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Abstract

We present and experimentally test a collection of search theoretic explanations for
‘choice overload’, the phenomena by which a default alternative is selected more often
in larger choice sets. A standard search model, with constant search costs and a known
distribution of item quality, cannot give rise to choice overload. If one instead assumes
that either (i) the Decision Maker (DM) must learn the quality distribution (ii) search
costs are increasing or (iii) the DM decides the search strategy in advance, then choice
overload can occur. Unlike existing models, our approach does not require ad hoc
psychological costs (decision avoidance), or for the DM to assume the choice set was
selected by a profit maximizing firm (contextual inference). Data from our laboratory
experiments are consistent with choice overload caused by search with learning and
increasing costs, and cannot be explained by decision avoidance or contextual inference.
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1 Introduction

The standard model of utility maximization tells us that increasing the set of available

options can make the consumer no worse off, and may well improve their welfare. Since the

pioneering study of Iyengar and Lepper (2000),1 a body of work in psychology has called

this assumption into question. The umbrella term “choice overload” covers a number of

phenomena by which larger choice sets appear to make people worse off. By now there is

a large literature investigating various aspects of choice overload; see Scheibehenne et al.

(2010) and Chernev et al. (2015) for recent reviews and meta analyses.

Some of the measures used to identify choice overload are hard to interpret using the

classic tools of economic analysis; examples include a reduction in ex-post reported satisfac-

tion or lower confidence that the right choice was made.2 Others fall very much in the realm

of choice theory. In this paper we focus on the observation that larger choice sets may make

people more likely to choose a “default” option, as in the famous ‘jam’ study of Iyengar and

Lepper (2000). While previous literature has questioned the reliability of this result,3 recent

work by Dean et al. (2022) has developed more powerful tests, and established that choice

overload of this type is likely to be more widespread than previously thought.

The aim of this paper is to develop a family of models that can explain choice overload4

using an optimal search framework, and test them using laboratory experiments. We es-

tablish that a standard search model, in which the cost per item searched is constant and

the distribution of item quality is known,5 optimal behavior can never give rise to choice

overload. However, simple modifications to this basic framework can lead to the default

option being chosen more often in a larger choice set - specifically (i) if the decision maker

(DM) must learn about the distribution of item quality (ii) if search costs are increasing with

the number of items search or (iii) if the DM decides upon the number of items to search

in advance, rather than dynamically updating their strategy.6 We show how these models

1See also Reibstein et al. (1975).
2Though see recent work by Enke and Graeber (2023)
3Some direct replications of previous experiments have failed (Scheibehenne, 2008; Greifeneder et

al., 2010). One recent meta-analysis concluded that the mean measured choice overload effect is zero
(Scheibehenne et al., 2010). Another one (Chernev et al., 2015) concludes that whether or not choice
overload exists may depend a lot on context.

4Despite the above discussion, from now on we will use ‘choice overload’ to refer specifically to the
phenomenon of choosing a default option more often in larger choice sets.

5i.e. a model in the style of Caplin et al. (2011).
6As in the model of Stigler (1961)
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can be behaviorally distinguished, both from each other and from existing models of choice

overload. Finally, we run an experiment in which we can observe subjects’ search and choice

behavior, and establish that search-based mechanisms are an important component of choice

overload.

To our knowledge, there are currently two main classes of model used to explain choice

overload. The first are models of ‘contextual inference’ (Kamenica, 2008; Kuksov and Villas-

Boas, 2010; Nocke and Rey, 2021), in which the DM makes inferences about the nature of a

set of alternatives based on its size. Typically these inferences are driven by the assumption

that the choice sets are chosen by a profit maximizing firm. The second are models based on

the psychological concept of ‘decision avoidance’ (Beattie et al., 1994; Dean, 2008; Gerasimou,

2018), by which a decision maker avoids engaging with large choice sets because they find it

aversive to do so.7

Our approach offers potential advantages over these frameworks. Relative to contextual

inference, our model can lead to choice overload even if the alternatives are ex-ante identical

in large and small choice sets. It does not require beliefs about the distribution of alternatives

to vary with set size, and in particular does not require the assumption that choice sets are

chosen by profit maximizing firms. This is important, as choice overload has been observed

in situations in which this is clearly not the case (see for example Dean et al. (2022)).

Relative to models of decision avoidance, our approach offers a rational basis for choice

overload, without relying on ad hoc behavioral forces. Because our framework can help to

determine the extent to which choice overload can be explained by optimal behavior in a

search theoretic context, we argue that our model is the benchmark that should be used to

identify richer psychological phenomena such as decision avoidance.

In order to establish the relationship between search and choice overload we begin by

developing a framework that links a general model of sequential search to observables. We

consider two different types of stochastic data. The first, which we term the ‘experimental

data set’ records the sequence in which alternatives are searched, the point at which search

stops and the alternative that is chosen. This is the type of data we collect in our experiment,

and is necessary to differentiate between models of choice overload. The second is standard

stochastic choice data, which we use to define choice overload: We say that a data set exhibits

7Regret has been proposed as a driving force behind choice overload (see for example Buturak and Evren
(2017)). While somewhat harder to fit into our framework, we see this as essentially working in a manner
similar to decision avoidance.
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choice overload if there exists a subset and a superset such that the default is chosen more

often in the latter than the former.

The model we consider consists of two elements: a utility function over alternatives and

a threshold, which can be a function of the search history and the number of alternatives left

to search. The DM searches through alternatives one by one. After each item is searched,

they compare the utility of all items seen so far to their threshold. If a previously seen item

has a higher utility than the current threshold, search stops and the best item seen so far

is chosen. If not, search continues and the same process is repeated after the following item

has been searched.8 We define what it means for both experimental and standard data set

to be consistent with models in this class.

Within this general framework, we can identify different models of optimal sequential

search as restrictions on the class of allowable threshold function, and so determine which

can give rise to choice overload. We begin with the most straightforward of such models, in

which the DM faces a fixed cost to search each alternative, and assumes that the value of

each unsearched alternative is drawn from a known, fixed distribution. It has been previously

shown (Weitzman, 1979; Caplin et al., 2011) that optimal behavior in this setting involves

a fixed threshold which is invariant both to the size of the choice set and the number of

alternatives left to search. Using our framework, we show that this model cannot give rise

to choice overload.

We next consider three variants of this basic search model which can lead to the default

being chosen more often in larger choice sets. First, the case in which the DM has search

costs that increase the more alternatives have been searched - for example due to fatigue.9

We establish that this gives rise to an optimal threshold which falls the longer the DM

searches, and that such a model can give rise to choice overload. Second, a model in which

the DM does not engage in dynamically optimal behavior, but instead selects the number of

options they will search in advance. This is the ‘simultaneous search’ model of Stigler (1961),

and has been shown in some cases to better fit search behavior than the standard dynamic

version of sequential search (De Los Santos et al., 2012). This model leads to a maximal

number of alternatives the DM will search, which again can give rise to choice overload.

Perhaps the most interesting of the model variants we consider is that in which the DM

8A similar set up is considered in Aguiar et al. (2016) and Aguiar and Kimya (2019), but with a threshold
that is not a function of search history.

9Such behavior is consistent with the results of Brown et al. (2011).
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must learn about the distribution of alternatives from which they are drawing. Consider a

situation in which a DM believes there to be two different types of jam shop: good and bad.

If, when they begin to search, they see a number of low quality jams, they may come to

believe that they are in a low quality shop, meaning the value of further search is low. This

may lead them to leave the store without buying any jam, even if there are, in fact, good jams

available. This is the key mechanism of the learning model: search can stop because observed

alternatives are bad, whereas in the standard search model, only high quality alternatives

can stop search. This can in turn lead to choice overload if a large choice set is created from

a smaller one by adding low quality alternatives.

