents \succeq

- Lemma 1: Axioms 1, 2, 4 imply a linear U : Z → ℝ that represents ≽ and is continuous on singleton sets
 - This is standard, and makes use of the mixture space axioms

• Lemma 2: Show that

$$U(x) = \max_{p \in x} \min_{q \in x} U(\{p, q\})$$
$$= \min_{q \in x} \max_{p \in x} U(\{p, q\})$$

- Utility depends only on 'chosen element', and 'most tempting element
- Proof: Let $\overline{u} = \max_{p \in x} \min_{q \in x} U(\{p, q\}) = U(\{p^*, q^*\})$
- Note that $U(\{p^*,q\}) \geq ar{u} \ orall \ q \in A$
- Set betweenness implies $U(A) = U(\cup_{q \in A} \{p^*, q\}) \geq \bar{u}$
- Also, for every $p \in A$, $\exists q_p \in A$ such that $U(\{p, q_p\}) \leq \overline{u}$
- By set betweenness $U(A) = U(\cup_{p \in A} \{p, q_p\}) \leq ar{u}$

• Lemma 3: Show that

$$\begin{array}{lll} U(\{x\}) &> & U(\{x,y\}) > U(\{y\}) \\ U(\{a\}) &> & U(\{a,b\}) > U(\{b\}) \end{array}$$

implies

$$U(\alpha \{x, y\} + (1 - \alpha) \{a, b\}) = U(\{\alpha x + (1 - \alpha)a), \alpha y + (1 - \alpha)b)\})$$

• This comes straight from super independence and the fact that $\alpha x + (1 - \alpha)a)$ is the best and $\alpha y + (1 - \alpha)b)$ the most tempting element

Define

$$u(p) = U(\lbrace p \rbrace)$$

$$v(s; p, q, \delta) = \frac{U(\lbrace p, q \rbrace) - U(\lbrace p, (1-\delta)q + \delta s \rbrace)}{\delta}$$

- *u* is the long run utility
- v is a measure of how tempting p is relative to q and r

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Lemma 4: Show that,

$$U(\{p\}) > U(\{p, (1-\delta)r + \delta s\}) > U(\{(1-\delta)r + \delta s\})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $s \in \Delta(C)$, then

1
$$U(\{p\}) > U(\{p,s\}) > U(s) \Rightarrow v(s; p, q, \delta) = U(\{p,q\}) - U(\{p,s\})$$

2 $v(p; p, q, \delta) = U(\{p,q\}) - U(\{p\})$

Follows from Lemma 3

• Lemma 5: Show that, if

$$U(\{p\}) \ge U(\{p,q\}) \ge U(\{q\})$$

and for some r and δ

 $U(\{p\}) > U(\{p, (1-\delta)r + \delta s\}) > U(\{(1-\delta)r + \delta s\})$

for all $s \in \Delta(C)$, then

$$U(\{p,q\}) = \max_{w \in \{p,q\}} [u(w) + v(w; p, r, \delta)] - \max_{z \in \{p,q\}} [v(z; p, r, \delta)]$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

• Proof (assuming)

$$U(\{p\}) > U(\{p,q\}) > U(\{q\})$$

• By previous lemma

$$v(q; p, r, \delta) = U(\{p, r\}) - U(\{p, q\})$$

$$\geq U(\{p, r\}) - U(\{p\})$$

$$= v(p; p, r, \delta)$$

and so

$$u(p) + v(p; p, r, \delta) - v(q; p, r, \delta)$$

= $U(\{p\}) + U(\{p, r\}) - U(\{p, q\}) - U(\{p, r\}) + U(\{p\})$
= $U(\{p, q\})$ (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Finally, pick p, q such that

$$U(\{p\}) > U(\{p,q\}) > U(\{q\})$$

(if such exists) and pick δ such that

 $U(\{p\}) > U(\{p, (1-\delta)q+\delta s\}) > U(\{(1-\delta)q+\delta s\})$

for all s (which we can do by continuity)

- Define v(s) as v(s; p, q, δ), and show that v(s; p, q, δ) doesn't depend on the specifics of the last three parameters.
- Lemma 5 therefore gives

$$U(\{p,q\}) = \max_{w \in \{p,q\}} [u(w) + v(w)] - \max_{z \in \{p,q\}} [v(z)]$$

• Lemma 2 then extends this result to an arbitrary set A

Discussion: Linearity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Imagine

$$\{p\} \succ \{p,q\} \succ \{q\} \succ \{q,r\} \succ \{r\}$$

Implies

$$u(p) > u(q) > u(r) v(r) > v(q) > v(p) u(p) + v(p) > u(q) + v(q) > u(r) + v(r)$$

• Which in turn implies

$$\{p\} \succ \{p,r\} \succ \{r\}$$

• 'Self Control is Linear'

- It seems that the following statement is meaningful:
 - Person A has the same long run preferences as person B
 - Person A has the same temptation as person B
 - Person A has more willpower than person B
- Yet this is not possible in the GP more.
- Alternative: Masatlioglu, Nakajima and Ozdenoren [2013]

$$U(z) = \max_{p \in z} u(p)$$

subject to $\max_{q \in z} v(q) - v(p) \leq w$

Discussion: Strict Set Betweenness and Random Strolz

- Does $\{p\} \succ \{p, q\} \succ \{q\}$ imply self control?
- Imagine that you are a Strolz guy with u(p) > u(q), but are not sure that you will be tempted
- Half the time

$$v(p) = v(q)$$

half the time

Implies

$$U(\{p\}) = u(p) U(\{p,q\}) = \frac{u(p) + u(q)}{2} U(\{q\}) = u(q)$$

Strict set betweenness without self control

Discussion: Optimism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Say with probability ε won't be tempted so

$$\hat{U}(z) = (1-\varepsilon)U(z) + \varepsilon \max_{p \in z} u(p)$$

- Can lead to violations of set betweenness.
- Let g = gym, j = jog, t = tv

$$\begin{array}{rcl} u(g) &>& u(j) > u(t) \\ v(g) &<& v(j) < v(t) \\ u(j) + v(j) &>& u(t) + v(t) > u(g) + v(g) \end{array}$$

Discussion: Optimism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• For ε small

$$\{t,j\} \succ \{t,g\}$$

as

$$U(\{t, j\}) = u(j) + v(j) - v(t)$$

$$U(\{t, g\}) = u(t)$$

but

$$\{t,j,g\} \succ \{t,j\}$$

as with probability ε no temptation and will go to the gym