Real Analysis Solutions ${ }^{1}$
 Math Camp 2012

State whether the following sets are open, closed, neither, or both:

1. $\{(x, y):-1<x<1, y=0\}$ Neither
2. $\{(x, y): x, y$ are integers $\}$ Closed
3. $\{(x, y): x+y=1\}$ closed
4. $\{(x, y): x+y<1\}$ open
5. $\{(x, y): x=0$ or $y=0\}$ closed

Prove the following:

1. Open balls are open sets

Take any $y \in B(x, r)$. Define $r_{2}=\frac{r-d(y, x)}{2}$. Let z be any point in $B\left(y, r_{2}\right)$. Then
$d(z, x) \leq d(z, y)+d(y, x) \leq r_{2}+d(y, x)=\left(\frac{r}{2}-\frac{1}{2} d(y, x)+d(y, x)\right)=\frac{r}{2}+\frac{1}{2} d(y, x) \leq \frac{1}{2} r+\frac{1}{2} r=r$
therefore $z \in B(x, r)$, then $B\left(y, r_{2}\right) \subset B(x, r)$. QED
2. Any union of open sets is open

Let $U=U_{1} \cup U_{2} \cup \ldots$ (the union of sets U_{i} where there can be infinitely many), where U_{i} is open for all i. Take any $x \in U$, then $x \in U_{i}$ for some set U_{i}. Since U_{i} is open then $\exists r$ s.t. $B(x, r) \subset U_{i}$, but since by definition $U_{i} \subset U$, then we have that $B(x, r) \subset U$, and therefore U is open.
3. The finite intersection of open sets is open

Let $U=U_{1} \cap U_{2} \cap U_{3} \cap \ldots \cap U_{k}$ where $U_{1}, U_{2}, \ldots, U_{k}$ are open sets. Take any $x \in U$, then $x \in U_{i}$ for all $i \in\{1,2, \ldots, k\}$. Since U_{i} is open, there exists r_{i} such that $B\left(x, r_{i}\right) \subset U_{i}$. Let $r \equiv \min \left\{r_{1}, \ldots, r_{k}\right\}$, then $B(x, r) \subset B\left(x, r_{i}\right) \subset U_{i}$ for all $i \in\{1,2 \ldots, k\}$, therefore $B(x, r) \subset U$, therefore U is open. QED.
4. Any intersection of closed sets is closed
5. The finite union of closed sets is closed

For 4 and 5 use the fact that $U=U_{1} \cap U_{2} \cap \ldots \Leftrightarrow U^{c}=U_{1}^{c} \cup U_{2}^{c} \cup \ldots .$. and that $U=$ $U_{1} \cup U_{2} \cup \ldots \cup U_{k} \Leftrightarrow U^{c}=U_{1}^{c} \cap U_{2}^{c} \cap \ldots \cap U_{k}^{c}$ and then use the proofs for part 2 and 3.
6. Let f and g be functions from \mathbb{R}^{k} to \mathbb{R}^{m} which are continuous at x. Then $h=f-g$ is continuous at x.

[^0]Use the alternative definition for continuity for sequences. Then we have that: take any sequence $\left\{x_{i}\right\}_{i \in \mathbb{N}} \subset \mathbb{R}^{k}$ such that $\left\{x_{i}\right\}_{i=1}^{\infty} \rightarrow x$. Then we need to show that $h\left(x_{i}\right) \rightarrow h(x)$ as $i \rightarrow \infty$. By the definition of h we have that $h\left(x_{i}\right)=f\left(x_{i}\right)-g\left(x_{i}\right)$, therefore

$$
\lim _{i \rightarrow \infty} h\left(x_{i}\right)=\lim _{i \rightarrow \infty} f\left(x_{i}\right)-g\left(x_{i}\right)=\lim _{i \rightarrow \infty} f\left(x_{i}\right)-\lim _{i \rightarrow \infty} g\left(x_{i}\right)=f(x)-g(x)
$$

when in the second to last step we use the property of limits and in the last step the fact that f and g are continuous.
7. Let f and g be functions from \mathbb{R}^{k} to \mathbb{R}^{m} which are continuous at x. Then $h=f g$ is continuous at x.