We believe the learning channel to be of particular interest because it seems that the

key feature of distributional uncertainty is common in many practical and experimental

settings in which choice overload has been observed. A participant in Iyengar and Lepper’s

jam experiment does not know how the jams have been selected. Neither do the employees

facing menus of health insurance options, as studied in Abaluck and Gruber (2023) know

the rule that has determine which plans they have been offered.10 It seems natural in such

settings that a DM will learn about the quality of a choice set by sampling from it, and so

may get discouraged if they see low quality alternatives. This is a feature missing from all

other models of choice overload we consider.

We show how our experimental data set can differentiate between search-based explana-

tions for choice overload, and models of decision avoidance and contextual inference. Search

models imply that choice overload is caused by people starting to search, but stopping before

they find an item which is better than the default alternative. As a result, the probability

of choosing the default will increase in the position of the first above-default alternative. In

contrast, contextual inference and decision avoidance predict that choice overload is caused

by people failing to start searching in larger choice sets, and the probability of choosing the

default is independent of the position of the first above-default alternative.

The same data also allows us to test for learning, fatigue and simultaneous search as an

driver of overload within the search framework. The learning model implies that, controlling

for the position of the first high quality alternative, the probability of default choice should

depend on the beliefs a Bayesian decision maker would hold about the quality of the choice

10The available plans have been selected for them by their employer, rather than determined by a market
equilibrium, so the logic of contextual inference does not apply.
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set, as well as the number of alternatives left to search. The fatigue model predicts that

the position of the first above-default alternative, but not beliefs should matter. The simul-

taneous search model predicts the same thing, but additionally predicts that probability of

stopping search should not depend on the value of alternatives so far seen.

In order to test these predictions, we run a laboratory experiment using a design similar

to that of Dean et al. (2022). Subjects must choose between alternatives which are numeric

values described as sums (five addition or subtraction operations). The monetary value of

the alternative is given by the value of the sum. This creates an environment in which the

value of alternatives is clear to the outside observer, but challenging for the subject to work

out. Each choice set consists of a default option, and either 1, 10, 15 or 20 other options. The

default option always appears at the top of the screen, has the same value, and is represented

by a degenerate sum.

We make two significant departures from the set up of Dean et al. (2022). First, we

control the order in which the subject must search through alternatives in any given choice

set, and make it observable when search has stopped, thus generating data equivalent to the

‘experimental data set’ described above. Specifically, all alternatives other than the default

are initially obscured. The subject must press a button to uncover each alternative. At any

point they can stop and choose one of the uncovered alternatives.

Second, we make explicit to the subjects, verbally, visually and through experience, the

distribution from which the alternatives are being drawn. In our main treatment subjects

are told that the values in each choice set are drawn from one of two distributions, one of

which stochastically dominates the other. This means there is an opportunity for learning

based on the values already seen, and subjects are explicitly told this. As far as we know,

ours is the first experimental test of choice overload to explicitly control subject’s beliefs.

In the ‘no learning’ control subject are told that values are drawn from a single distribution

(the average of the two distributions in the learning treatment), so beliefs about the value

of future options should be unaffected by past observed values.

621 subjects from the Prolific platform took part in the experiment, 307 in the learning

treatment, and 314 in the no learning treatment. Each subject faced 10 choice sets, 4 of

sizes 2, and 2 each of size 11, 16 and 21.

We make 5 key observations based on our results. First, we find evidence of choice over-

load, replicating the findings of Dean et al. (2022). Second, we find significant evidence for
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search based choice overload: most choice overload is driven by subjects who start searching,

then stop before finding something better than the default. People are also more likely to

choose the default if the first above-default alternative appears later in the search sequence.

These are both consistent with search based models of choice overload, but not decision

avoidance or contextual inference. Third, we find evidence that, controlling for the position

of the first above-default alternative, people are more likely to choose the default in rounds

which should lead the subject to believe the set is of low quality, providing evidence of a

learning channel in choice overload. Fourth, search position, beliefs and the highest value

alternative seen so far are all predictive of search termination, suggesting that both fatigue

and learning play a role in choice behavior, while ruling out the simultaneous search model.

Finally, results in the non-learning control are broadly in line with what one would expect:

subjects exhibit less choice overload, and beliefs are less predictive of default choice and

stopping behavior.

The fact that search plays a significant role in choice overload has implications for the

optimal design of choice set - i.e. choice architecture. It implies that the order in which

alternatives are presented matters for whether or not the default will be chosen. Moreover,

the learning model implies that content of a given choice set matters, over and above ex ante

beliefs. These observations can inform clever designs aimed at encouraging active choice

(see for example Besedeš et al. (2015)), as well as assessing the overall welfare effects of such

designs.

2 Relation to the Literature

There is, by now, a large empirical literature documenting the circumstances under which

choice overload does and does not occur. For recent meta analyses see Scheibehenne et al.

(2010) and Chernev et al. (2015). These reviews offer mixed support for choice overload. The

former finds a mean effect of zero, but noted a high degree of variance. The latter identifies

four variables which can increase the incidence of choice overload: decision difficulty, choice

set complexity, preference uncertainty, and decision goal. Chernev et al. (2015) argue that,

taking these mediators into account, there is evidence of a robust choice overload effect.

The fact that overload is more likely to occur when choices are difficult and unfamiliar is

consistent with an explanation rooted in bounded rationality.
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Recent work by Dean et al. (2022) suggests that choice overload may be more prevalent

than previously assumed. They show that previous tests are underpowered, and introduce

a new approach that reveals overload where existing approaches do not.

We know of no previous work that collects the data on search order and stopping that

we use. Neither has previous work informed subjects of precisely how choice sets were

constructed as we do, an important step in controlling subject’s beliefs. As we show in

section 4, both of these features are important in differentiating between different causes of

choice overload.

Most previous models of choice overload fall into one of two categories: contextual infer-

ence (Kamenica, 2008; Kuksov and Villas-Boas, 2010) and decision avoidance (Beattie et al.,

1994; Anderson, 2003; Dean, 2008). The former proposes that the DM can make inferences

about the quality of items in a choice set by the number of alternatives it contains. Choice

overload occurs because a larger range of alternatives is assumed to signal a lower expected

quality (or lower probability of fit for a consumer) for any given alternative, reducing the

returns to search. This assumption is often motivated by showing that, in equilibrium, choice

selections provided by profit maximizing firms will have this feature. A similar mechanism

underlies the results in the recent work by Nocke and Rey (2021). It is worth noting that

in our experiment, and many others, choice overload occurs in situations in which choice

sets are clearly not chosen by profit maximizing firms. Section 4.6 shows how our data can

be used to differentiate between contextual inference and the search based explanations for

choice overload we introduce in this paper.

Decision avoidance models assume that a decision maker has a choice between engaging

with a given decision, and therefore potentially making an active choice, or instead avoiding

the decision and sticking with the default alternative. Choice overload comes about because

the cost of engagement is assumed to increase with set size. However, exactly what these

costs are is typically not modeled. Our approach instead microfounds the cost of engagement

through an optimal search process.11 Again, section 4.6 describes how our data can be used

to differentiate between search based and decision avoidance based explanations for choice

overload.

Our work also relates to the set of decision theoretic papers that have characterized how

11Natan (2021) proposes a model of choice overload based on rational inattention. In order to generate
overload, the model also assumes that attention costs are increasing in set size.

7



people choose from ordered lists of alternatives. (Rubinstein and Salant, 2006; Horan, 2010;

Aguiar et al., 2016). Perhaps the closest to our work is Manzini et al. (2019), from which we

take some of our framework and notation. However, all of these papers have very different

aims and results. None of them address the question of choice overload, and none aim to

characterize behavior resulting from optimal search under different assumptions.

To investigate the effect of beliefs on choice overload, we introduce and solve an extended

version of the sequential search model with learning. The introduction of elements of learning

to standard search models goes back to Rosenfield and Shapiro (1981) and Burdett and

Vishwanath (1988), and a number of recent papers have brought these elements to various

settings. However, for our purposes, we needed a model that brought together a unique

combination of factors: the presence of a default option, a finite set of alternatives (i.e. a

finite horizon of search, as we compare sets of different sizes), recall and learning about an

underlying distribution common to all options. To the best of our knowledge, all previous

sequential search models with learning miss at least one of these factors. De Los Santos et al.

