Real Analysis Solutions¹ Math Camp 2012

State whether the following sets are open, closed, neither, or both:

- 1. $\{(x, y) : -1 < x < 1, y = 0\}$ Neither
- 2. $\{(x, y) : x, y \text{ are integers}\}$ Closed
- 3. $\{(x, y) : x + y = 1\}$ closed
- 4. $\{(x,y): x+y < 1\}$ open
- 5. $\{(x, y) : x = 0 \text{ or } y = 0\}$ closed

Prove the following:

1. Open balls are open sets

Take any $y \in B(x,r)$. Define $r_2 = \frac{r-d(y,x)}{2}$. Let z be any point in $B(y,r_2)$. Then

$$d(z,x) \le d(z,y) + d(y,x) \le r_2 + d(y,x) = \left(\frac{r}{2} - \frac{1}{2}d(y,x) + d(y,x)\right) = \frac{r}{2} + \frac{1}{2}d(y,x) \le \frac{1}{2}r + \frac{1}{2}r = r$$

therefore $z \in B(x, r)$, then $B(y, r_2) \subset B(x, r)$. QED

2. Any union of open sets is open

Let $U = U_1 \cup U_2 \cup \dots$ (the union of sets U_i where there can be infinitely many), where U_i is open for all *i*. Take any $x \in U$, then $x \in U_i$ for some set U_i . Since U_i is open then $\exists r \text{ s.t.}$ $B(x,r) \subset U_i$, but since by definition $U_i \subset U$, then we have that $B(x,r) \subset U$, and therefore U is open.

3. The finite intersection of open sets is open

Let $U = U_1 \cap U_2 \cap U_3 \cap \dots \cap U_k$ where U_1, U_2, \dots, U_k are open sets. Take any $x \in U$, then $x \in U_i$ for all $i \in \{1, 2, \dots, k\}$. Since U_i is open, there exists r_i such that $B(x, r_i) \subset U_i$. Let $r \equiv \min\{r_1, \dots, r_k\}$, then $B(x, r) \subset B(x, r_i) \subset U_i$ for all $i \in \{1, 2, \dots, k\}$, therefore $B(x, r) \subset U$, therefore U is open. QED.

- 4. Any intersection of closed sets is closed
- 5. The finite union of closed sets is closed

For 4 and 5 use the fact that $U = U_1 \cap U_2 \cap \dots \Leftrightarrow U^c = U_1^c \cup U_2^c \cup \dots$ and that $U = U_1 \cup U_2 \cup \dots \cup U_k \Leftrightarrow U^c = U_1^c \cap U_2^c \cap \dots \cap U_k^c$ and then use the proofs for part 2 and 3.

6. Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m which are continuous at x. Then h = f - g is continuous at x.

¹If you find any typo please email me: Maria_Jose_Boccardi@Brown.edu

Use the alternative definition for continuity for sequences. Then we have that: take any sequence $\{x_i\}_{i\in\mathbb{N}} \subset \mathbb{R}^k$ such that $\{x_i\}_{i=1}^{\infty} \to x$. Then we need to show that $h(x_i) \to h(x)$ as $i \to \infty$. By the definition of h we have that $h(x_i) = f(x_i) - g(x_i)$, therefore

$$\lim_{i \to \infty} h(x_i) = \lim_{i \to \infty} f(x_i) - g(x_i) = \lim_{i \to \infty} f(x_i) - \lim_{i \to \infty} g(x_i) = f(x) - g(x)$$

when in the second to last step we use the property of limits and in the last step the fact that f and g are continuous.

7. Let f and g be functions from \mathbb{R}^k to \mathbb{R}^m which are continuous at x. Then h = fg is continuous at x.

Analogous to previous case using the property that if $z_n = x_n y_n$ then $\lim_{n \to \infty} z_n = [\lim_{n \to \infty} x_n] [\lim_{n \to \infty} y_n]$

Find the greatest lower bound and the least upper bound of the following sequences. Also, prove whether they are convergent or divergent:

1. $\{x_n\}_{i=1}^{\infty} = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots\right\}$

Greatest lower bound is $\frac{1}{2}$ and the least upper bound is 1

Claim 0.1 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{n}{n+1} = 1$

Proof. Fix $\varepsilon > 0$. Let $K > \frac{1}{\varepsilon}$ take any $n \ge K$ then

$$\left|1 - \frac{n}{n+1}\right| = \frac{1}{n+1} < \frac{1}{n} < \frac{1}{K} < \varepsilon$$

2. $\{x_n\}_{i=1}^{\infty} = \{-1, 1, -1, 1, \dots\}$

Greatest lower bound is -1 and the least upper bound is 1

Claim 0.2 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} (-1)^n \nexists$. That is $\{x_n\}$ diverges.

Proof. Suppose, by contradiction, that $\{x_n\}$ has a limit point L. Take $\varepsilon = \frac{1}{4}$ then there exists K such that $d(x_n, L) < \frac{1}{4}$ for all n > K. Therefore $d(x_n, x_{n+1}) \le d(x_n, L) + d(x_{n+1}, L) \le \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$ for all n > K. But $d(x_n, x_{n+1}) = |1 - (-1)| = 2$ for all $n \in \mathbb{N}$, therefore we have a contradiction, then $\{x_n\}$ does not have a limit point.