Analogous to previous case using the property that if $z_{n}=x_{n} y_{n}$ then $\lim _{n \rightarrow \infty} z_{n}=\left[\lim _{n \rightarrow \infty} x_{n}\right]\left[\lim _{n \rightarrow \infty} y_{n}\right]$
Find the greatest lower bound and the least upper bound of the following sequences. Also, prove whether they are convergent or divergent:

1. $\left\{x_{n}\right\}_{i=1}^{\infty}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots\right\}$

Greatest lower bound is $\frac{1}{2}$ and the least upper bound is 1

Claim $0.1 \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$
Proof. Fix $\varepsilon>0$. Let $K>\frac{1}{\varepsilon}$ take any $n \geq K$ then

$$
\left|1-\frac{n}{n+1}\right|=\frac{1}{n+1}<\frac{1}{n}<\frac{1}{K}<\varepsilon
$$

2. $\left\{x_{n}\right\}_{i=1}^{\infty}=\{-1,1,-1,1, \ldots\}$

Greatest lower bound is -1 and the least upper bound is 1

Claim 0.2 $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}(-1)^{n} \nexists$. That is $\left\{x_{n}\right\}$ diverges.
Proof. Suppose, by contradiction, that $\left\{x_{n}\right\}$ has a limit point L. Take $\varepsilon=\frac{1}{4}$ then there exists K such that $d\left(x_{n}, L\right)<\frac{1}{4}$ for all $n>K$. Therefore $d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n}, L\right)+d\left(x_{n+1}, L\right) \leq \frac{1}{4}+\frac{1}{4}=\frac{1}{2}$ for all $n>K$. But $d\left(x_{n}, x_{n+1}\right)=|1-(-1)|=2$ for all $n \in \mathbb{N}$, therefore we have a contradiction, then $\left\{x_{n}\right\}$ does not have a limit point.
3. $\left\{x_{n}\right\}_{i=1}^{\infty}=\left\{-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \frac{4}{5},-\frac{5}{6}, \ldots\right\}$

Greatest lower bound is -1 and the least upper bound is 1

Claim $0.3 \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}(-1)^{n} \frac{n}{n+1} \nexists$, that is $\left\{x_{n}\right\}$ diverges
Proof. Analogous to previous one.

Prove the following:

1. A sequence can only have at most one limit.

Suppose, by contradiction, that $\left\{x_{n}\right\}$ has two limits $L_{1} \neq L_{2}$. Choose $\varepsilon=\frac{d\left(L_{1}, L_{2}\right)}{4}$. Then there exist $K_{1}, K_{2} \in \mathbb{N}$ such that $d\left(x_{n}, L_{1}\right)<\varepsilon$ for all $n \geq K_{1}$ and $d\left(x_{n}, L_{2}\right)<\varepsilon$ for all $n \geq K_{2}$. Define $K \equiv \max \left\{K_{1}, K_{2}\right\}$. Then

$$
d\left(L_{1}, L_{2}\right) \leq d\left(L_{1}, x_{n}\right)+d\left(x_{n}, L_{2}\right) \leq \varepsilon+\varepsilon=2 \varepsilon
$$

but given the way that ε was defined we have that $d\left(L_{1}, L_{2}\right)=4 \varepsilon>2 \varepsilon$, therefore we have a contradiction and it must be the case that $L_{1}=L_{2}$
2. If $\left\{x_{n}\right\}_{n=1}^{\infty} \rightarrow x$ and $\left\{y_{n}\right\}_{n=1}^{\infty} \rightarrow y$, then $\left\{x_{n}+y_{n}\right\}_{n=1}^{\infty}=x+y$.