(2015) explore an e-commerce setting and include learning about an underlying distribution

and recall, but search proceeds along an infinite horizon. Conlon et al. (2018) apply learning

to a job search setting, in which there’s no recall and the search horizon is infinite. Choi

and Smith (2022) develop a setting close to ours, but in which the agent chooses the next

option to search and learns about the value of each individual option in a finite set instead

of learning a common distribution generating all options. Options have independent values,

which have two components. One component is immediately perceived by the decision maker

and serves as a signal determining the order of search, while the other component is hidden

and is only discovered upon search. Therefore, there’s no common learning element relevant

for all options. Our setting, on the other hand, has options with correlated values, with

learning about a common distribution, and which are ex ante identical.

3 A General Framework

The aim of the theoretical section of the paper is twofold: to identify the assumptions under

which search models can lead to choice overload, and to understand the testable implications

of these models for our experimental data. In order to do this, we first we define two data

sets - one which matches the data that we will collect from the experiment, and a second
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which is closer to the standard data sets in which choice overload is identified. We show

how these data sets are related, and use them to define choice overload in our setting. Next,

we introduce a general class of sequential search models which explain choice behavior via

a threshold rule and utility function, and show how to link this class to our data. Finally,

we will consider specific versions of the optimal search model, show how they can generate

choice overload, and identify testable predictions for our experimental data.

3.1 Data

We begin with a finite grand set of alternatives X. One of these alternatives d ∈ X is the

default. A choice set is a subset of X that contains d. We use A to denote the set of choice

sets

A =
{
A ∈ 2X |d ∈ A

}
.

In our experiment, subjects will examine the alternatives in the choice set in a given

order. Let LA be the set of linear orders on A such that d appears first.

We denote the set of all such linear orders as L

L = ∪A∈ALA.

We will refer to an element l ∈ L as a list. We will sometimes abuse notation by writing l as

(xyz..) for the linear order x ▷l y ▷l z... Further, we will use l
x to refer to the linear order l

truncated at observation x.

Our experimental data will allow us to observe the list from which the DM must choose,

the point at which they stopped searching through the list and the item they selected. Given

that we wish to aggregate data over individuals that may have different behavior, we will

consider a stochastic version of such data, and define our experimental data set as follows:

Definition 1. Let D ⊂ L be a collection of choice lists, with A(l) being the collection of

objects in list l (i.e. l ∈ LA). We define an experimental data set as ρ : X×X×D → [0, 1]

such that

1. ρ(x, y, l) = 0 if x /∈ A(l), y /∈ A(l) or y ▷l x

2.
∑

y∈X
∑

x∈X ρ(x, y, l) = 1 ∀ l ∈ D
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We define the associated marginal distributions as follows

ĉ(x, l) =
∑
y∈X

ρ(x, y, l)

ŝ(y, l) =
∑
x∈X

ρ(x, y, l)

The interpretation is that the DM faces a number of choice lists, indexed by the elements

of D, with l being a typical choice situation. From each choice list we observe the joint

probability of choosing each element (the first argument in ρ) and stopping search at each

element (the second argument in ρ). The restriction (1) insists that positive probability

is given only to situations which are possible - i.e. that the chosen and finally searched

element must both be in A(l), and the chosen element must occur before the finally searched

element in the list l. The distributions ŝ and ĉ represent the marginal stopping and choice

probabilities for each list l.

While this data set matches well our experiment, choice overload is generally defined

using a more standard choice data. We therefore define a standard choice data, and choice

overload, as follows

Definition 2. Let C ⊂ A be a collection of choice sets. We define a standard data set

as p : X × C → [0, 1] such that p(x,A) = 0 if x /∈ A and
∑

x∈X p(x,A) = 1 for all A ∈ C.
We say that a data set exhibits choice overload if, for some A,B ∈ C such that A ⊂ B,

p(d,B) > p(d,A).

Our standard choice data is essentially a classic stochastic choice data, with the added

restriction that the default option d is available in all choice sets. Our definition of choice

overload is similar to that used in Dean et al. (2022): A data set exhibits choice overload if

there is a subset and superset such that the default is chosen more often in the latter than

the former.

We can link together these two forms of data by defining the class of standard data sets

which are consistent with some underlying experimental data set. In order to do so we have

to consider the possible ways in which the decision maker could search through a set A.

Because the models we consider below are silent on what determines search order, we will

say that an experimental data set is consistent with a standard data set if there exists some

probability distribution over possible search orders that lead to the same choice probabilities.
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Definition 3. We say an experimental data set (ρ,D) is consistent with a standard data set

(p, C) if

1. For every A ∈ C, LA⊂ D

2. For every A ∈ C there exists a πA ∈ ∆(LA) such that, for every x ∈ A

p(x,A) =
∑
l∈LA

πA(l)ĉ(x, l)

If this is the case, we say that (π, ρ,D) generates (p, C).

The first condition states that, for every choice set A in C, we observe choice patterns

from all possible search orders on A in D. The second condition states that there must be

a probability distribution over search orders in A such that, when combined with the choice

probabilities from ρ, they match the probabilities in p.

3.2 Model

We now describe the class of models which is the focus of the paper. These are models of

sequential search in which the DM’s choice of whether to continue search is determined by

a (potentially history dependent) threshold. Such models have two elements. The first is

a one-to-one utility function u:X → R which describes preferences over alternatives. The

second is a choice threshold, which determines the DM’s decision whether to stop searching

or not. We allow this threshold to be a function of the alternatives that have been searched

so far and the size of the choice set, which we assume to be known to the DM. Thus the

threshold function is defined as τ : L × N → R̄, with the interpretation that τ(l, N) is the

threshold applied if the DM has observed the ordered alternatives l in a choice set they know

to be of size N .12 Consistent with our desire to model stochastic choice data, we will allow

for the decision maker to have a probability distribution over thresholds functions, which we

denote as T ∈ ∆(T ), where T is a finite feasible set of threshold functions.13

12Note that this domain implies that the DM has a threshold for impossible situations, for example where
they have seen three options yet the size of the choice set is 2. Such thresholds have no impact on choice
behavior, as we shall see below.

13The assumption that T is finite is without loss of generality. Given the finite nature of X, for a utility
function u there are a finite number of sets of threshold functions which give rise to different behaviors.
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These elements can be used to define a model of sequential search with recall which gives

rise to data in the form of our experimental data set. For each choice situation in l ∈ D,

search proceeds according to the list. The DM first draws a threshold function τ according

to T . They then compare the utility of the first element they search (which will always be

d) to the threshold τ(d, |A(l)|). If u(d) is greater than the threshold, then search stops and

d is chosen. If not, then the next item x in the ordering l will be searched. The DM then

compares both u(d) and u(x) to τ(dx, |A(l)|). If either is above the threshold then search

stops and the highest utility alternative seen so far is chosen. Otherwise search continues.

We assume that, if the entire set has been searched then search stops and the highest utility

item will be chosen. We can operationalize this assumption by adding the condition that

τ(l, |A(l)|) = −∞.

In order to map this model to our experimental data set it is convenient to define two

functions from the primitives of the model. The first is the stopping function sτ,u : L → X.

The function sτ,u(l) identifies the alternative which causes search to stop from l according

to u and τ .

Definition 4. For a utility function u and threshold function τ the stopping function sτ,u :

L → X is defined as sτ,u(l) = x if

• τ(lx, |A(l)|) ≤ u(y) for some y ⊵l x

• For all y, z such that z ▷l x and y ⊵l z

τ(lz, |A(l)|) > u(y)

In words, the stopping function selects x if (i) there is something that is seen (weakly)

before x that has utility above the threshold generated by the sequence of searches up to

and including x and (ii) that this is not true for any z that is seen before x. Note that

these conditions imply that s will be at most single valued, while the assumption that

τ(l, |A(L)|) = −∞ implies that s is single valued.