3. $\{x_n\}_{i=1}^{\infty} = \left\{-\frac{1}{2}, \frac{2}{3}, -\frac{3}{4}, \frac{4}{5}, -\frac{5}{6}, \dots\right\}$

Greatest lower bound is -1 and the least upper bound is 1

Claim 0.3 $\lim_{n\to\infty} x_n = \lim_{n\to\infty} (-1)^n \frac{n}{n+1} \nexists$, that is $\{x_n\}$ diverges

Proof. Analogous to previous one.

Prove the following:

1. A sequence can only have at most one limit.

Suppose, by contradiction, that $\{x_n\}$ has two limits $L_1 \neq L_2$. Choose $\varepsilon = \frac{d(L_1,L_2)}{4}$. Then there exist $K_1, K_2 \in \mathbb{N}$ such that $d(x_n, L_1) < \varepsilon$ for all $n \geq K_1$ and $d(x_n, L_2) < \varepsilon$ for all $n \geq K_2$. Define $K \equiv \max\{K_1, K_2\}$. Then

$$d(L_1, L_2) \le d(L_1, x_n) + d(x_n, L_2) \le \varepsilon + \varepsilon = 2\varepsilon$$

but given the way that ε was defined we have that $d(L_1, L_2) = 4\varepsilon > 2\varepsilon$, therefore we have a contradiction and it must be the case that $L_1 = L_2$

2. If $\{x_n\}_{n=1}^{\infty} \to x$ and $\{y_n\}_{n=1}^{\infty} \to y$, then $\{x_n + y_n\}_{n=1}^{\infty} = x + y$.

Fix $\varepsilon > 0$, then $\exists K_1, K_2 \in \mathbb{N}$ st $|x_n - x| < \frac{\varepsilon}{3}$ for all $n \ge K_1$ and $|y_n - y| < \frac{\varepsilon}{3}$ for all $n \ge K_2$. Define $K \equiv \max\{K_1, K_2\}$ then we have that

$$|(x_n + y_n) - (x + y)| = |(x_n - x) + (y_n - y)| \le |x_n - x| + |y_n - y| \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} < \varepsilon$$

for all $n \ge K$ therefore we have that $\{x_n + y_n\} \to x + y$

3. A sequence of vectors in \mathbb{R}^N converges iff all the component sequences converge in \mathbb{R} .

We are going to show this only for the Euclidean distance, that is $d(x,y) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$. We need to prove both statements "if" and ""only if". **Proof.** [\Rightarrow] Suppose that $\{x_n\} \to x \in \mathbb{R}^N$, then we need to show that $\{(x_i)_n\} \to x_i \in \mathbb{R}$ for all $i \in \{1, 2, ..., N\}$

Fix $\varepsilon > 0$ then $\exists K$ s.t $d(x_n, x) < \varepsilon$ for all $n \geq K$, where $d(x_n, x) = \sqrt{\sum_{i=1}^N ((x_i)_n - x_i)^2}$, therefore it has to be the case that $((x_i)_n - x_i)^2 < \varepsilon^2$ for all $i \in \{1, ..., N\}$ for all $n \geq K$, which in turn implies that $|(x_i)_n - x_i| < \varepsilon$ for all $i \in \{1, ..., N\}$ for all $n \geq K$ that is $\{(x_i)_n\} \to x_i$ for all $i \in \{1, ..., N\}$. **Proof.** [\Leftarrow] Suppose that $\{(x_i)_n\} \to x_i \in \mathbb{R}$ for all $i \in \{1, 2, ..., N\}$, We want to show that $\{x_n\} \to x \in \mathbb{R}^N$.

Fix $\varepsilon > 0$ for all $i \in \{1, ..., N\}$ there exists K_i such that $|(x_i)_n - x_i| < \frac{\varepsilon}{\sqrt{N}}$ for all $n \ge K_i$. Define $K \equiv \max\{K_1, ..., K_N\}$, then

$$d(x_n, x) = \sqrt{\sum_{i=1}^{N} ((x_i)_n - x_i)^2} \le \sqrt{N \frac{\varepsilon^2}{N}} = \varepsilon$$

for all $n \ge K$, and therefore $\{x_n\} \to x$. QED

4. The sequence $\{x_n\}_{n=1}^{\infty} = \{(1, \frac{1}{2}), (1, \frac{1}{3}), (1, \frac{1}{4}), \dots\}$ converges to (1, 0).

It is straightforward using the result from 3 and the fact that $\{x_n\} = \{\frac{1}{n}\} \to 0$.

5. The sequence $\{x_n\}_{n=1}^{\infty} = \{(\frac{1}{2}, \frac{1}{2}), (\frac{2}{3}, \frac{1}{3}), (\frac{3}{4}, \frac{1}{4}), \dots\}$ converges to (1, 0).

Idem previous exercises using also the result from part 1 of the previous exercise.