Fix $\varepsilon>0$, then $\exists K_{1}, K_{2} \in \mathbb{N}$ st $\left|x_{n}-x\right|<\frac{\varepsilon}{3}$ for all $n \geq K_{1}$ and $\left|y_{n}-y\right|<\frac{\varepsilon}{3}$ for all $n \geq K_{2}$. Define $K \equiv \max \left\{K_{1}, K_{2}\right\}$ then we have that

$$
\left|\left(x_{n}+y_{n}\right)-(x+y)\right|=\left|\left(x_{n}-x\right)+\left(y_{n}-y\right)\right| \leq\left|x_{n}-x\right|+\left|y_{n}-y\right| \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\frac{2 \varepsilon}{3}<\varepsilon
$$

for all $n \geq K$ therefore we have that $\left\{x_{n}+y_{n}\right\} \rightarrow x+y$
3. A sequence of vectors in \mathbb{R}^{N} converges iff all the component sequences converge in \mathbb{R}.

We are going to show this only for the Euclidean distance, that is $d(x, y)=\sqrt{\sum_{i=1}^{N}\left(x_{i}-y_{i}\right)^{2}}$. We need to prove both statments "if" and " "only if".
Proof. $\left[\Rightarrow\right.$] Suppose that $\left\{x_{n}\right\} \rightarrow x \in \mathbb{R}^{N}$, then we need to show that $\left\{\left(x_{i}\right)_{n}\right\} \rightarrow x_{i} \in \mathbb{R}$ for all $i \in\{1,2, . ., N\}$

Fix $\varepsilon>0$ then $\exists K$ s.t $d\left(x_{n}, x\right)<\varepsilon$ for all $n \geq K$, where $d\left(x_{n}, x\right)=\sqrt{\sum_{i=1}^{N}\left(\left(x_{i}\right)_{n}-x_{i}\right)^{2}}$, therefore it has to be the case that $\left(\left(x_{i}\right)_{n}-x_{i}\right)^{2}<\varepsilon^{2}$ for all $i \in\{1, . ., N\}$ for all $n \geq K$, which in turn implies that $\left|\left(x_{i}\right)_{n}-x_{i}\right|<\varepsilon$ for all $i \in\{1, . ., N\}$ for all $n \geq K$ that is $\left\{\left(x_{i}\right)_{n}\right\} \rightarrow x_{i}$ for all $i \in\{1, . ., N\}$.
Proof. [\Leftarrow] Suppose that $\left\{\left(x_{i}\right)_{n}\right\} \rightarrow x_{i} \in \mathbb{R}$ for all $i \in\{1,2, . ., N\}$, We want to show that $\left\{x_{n}\right\} \rightarrow x \in \mathbb{R}^{N}$.

Fix $\varepsilon>0$ for all $i \in\{1, \ldots, N\}$ there exists K_{i} such that $\left|\left(x_{i}\right)_{n}-x_{i}\right|<\frac{\varepsilon}{\sqrt{N}}$ for all $n \geq K_{i}$. Define $K \equiv \max \left\{K_{1}, \ldots, K_{N}\right\}$, then

$$
d\left(x_{n}, x\right)=\sqrt{\sum_{i=1}^{N}\left(\left(x_{i}\right)_{n}-x_{i}\right)^{2}} \leq \sqrt{N \frac{\varepsilon^{2}}{N}}=\varepsilon
$$

for all $n \geq K$, and therefore $\left\{x_{n}\right\} \rightarrow x$. QED
4. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}=\left\{\left(1, \frac{1}{2}\right),\left(1, \frac{1}{3}\right),\left(1, \frac{1}{4}\right), \ldots\right\}$ converges to $(1,0)$.

It is straightforward using the result from 3 and the fact that $\left\{x_{n}\right\}=\left\{\frac{1}{n}\right\} \rightarrow 0$.
5. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}=\left\{\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{3}{4}, \frac{1}{4}\right), \ldots\right\}$ converges to $(1,0)$.

Idem previous exercises using also the result from part 1 of the previous exercise.

[^0]: ${ }^{1}$ If you find any typo please email me: Maria_Jose_Boccardi@Brown.edu