Armed with the stopping function we can define the choice function cτ,u : L → X which

identifies the element from l that will be chosen according to u and τ .

Definition 5. For a utility function u and threshold function τ the choice function cτ,u :
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L → X is defined as

cτ,u(l) = arg max
x⊵lsτ,u(l)

u(x)

In words, the alternative chosen from the list l is the highest value alternative up to and

including the alternative that causes search to stop.

Armed with this function, we can define what it means for a data set to have a sequential

search representation.

Definition 6. For some D ⊂ L, an experimental data set ρ : X × X × D → [0, 1] has

a sequential search representation if there exist a utility function u:X → R, and a

distribution over thresholds T ∈ ∆(T ) such that

ρ(x, y, l) =
∑
τ∈T

T (τ)1(cτ,u(l) = x and sτ,u(l) = y)

If this is the case, we say that the model {u, T} generates the experimental data set (ρ,D).

In words, the probability of y being the alternative that triggers stopping and x being

the chosen alternative is equal to the probability of threshold function under which this is

the case.

One of our aims is to identify forms of sequential search that can lead to choice overload.

In order to do so, we define what it means for a model to cause choice overload

Definition 7. Fix a C ⊂ A and a D ⊂ L such that, for every A ∈ C, LA⊂ D Also fix a

model {u, T}, and let ρ be the experimental data set generated by that model on D. We say

that {u, T} causes choice overload on C if there is a standard choice data set p on C such

that (p, C) is consistent with (ρ,D) and also exhibits choice overload. We say that a model

causes choice overload if it causes choice overload for some C. We say a model causes choice

overload with uniform search if the above holds, with the added condition that (p, C) can be

generated by (π, ρ,D) with πA(l) = 1
|LA| for all A ∈ C and l ∈ LA. Finally, we say that a

threshold distribution T causes choice overload if {u, T} causes choice overload for some u.

Definition 7 describes two ways in which a model can be described as leading to choice

overload. The first says that there must simply be some probability distribution over search

orders such that, when combined with the data generated by the model, it leads to choice

overload. The second demands the distribution be uniform in all cases. The reason for the
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latter definition is that it is possible to imagine situations in which the former definition can

lead to choice overload due to arbitrary and unmodelled changes in the search order between

smaller and larger choice sets.14 In the next section we will say a search process does not

cause choice overload if it does not do so under the former definition, and will say it does

cause choice overload if it does so under uniform search.

4 Optimal Models of Search

We now present models of optimal search behavior under various different assumptions. By

characterizing the resulting threshold functions, we can then link these models to our data

using the machinery from section 3. We first show that the ‘standard’ search model, in which

the DM faces fixed search costs, optimizes dynamically and does not have to learn about the

quality of a choice set, cannot generate choice overload. We then show how relaxing each of

these assumptions can lead to choice overload, and demonstrate how these explanations can

be differentiated in our experimental data.

4.1 The Standard Search Model

We start by considering the ‘standard’ sequential search problem as described by Caplin et

al. (2011) and many others.

Definition 8 (The Standard Search Problem). The decision maker faces a choice set of

known size N . Initially they know the utility of the default alternative d. They assume

that the utility of each alternative in the choice set is drawn independently from a probability

distribution function f . The DM searches through alternatives one at a time. Following each

search the DM can decide either to stop searching and choose one of the alternatives already

seen, or (assuming there are still unsearched items) they can pay a fixed cost k to search one

more alternative. A strategy is a mapping from a history of observed items and the size of

14As a simple example, consider a situation with choice alternatives d, x, y, z, such that

u(x) > u(y) > u(d) > u(z)

Consider also a search model in which the DM always searches the default and one other alternative. This
can lead to choice overload when going from set {d, y, z} to {d, x, y, z} if one assumes that in {d, y, z} y is
always searched after d (and so the default is never chosen), while from {d, x, y, z} z is always searched after d
(so the default is always chosen). However, this model would not lead to choice overload in this data set when
each search order is equally likely, because this would lead to p(d, {d, y, z}) = 1

2 and p(d, {d, x, y, z}) = 1
3 .
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the set N to the decision whether to stop or continue search. Once search has concluded the

highest utility alternative of those seen is chosen. The aim of the DM is to maximize the

expected utility of the item finally chosen net of costs.

It is well known that the optimal strategy for the standard search problem is a fixed

threshold such that search stops if and only if an alternative with utility higher than that

threshold is uncovered.

Remark 1. For a given cost k, the optimal solution to the standard search problem can be

characterized by a threshold function τ such that τ(l, N) = τk for all non-terminal points

(i.e. all l, N such that |A(l)| ≠ N .)

Proof. See Caplin et al. (2011).

Our first result is that the optimal solution to the standard search problem cannot give

rise to choice overload. To state this, and further results, we will say that a distribution over

threshold functions T is consistent with an optimal model M if there exists a finite set of

costs K15 and a probability distribution P on K such that

T (τ) = P (k|τ(l, N) is optimal given costs k and model M)

In other works, T has a support which is a subset of the set of optimal threshold functions

for the model M .

Theorem 1. Let T be consistent with the solution to the standard search problem. Then T

does not generate choice overload.

We postpone the proof of theorem 1 until section 4.4. However, the logic is straightfor-

ward. Fixing a cost k, if a DM fails to choose the default in some small set A then it must

be that they searched until they found something better. This implies (i) u(d) < τk and

(ii) there exists some x ∈ A such that u(x) > u(d), which the DM found, either because

u(x) > τk, or because the set is completely searched. Both of these things must also be true

in any superset B ⊃ A, so that means that the default also must not be chosen in the larger

choice set. Aggregating over costs gives the desired result.

15For the increasing search costs model this will be a finite set of cost functions.
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4.2 Increasing Search Costs

The first relaxation of the standard search problem we consider is one in which search costs

increase over time - for example because the DM suffers from fatigue.

Definition 9 (The Search Problem with Increasing Costs). The search problem with in-

creasing costs is identical to the standard search problem, but rather than a fixed cost k, the

DM has instead a strictly increasing cost function k : N → R, where k(i) is the cost after

searching i alternatives.

First, we show that the optimal solution to the search problem with increasing costs is a

threshold that decreases with the number of searches.

Lemma 1. For a given increasing cost function k(i), the optimal solution to the search prob-

lem with increasing costs can be characterized by a threshold function τ such that τ(l, N) =

τ̂k(|A(l)|) which is strictly decreasing in its argument

See appendix A for proofs.

The fact that the optimal threshold is decreasing as search continues guarantees that it

is possible for the resulting model to generate choice overload.

Theorem 2. Let T be consistent with the solution to the search problem with increasing

costs. Then T can generate choice overload with uniform search.

Again we postpone the proof till section 4.4, but the logic is easy to see. Consider a

default utility u(d), a cost function such that τk(1) > u(d) > τk(2), and two alternatives

x and y such that u(x) > u(d) > u(y). In the set {d, x} the default will never be chosen:

because u(d) < τk(1) the DM will always search the first option, and so x will always be

chosen over d. However, in the set {d, x, y} the default will be chosen half the time under

uniform search. Because u(d) > τk(2), exactly one non-default item will be searched. Half

the time this will be x, in which case x will be chosen, but half the time it will be y, in which

case d will be chosen.

We can also use the sequential search representation to make predictions about what the

search model with increasing costs implies for our experimental data set.

Theorem 3. Let {D, p} be an experimental choice data set generated by a model {u, T} in

which the distribution of threshold functions T is consistent with the solution to the search

problem with increasing costs. Then the following holds:
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1. For any list l ∈ D which contains at least one alternative with utility above the default,

the probability of choosing the default depends only on the position of that element x.

