G5212: Game Theory

Mark Dean

Spring 2017

- So far I have cheated you (a bit) in my description of dominance
- I motivated this section by describing rationality as
 - A player has some belief over the actions of others
 - Plays a strategy which is a best response to that belief
- But then I started talking about players never playing a strategy which is strictly dominated
- Are these the same thing?
- i.e. are the following sets equivalent?
 - The set of strategies that are strictly dominated
 - The set of strategies that cannot be rationalized as a best response?

Never-Best Response

Player 1's payoff from T,M,B

$$U_T = 2p - (1 - p) = 3p - 1$$

 $U_M = 0$
 $U_B = -p + 2(1 - p) = 2 - 3p$

Never-Best Response

• $U_M(p) < \max \{U_T(p), U_B(p)\}$ for any $p \in [0, 1]$, i.e., M is never a best response to any belief about his opponent's play.

Never-Best Response

Definition

A strategy $s_i \in S_i$ is a **best response against a belief** $\mu_i \in \Delta(S_{-i})$ if $u_i(s_i, \mu_i) \ge u_i(s'_i, \mu_i)$ for any $s'_i \in S_i$.

Note (1) belief μ_i could be correlated: $\Delta(S_{-i}) \neq \prod_{j \neq i} \Delta(S_j)$; (2) $u_i(s_i, \mu_i) = \sum_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) \mu_i(s_{-i})$.

Definition

A strategy $s_i \in S_i$ is a **never-best response** if it is not a best response against any belief $\mu_i \in \Delta(S_{-i})$.

- Is the set of strategies which are never best responses equal to the set of strategies which are strictly dominated?
 - It is obvious that strategies which are strictly dominated are never best responses
 - But is it true that strategies which are never best responses must be strictly dominated

Never-Best Response and Strict Dominance

• Yes!

Theorem

(Pearce 1984) A strategy s_i^* is a never-best response if and only if it is strictly dominated.

- Note correlation here is important!
 - If we do not assume that beliefs can be correlated, there are strategies which are never best responses but are **not** strictly dominated
 - As you will see for homework
- Proof will come later in the course

- So that deals with rationality
- What about common knowledge of rationality?
- This requires a bit more
 - Player 1 is rational
 - Player 2 thinks 1 is rational
 - Player 1 thinks 2 thinks 1 is rational...
- So the beliefs that rationalize the choice of player 1 must themselves be rational (in some sense)
 - As must the actions underlying those beliefs
 - And so on....

- We say that a strategy s_i^\ast is rationalizable if the following is true
 - There is a set of beliefs μ_i^1 such that s_i^* is a best response
 - For every player j and s_j in the support of μ_i^1 , there exists a belief μ_j^2 such that s_j is a best response
 - For every player k and s_k in the support of μ_j^2 , there exists a belief μ_k^3 such that s_k is a best response
 - And so on
- Again we allow for correlated beliefs

Definition

A strategy s_i^* is rationalizable if there exists

- A sequence of sets $\{X_j^t\}_{t=1}^\infty$ for each player j with $\varnothing \neq X_j^t \subset S_j$
- A belief μ_i^1 whose support is a subset of X_{-i}^1
- For each $j \in N$, t and action $s_j \in X_j^t$, a belief $\mu_j^t(s_j)$ whose support is in X_{-j}^{t+1}

such that

- s_i^* is a best response to μ_i^1
- s_j is the best response to $\mu_j^t(s_j)$ for every t, j and $s_j \in X_j^t$
- $s_j \in X_j^t$ if and only if, for some player k there exists a strategy $s_k \in X_k^{t-1}$ such that s_j is in the support of $\mu_k^t(s_k)$

• It turns out that we can describe this in a somewhat more compact way

Theorem

A strategy s_i^* is rationalizable if and only if there exists a set $Z_j \subset S_j$ for each player j such that

- $s_i^* \in Z_i$
- For each j and s_j ∈ Z_j there is a belief μ_j(s_j) to which s_j is a best response and whose support is in Z_{-j}

Proof.

[Proof (Sketch)]

- (If) Define $\mu_j^t(s_j) = \mu_j(s_j)$, X_j^1 as the support of $\mu_i(s_i^*)$ and $X_j^t = s_j$ such that for some player k there exists a strategy $s_k \in X_k^{t-1}$ such that s_j is in the support of $\mu_k^t(s_k)$
- (Only if) Define $Z_i = \bigcup_{t=1}^{\infty} X_i^t \cup \{s_i^*\}$ and $Z_j = \bigcup_{t=1}^{\infty} X_j^t$

Matching Pennies (Again!)

Example

Matching Pennies

		Bob	
		Η	Т
Anne	Η	+1, -1	-1, +1
	Т	-1, +1	+1, -1

- Example: can we rationalize $\{H, H\}$ as an outcome?
 - A thinks B will play Heads and so plays Heads
 - A thinks B thinks A will play Tails, justifying B playing Heads
 - A thinks B thinks A thinks B will play Tails, justifying A playing Tails
 - A thinks B thinks A thinks B thinks A will play Heads, justifying B playing Tails

Matching Pennies (Again!)

Example

Matching Pennies

- Example: can we rationalize $\{H, H\}$ as an outcome?
- Formally

•
$$Z_A = Z_B = H, T$$

•
$$\mu_A(H) = 1.H, \ \mu_A(T) = 1.T$$

•
$$\mu_B(H) = 1.T, \ \mu_B(T) = 1.H$$

• Note that we are not, at this stage, demanding that beliefs be consistent

Rationalizability and IDSDS

- We have seen that there is a link between Never Best Response and Strict Dominance
- Is there an equivalent link for rationalizable strategies?
- Yes!

Theorem

The set of rationalizable outcomes = the set of outcomes that survive iterated deletion of strictly dominant strategies.

Proof.

See Osborne and Rubinstein Proposition 61.2