Specifically, let x ∈ A(l) be such that

u(x) > u(d),

u(y) < u(d) for all y ▷l x

and define F such that

F = | {y ∈ A(l) such that y ▷l x} |.

Then

ĉ(d, l) =
∑
τ∈T

T (τ)1 (cτ,u(l) = d) (1)

is a function only of F .

2. For any list l ∈ D and alternative x in l, the probability that search has stopped at or

before x ∑
τ∈T

T (τ)1 (sτ,u(l) ⊵l x)

depends only on

(a) The position of x in l

(b) The maximal value of utility of items that occur at or before x in the list l

max
y⊵lx

u(y)

and is increasing in both values

This theorem lays out the key markers of behavior we should see if increasing search

costs are at the root of choice overload: The only determinant of whether the default is

chosen is the position of the first above-default alternative in the list, and the whether or

not search has stopped at a given point is determined only by how many alternatives have
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been searched and the maximum value that has been seen so far. This theorem will help us

differentiate between increasing search costs and alternative explanations of choice overload

in our experimental data.16

4.3 Search with Static Optimization

The standard search model assumes that DMs engage in dynamic optimization: their decision

whether to continue to search or not is based on information they receive as they search.

Early models of search assumed instead a model of static optimization: a DM chose in

advance how many alternatives they would search through prior to beginning search (see for

example Stigler, 1961). Such models are significantly easier to solve, and recent work has

suggested that they may do a good job of describing search behavior in market settings (e.g.

De Los Santos et al., 2012). We next define a model of search with static optimization and

show that it can lead to choice overload.

Definition 10 (The Search Problem with Static Optimization). The search problem with

static optimization is identical to the standard search problem, but rather than choosing a

stopping function contingent on the values of the alternatives seen, the DM must choose in

advance how many alternatives they wish to search.

Any given cost level will then give rise to an optimal number of alternatives for the DM

to search.

Remark 2. For a given cost k, the optimal solution to the search problem with static

optimization can be characterized by an integer nk and a threshold function τ such that

τ(l, N) = τ̂ sk(|A(l)|), with

τ̂ sk(|A(l)|) =

∞, if |A(l)| ≤ nk

−∞, if |A(l)| > nk

for all non-terminal points (i.e. all l, N such that |A(l)| ≠ N .)

16It is tempting to conclude that the increasing search cost model should lead to an increase in the
probability of stopping as one proceeds down the list (rather than the cumulative probability of having
stopped search). However this is not true. Imagine a cost function that rises from 0 to 1,000,000 between
period 1 and 2, then to 1,000,001 in period three. Assuming a small variance in f , all search would stop in
period 1, and almost none would stop in period 2.
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Proof. See Stigler (1961).

In turn, such a threshold function can give rise to choice overload.

Theorem 4. Let T be consistent with the solution to the search problem with static opti-

mization. Then T can generate choice overload with uniform search.

The logic of the theorem is similar to that of theorem 2, with formal proofs again post-

poned to section 4.4.

The behavioral implications of the search problem with static optimization are similar

to that of the model with increasing costs, with one important difference: the probability of

search stopping should depend only on the position in the list, not the values seen so far.

Theorem 5. Let {D, p} be an experimental choice data set generated by a model {u, T} in

which the distribution of threshold functions T is consistent with the solution to the search

problem with static optimization. Then the following holds:

1. For any list l ∈ D which contains at least one alternative with utility above the default,

the probability of choosing the default depends only on the position of that element17.

2. For any list l ∈ D and alternative x in l, the probability that search has stopped at or

before x depends only on the position of x in l.

4.4 Proofs of Theorems 1, 2 and 4

We bring together the proof of theorems 1, 2 and 4 because they can all be seen as man-

ifestations of the same underlying principle. In each case, the optimal threshold strategies

are what we term search length dependent - the threshold depends only on the number

of alternatives that have been searched - not the value of those alternatives, nor the size of

the choice set. It is possible to characterize what types of search length dependent threshold

functions can lead to choice overload.

Definition 11. A threshold function τ is Search Length Dependent if τ(l, N) = τ(l′,M)

if |A(l)| = |A(l′)|, |A(l)| ≠ N and |A(l′)| ≠ M . In such cases the the threshold is a function

only of the number of alternatives that have been searched, and we use the notation τ̂(n) for

17See theorem 3 for a formal definition.
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the threshold when n alternatives have been searched. We say that a Search Length Dependent

threshold function is

• Increasing if τ̂(n) ≥ τ̂(m) for n > m with the inequality strict for some m > 1

(assuming all alternatives have not been searched)

• Decreasing if τ̂(n) ≤ τ̂(m) for n > m with the inequality strict for some m > 1

• Constant if τ̂(n) = τ̂(m) for n < m (assuming all alternatives have not been searched).

We say a threshold distribution T is increasing (decreasing, constant) search length de-

pendent if its support contains only increasing (decreasing, constant) search length dependent

threshold functions.

To prove the relevant theorems, we make use of the following lemma, which states that

search length dependent thresholds can generate choice overload if and only if they are

decreasing. As the standard search problem gives rise to a constant search length dependent

model, while search with increasing costs and search with static optimization give rise to

decreasing search length dependent models, theorems 1, 2 and 4 follow immediately.

Lemma 2. A search length dependent threshold T can generate choice overload with uniform

search if it is decreasing. Otherwise it cannot generate choice overload.

4.5 Search with Learning

A third, and perhaps most interesting deviation from the standard model is the possibility

that the decision maker does not know the distribution of values in a choice set before they

begin searching. Imagine, for example, that a DM is searching through records in a record

store. A priori, they do not know whether this is a high quality record store, with a high

proportion of good records, or a low quality record store with relatively few good albums.

We would expect the DM to update her beliefs about the quality of the record store as she

searches, and this should affect her decision whether or not to continue searching: if they see

a lot of bad records they may conclude that this is a low quality record shop, and so stop

searching.

In this section we formalize this intuition, and show how it can lead to choice overload. We

do so in a relatively simple set up, in which the DM believes that the value of alternatives are
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being drawn from one of two possible distributions. This matches our experimental setting,

and suffices to show that search with learning can cause choice overload. We also believe

most of the insights we draw would generalize to more complex learning environments.

Definition 12 (The Search Problem with Learning). The search problem with learning is

identical to the Standard Search Problem, but instead of believing that alternatives are drawn

from a distribution f , the DM believes that the utility of all alternatives in a choice set are

either drawn from distributions f(x|µ) and f(x|µ) with same support [a, b] ⊂ R. They are

both absolutely continuous, and satisfy the strict Monotone Likelihood Ratio property, with

F (x|µ) first order stochastically dominating F (x|µ). Thus F (x|µ) is a “good” distribution,

while F (x|µ) is a “bad” distribution. Initially, the DM assigns probability µ0 that values are

drawn from distribution f(x|µ).

In appendix B we characterize the properties of the optimal solution to the search problem

with learning, the key features of which are summarized in the following lemma.

Lemma 3. For a given cost function k, the optimal solution to the search problem with

learning can be characterized by a threshold function τ such that

τ(l, N) = τk(µ(l), n)

where µ(l) is the probability that the values in the set have been drawn from distribution µ,

given sequence l and Bayes’ rule, and n = N − |A(l)| is the number of items remaining to

be searched. τk(µ(l), n) is weakly increasing in both arguments. We say a cost k guarantees

search if τk(µ, 1) > a for all µ. In this case, τk(µ(l), n) is strictly increasing in its first

argument.

The search problem with learning can generate choice overload. To see why, consider the

following example. There are three alternatives d, x1, x2, and the problem is paramaterized

such that u(d) < τk(0.5, 1), so that search begins in a set containing d and x2. Assume

further that u(x2) > u(d), implying that p(d, {d, x1}) = 0. Now consider what happens if

the DM is faced with the list dx1x2. Given that τk(0.5, 2) ≥ τk(0.5, 1), we know that search

will continue until at least x1. What happens at this stage will depend on both beliefs and

y = max {u(x1), u(d)} . Figure 1 shows the optimal strategy in µ, y space for the case in

which cost is k = 1/8 and the two distributions are normal with unit variance and means
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Figure 1: Optimal Strategy in the Search Problem with Learning

0 and 1. The optimal strategy takes the form of a threshold, shown by the upward sloping

solid black line. For combinations of µ and y that fall above the line search should stop,

below the line it should continue. This follows from lemma 3 - the optimal strategy is a

threshold on y which is increasing in µ.

Where the DM finds themselves in this space will depend on the value of u(x1). For

u(x1) < u(d), increases in the value of u(x1) increase µ but not y: higher values make it

more likely that values are drawn from the good distribution, but do not increase the value

of the best thing seen. For u(x1) ≥ u(d), increasing in the value of u(x1) increase both µ

and y

The non-solid line on figure 1 shows the locus of possible points in µ, y space that can

occur for different values of u(x1). It identifies three regions. For high values of u(x1), the

dashed part of the line, search will stop: the DM believes it is likely that the alternatives

are drawn from the good distribution, but the value of u(x1) is so high that further search

is not worthwhile. For intermediate values of u(x1), the dash-dotted part of the line, search

will continue: beliefs are high enough, and the value of the best thing seen low enough, that

further search is worthwhile. However, for very low values of u(x1), the dotted part of the

line, search again stops. Observing very low values of u(x1) leads the DM to believe it very

unlikely that the values are being drawn from the good distribution. This in turn reduces

the perceived value of search to the point that it is better to stop.

It is this third region that distinguishes the search problem with learning from the stan-
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dard search problem, and can lead to choice overload. In the standard search problem, search

can only be stopped because the DM observes a high value alternative. With learning, search

can also stop because the DM observes a low valued alternative. In the above example, if

u(x1) is low enough then the DM will stop searching because beliefs become low enough that

the threshold for continuing to search falls below the utility of the default. This means that

the superior alternative u(x1) is never found, resulting in choice overload.

This intuition is formalized in the following theorem.

Theorem 6. Let T be consistent with the optimal solution to the search problem with learning

with costs that guarantee search. Then T can generate choice overload with uniform search.

Finally, we characterize the behavioral implications of the search model with learning.

Ideally, we would like a behavioral characterization along the lines of theorem 3. However,

unlike the search model with increasing costs, in which the threshold depends only on the

number of items searched, the search model with learning implies the threshold depends on

beliefs and the number of alternatives left to search. In order to characterize the behavior of

this model along a single dimension, which will be convenient for our later empirical work,

we define the notion of the minimum cost that induces search to stop by a particular point

in a list.

Definition 13. Let l ∈ L be a list and fix a utility function u. For any x ∈ A(l), the

minimum cost that induces stopping by x is defined as

ml,u(x) = min {k ∈ R|sτk.u(l) ⊵l x}

where τk is the solution to the search problem with learning for costs k.18

This function combines the inputs to the stopping rule - beliefs and the number of

alternatives remaining to search - into a single number. Note that, assuming u is observable

and we know the process by which values are generated, we can calculate m for any l and x.

Using this definition, we can generate behavioral predictions for the search model with

learning

18That ml,u(x) is well defined comes from the fact that, for high enough costs, search will never start (and
so the set is non empty), and assuming that, in the case of ties, search will stop (and so the set is closed).
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Theorem 7. Let {D, p} be an experimental choice data set generated by a model {u, T} in

which the distribution of threshold functions T is consistent with the solution to the search

problem with learning. Then the following holds:

1. For any list l ∈ D which contains at least one alternative with utility above the default,

the probability of choosing the default depends only on ml,u(x) where x is the element

immediately proceeding the first above-default element.

2. For any list l ∈ D and alternative x in l, the probability that search has stopped at or

before x depends only on ml,u(x).

4.6 Contextual Inference and Decision Avoidance

We have so far established that three variants of the standard search model can lead to choice

overload: increasing search costs, static optimization and learning. In this section we contrast

these search-based models of choice overload with the two current leading explanations:

decision avoidance and contextual inference

Decision avoidance is a concept that has a long history in the psychology literature (see

Beattie et al. (1994) and Tversky and Shafir (1992) for early examples and Anderson (2003)

for a review), as well as a shorter one in economics and decision theory (see for example

Dean (2008), and Gerasimou (2018, 2020). It posits that, when faced with a difficult decision,

people may exhibit a tendency to disengage with it - for example by postponing it or sticking

with a default. Because large choice sets are often seen as complicated or difficult, this can

lead to choice overload.

In order to capture the concept of decision avoidance within our framework, we consider

a model in which the threshold function falls as the number of alternatives left to search

increases. Unlike the other threshold functions we have discussed, this is not microfounded

in some underlying search problem. However, we believe that it captures the idea of decision

avoidance: when choice sets get larger, a DM is more willing to disengage from the decision

by stopping search. In particular, this means that the DM will be more willing to stick with

the default in larger choice sets.

Definition 14. A threshold function τ exhibits decision avoidance if τ(l, N) = τ d(N−|l|)
for all l, N , strictly decreasing in its argument for all non-terminal points.
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Before discussing the implications of decision avoidance we formalize a model of contex-

tual inference in our setting. Introduced by Kamenica (2008) (see also Kuksov and Villas-

Boas (2010) and Nocke and Rey (2021)), contextual inference assumes that DMs form beliefs

about the quality of alternatives in a choice set based on the context, and in particular the

number of alternatives. In order to close the model, it is typically assumed that the DM

forms beliefs based on the behavior of profit maximizing firms. Choice overload can occur if

beliefs are such that larger choice sets are associated with lower perceived quality.

The following definition captures the concept of contextual inference by modifying the

standard search problem to allow the belief distribution f to depend on the number of

alternatives in the set.

Definition 15 (The Search Problem with Contextual Inference). The search problem with

contextual inference is identical to the standard search problem, but instead of believing that

alternatives are always drawn from a distribution f , the DM believes that the distribution

depends on the size of the choice set, with fn the distribution of alternatives if the set size is

n. If n < m, then fn strictly first order stochastically dominates fm.

It is easy to see that the optimal solution to the search problem with contextual inference

will be to employ, in any given search problem, a fixed reservation threshold that depends

on search costs and the size of the choice set.

Lemma 4. For a given cost function k, the optimal solution to the search problem with

contextual inference can be characterized by a threshold function τ such that

τ(l, N) = τ Ik (|N |)

Where τ Ik is strictly decreasing in its argument

Our first result is that both decision avoidance and contextual inference can lead to choice

overload.

Theorem 8. Let T be consistent either with decision avoidance or with the solution to the

standard search problem with contextual inference. Then T can generate choice overload with

uniform search.

While search-based explanations on the one hand and contextual inference and decision

avoidance on the other both give rise to choice overload, the mechanism by which they do
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so is very different in a way that is observable in an experimental data set. As the following

theorem makes clear, the former leads to choice overload if, in the larger choice set, search

starts but stops before an alternative better than the default is found. In contrast, the latter

case, choice overload only occurs because search never starts in the larger choice set.

Theorem 9. Let the threshold function τ be consistent with either decision avoidance or

the solution to the search problem with contextual inference. Then for any two choice sets

A ⊂ B, τ can generate choice overload only if sτ (l) = d for every l ∈ LB. As a result, for

any T that is consistent with either of those two models and any set A which contains an

alternative better than the default

p(d,B)− p(d,A) =
∑
l∈LB

πB(l)ŝ(d, l)−
∑
l∈LA

πA(l)ŝ(d, l)

where πA ∈ ∆(LA) and πB ∈ ∆(LB) are the distributions over sequences used to generate

p(., A) and p(.B) respectively.

Let the threshold function τ be consistent with either search with increasing costs, static

optimization or learning. Then for any two choice sets A ⊂ B, τ can generate choice overload

only if, for some l ∈ LB, d ▷l sτ (l) ▷l xl where xl is the first above-default alternative in l.

As a result, for any T that is consistent with either of these models and any set A such that

|A| = 2 and which contains an alternative better than the default

p(d,B)− p(d,A) ≤
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl|

ŝ(y, l)

where πB ∈ ∆(LB) is the distribution over sequences used to generate p(., B).

A second behavioral difference between the two classes of models is whether list order is

important. As previous theorems have demonstrated, under search based models, for sets

that contain an above default-alternative, the probability of choosing the default depends on

the position of that alternative in the list. This is not true for models of contextual inference,

as the following theorem demonstrates

Theorem 10. Let {D, p} be an experimental choice data set generated by a model {u, T} in

which T is consistent with either decision avoidance or optimal behavior in the search model
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with contextual inference. Then, for any set A which contains an above default alternative

ĉ(d, l) = ĉ(d, l′) for all l, l′ ∈ LA

Specifically, the probability of choosing the default does not depend on the position of the

first above-default alternative.

5 Experimental Design

We now describe the results of an experimental task that allows us to compare search-

based explanations for choice overload to decision avoidance and contextual inference, and

to identify which of the various search channels are important in causing choice overload.

Our experimental design needed to satisfy a number of requirements. First, we needed

choice alternatives that had a clear preference ranking if subjects fully internalized their

values, yet requited cognitive effort to uncover those values. Our test of choice overload

relies on the former, while without the latter it would be too easy for the subject to simply

choose the best option in each choice set. Second, we required a design that allowed us to

control the order in which subjects searched, and observe their decision to stop searching.

This is necessary to generate the experimental data set of definition 1. Finally, and unlike

previous choice overload experiments, it was important for us to control the beliefs of the

subject about the distributions from which values were drawn - as our theory demonstrates,

these beliefs should be an important determinant of behavior.

In the following sections we explain how our design fulfills these criteria.

5.1 The Experimental Environment

The basic choice problem is similar to that in Caplin et al. (2011) and Dean et al. (2022):

Subjects choose between options which represent different amounts of experimental points.

The value of each option is represented by a sum (written out in words), meaning that, while

the ranking of alternatives is known to the experimenter, it requires effort on the part of the

subject to understand each value.

In each choice problem, the subject chooses between a default option (which has a value

of 6 experimental points) and between 1 and 20 other alternatives. The value of the default
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Figure 2: Typical Screenshot

option is known: it is the same in each choice problem, and it is displayed at the top of the

screen as a degenerate sum. The value of the other alternatives are not initially known.

In order to allow us to identify which alternatives the subject has searched, all non-

default alternatives are initially obscured. By pressing a button, the subject can uncover

each alternative in a pre-determined order. We therefore know the order of search. Moreover

the set of uncovered alternatives allows us to approximate the set of searched alternatives.

Specifically, it provides an upper bound on the set. We can be sure that any alternative that

was not uncovered has not been searched by the subject. It is possible that subjects uncover

alternatives, but do not internalize their values (for example, they could keep clicking until

they had uncovered all the alternatives, then process their values). In order to reduce this

possibility, we introduce a short delay of about 3 seconds after each reveal before the next

alternative can be uncovered.

When subjects are ready to make their choice, they can click on their preferred alternative

and press ‘choose’. Figure 2 shows a screenshot from a typical choice environment, in which

some alternatives have already been uncovered.

At the end of the experiment, one choice problem was selected at random for each subject,

and they were paid based on the option they chose in that situation. Experimental points

were converted to money at a rate of $0.50:1. This payment was added to a $3 participation

fee.

A full set of instructions is available in the appendix.
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5.2 Item Values and Beliefs

A key input into the theory from section 4 is the beliefs of the decision maker over the

distribution of values from which choice alternatives are drawn. In most choice overload

experiments these parameters of this process are not made explicit to the subject, so it

is hard to know what these beliefs might be (for example, in Iyengar and Lepper (2000),

subjects are not informed about how the jams are selected). In order to provide a controlled

test of our theory we tell subjects exactly how the values of the alternatives they are choosing

between are generated.

In section 4 we introduced three possible mechanisms by which search could generate

choice overload - distribution uncertainty, increasing search costs and static optimization.

In our baseline treatment we consider an environment in which the subject do in fact have

uncertainty about the distribution from which values are drawn. This provides an situa-

tion in which all three of our identified channels could, in principle be a factor in causing

choice overload. Given that previous demonstrations of choice overload have not provided

information on how values were selected, we would also argue that decision uncertainty is a

ubiquitous feature of such experiments. Including it in our study therefore makes it more

comparable to previous work.

For completeness, we also run a second treatment in which we turn off distribution

uncertainty, the results of which are reported in section 6.6.

5.2.1 Baseline Treatment

In the baseline treatment subjects are told that the values of the alternatives are drawn

from one of two distributions. Each distribution is geometric (truncated at 20). The ‘good’

distribution has λ = 0.25, while the ‘bad’ distribution has λ = 0.5.19 The PDF of each

of these distributions is shown in Figure 3. The same figures were also included in the

experimental instructions. Subjects were also made to draw values from the two distributions

as part of the instructions.

Prior to each choice problem the subject was reminded that the values they faced in

that choice problem would be drawn from one of these distributions, and a priori each was

equally likely. The instructions made it explicit that all alternatives in each choice problem

19In the instructions the distributions were referred to as A and B, rather than ‘good’ and ‘bad’.
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(a) ‘Bad’ Distribution (b) ‘Good’ Distribution

Figure 3: The two possible distributions of values for the learning treatment

were drawn from the same distribution, but that different choice problems may come from

different distributions. They also made it clear that subjects could update their beliefs about

which distribution was more likely by observing the values they uncovered - i.e. that there

was an opportunity for learning.

Because we are explicit about the procedure by which values were drawn, we can calculate

the beliefs that a Bayesian subject should have following any observed sequence of draws.

We make heavy use of this fact in the analysis that follows.

The specific procedure for generating the choice sets faced by each subject was as follows.

Prior to the start of the experiment, 100 values were drawn from each distribution. Sums were

generated to equal each of these values using the procedure of Caplin et al. (2011).20 Each

subject faced 10 choice problems: 4 with 2 options (the default plus one other alternative),

2 with 11 options, 2 with 16 options and 2 with 21 options. In each choice problem it was

equally likely that the good distribution or bad distribution would be used. The relevant

number of options was then drawn randomly from the chosen distribution, and presented

in a random order. The order in which choice sets were presented was also randomized.

Randomization occurred at the subject level, meaning each subject faced a different set of

choice problems. This random assignment of choice problems will be important in later

analysis.

20This set of options was the same for all subjects.

30



5.2.2 No-Learning Control

The no-learning control proceeded exactly as the learning treatment. The only difference is

that subjects were told that in each decision problem they would face values drawn from a

single distribution which was the average of the two distributions A and B from the learning

treatment. They were also told explicitly that this meant that the values they had so far

uncovered would not help them predict the values of other alternatives in the choice set.

5.3 Implementation

The experiment was run on Prolific, a platform that helps researchers recruit participants

for their online research. An online platform was chosen to make it easy to get data from a

large number of subjects, each of whom needed to answer only a limited number of questions.

Subjects are restricted to those located in the USA and fluent in English. The experiment

itself was programmed in JavaScript with custom plugins for the jsPsych library (de Leeuw,

2015). The experiment and subsequent analysis was pre-registered using the Open Science

Framework.21

307 subjects in the baseline treatment and 314 in the no-learning control successfully fin-

ished the experiment. During the course of the instructions, subjects were asked to complete

5 comprehension questions. Since our theoretical models consider optimal rational behavior,

it was important to have subjects properly understand the task. If they got any question

wrong more than 2 times then they were routed away from the experiment and could not

finish it. This happened to 71 and 72 subjects in the baseline and no-learning treatments re-

spectively. Subjects also faced two practice rounds before the 10 ‘live’ rounds that constitute

the experiment.

6 Results

We use the data from the above experiment to answer six questions, and so tease out the

role of the various different drivers of choice overload identified in section 4.

First we establish where there is indeed choice overload in our baseline environment, and

so we have a suitable test bed to differentiate between different theories of choice overload.

21osf.io/3jfpn
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Table 1: Default Choice by Set Size

Set Size % Default Choice N
2 9 53
11 38 211
16 41 273
21 44 274

Percentage of sets that contained at least
one item better than the default in which the
default was chosen.

Second, we measure the relative importance of ‘classic’22 vs search based choice overload.

We do so by identifying instances in which subjects choose the default option when a better

alternative was available, and categorizing them by whether subjects had begun the search

process, or chosen the default without looking at any other alternatives. The former is

consistent with search based choice overload, while the latter is consistent with contextual

inference or decision avoidance.

Third, we perform another test to differentiate between classic and search based models.

We examine the role of the position of the first above-default alternative in determining

whether the default is chosen. Search based models predict that default choice should be

more likely if above default alternatives appear later in the search process, while classic

models do not.

Fourth, we test for the impact of distribution uncertainty on default choice while con-

trolling for the effect of fatigue through search order position.

Fifth, we use a behavioral model to estimate whether learning, the number of options

searched, and the determinants of the decision to stop searching, allowing us to differentiate

between the three models of search proposed in section 4.

Finally we compare the results of our baseline treatment to that of the no learning control.

6.1 Choice Overload

First, we determine the extent of choice overload in our baseline treatment. In order to do

so, we build on the approach of Dean et al. (2022), and look for specific subsets and supersets

such that default choice is higher in the latter than in the former.

22i.e. contextual inference and decision avoidance.
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Given that we know what the rankings of alternatives should be, we focus our attention on

sets which contain an option which is better than the default. Sets which have no such option

should have high default choice even in small choice sets, and so have little opportunity for

choice overload. In table 1 we show the fraction of sets which contain an alternative better

than the default in which the default is chosen. In lemma 5 in appendix C we show that, if

a stochastic choice function does not exhibit choice overload then default choice in such sets

should be non-increasing in set size.

Table 1 shows that default choice is between 29 and 35 percentage points (pp) higher

in sets of size greater than 2 than is is in sets of size 2. In order to confirm statistical

significance, table 2 reports the results of the regression

chose defaulti,j = α +
∑

k∈{11,16,21}

βk1(sizei,j = k) + εi,j

where i is the subject, j is the round, chose defaulti,j is a variable that takes the value 1 if the

default was chosen in that observation, sizei,j is the size of the choice set in that observation

and 1 is the indicator function. Again, we run the regression only on sets that contained

an above-default alternative. Standard errors are clustered at the subject level. We report

results from Ordinary Least Squares (OLS) regressions, though a logit specification gives

equivalent results.

Table 1 confirms that we observe choice overload in our baseline specification. Default

choice is higher at in the size 11, 16 and 21 choice sets relative to the size 2 choice set at the

1% level. Tests of linear restriction reveal no difference in default choice probability between

the size 11, 16 or 21 choice sets.

6.2 Classic vs Search Based Choice Overload

We next establish the relative importance of classic versus search based explanations for

choice overload. As we show in theorem 9, decision avoidance and contextual inference

lead to choice overload which is due to subjects failing to engage with larger choice sets -

specifically not searching any alternatives. In contrast, search based models predict that

overload is due to subjects starting to search, but then stopping before they find anything

better than the default. To estimate the relative importance of choice overload due to these
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Table 2: Regression Results

Default Choice

S=11 0.285***
(0.050)

S=16 0.316***
(0.050)

S=21 0.347***
(0.052)

Constant 0.094***
(0.041)

R2 0.028
N 811

OLS regression of default choice
on set size dummies. Standard er-
rors clustered at the subject level.
* significant at 10% level, ** signif-
icant at 5% level, *** significant at
1% level.

factors, we again restrict attention to sets in which there is an alternative available which

is better than the default. We can place each occasion in which the default was still chosen

into one of three categories.

1. No options are searched (Classic)

2. Search starts, but stops before an option better than the default is found (Search)

3. An option better than the default is uncovered, but the default is still chosen (Mis-

takes)

The third category, which we term ‘Mistakes’, in fact covers two types of behavior.

The first is genuine calculation errors - i.e an alternative was considered, but its value was

miscalculated. Such errors lie outside of the scope of the theory presented in the proceeding

sections. A second possibility is that subjects uncovered more alternatives than they in fact

considered, meaning that we have overestimated the size of the consideration set. From this

second perspective, observations in the ‘Mistakes’ category should be in either the Classic

or Search categories, but we do not know which.

Table 3 reports this breakdown for each set size using data from our baseline treatment.

In the final row it reports the difference between the fraction of time each behavior was
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Table 3: Categorizing Choice Overload

Size Choose Default Classic Search Mistake N
2 9% 2% 0% 8% 53
11 38% 7% 10% 19% 211
16 41% 5% 17% 21% 273
21 44% 5% 19% 20% 274

s > 2 minus s = 2 32% 4% 16% 12%

For each choice set size, reports the fraction of sets that contain an above-default option
in which the default was chosen (Chose Default), then categorizes these as occurring due
to decision avoidance/contextual inference (Classic), search based processes (Search) or
calculation errors (Mistakes).

exhibited in the size two choice set versus in sets of greater than size two. This can then be

thought of as the contribution of each category to choice overload. This analysis suggests

that Search accounts for the highest fraction of choice overload, increasing default choice by

16pp between size 2 and greater than size 2 sets (50% of the total choice overload). This is

followed by Mistakes, with Classic accounting of only 4pp (12.5%) of the increase.

6.3 The Effect of Search Order on Default Choice

We next examine our data for another point of difference between classic and search models.

As we show in theorem 10, search order matters for the choice of default in the latter case,

but not in the former.

We can test this prediction due to the fact that each choice set in the experiment is

generated randomly, creating variation in the order in which the first above-default alter-

native appears. Figure 4 shows the probability that the default is chosen, grouping sets by

the position of the first above-default alternative and using data from rounds with sets size

greater than 2 in our baseline treatment. It shows a clear upward trend - default choice is

more likely in sets in which the first above-default alternative appears later. This pattern is

confirmed by regression analysis. An OLS regression of default choice on the position of the

first above-default alternative, with standard errors clustered at the subject level, returns a

coefficient significant at the 0.01% level.23

23The coefficient is essentially unchanged if dummies for set size are included in the regression.
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Figure 4: Effect of position of first above-default alternative on default choice. Bars show
the probability of default being chosen. Error bars represent standard errors.

6.4 Separating Distribution Uncertainty from Increasing Costs

The results of the previous two subsections indicate that search channels are important in

determining default choice. However, they do not allow us to understand which features of

search are important: both the increasing search costs and distribution uncertainty would

predict that sets where the first above-default alternative appear later should see more default

choice.

We address this issue by again making use of random variation in the search sets that

subject’s face. The basic idea is as follows. Consider two sets in which the first above-default

alternative appears after position k, but which contain different values prior to that. Set

A contains lower values in these early positions than does set B. As per theorem 3, the

increasing search cost model would imply that, on average, default choice should be the

same in these two sets - the only thing that determines default choice is the position of the

first above-default alternative. In contrast, the distribution uncertainty model would imply

that default choice should be more likely in set A than set B, as the subjects would have

more pessimistic beliefs by position k and so be more likely to quit searching.

In order to test for such effects, we run a regressions of the form

chose defaulti,j = α + βmin costki,j + εi,j
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Table 4: The Effect of Distribution Uncertainty

Min. Beliefs Min. Costs
k Coeff s.e. N Coeff s.e. N
1 -0.14 0.10 650 0.61 0.67 650
2 -0.37* 0.20 564 -0.67 0.48 564
3 -0.51 0.32 508 -0.59 0.40 508
4 -0.61 0.45 436 -0.44 0.39 436
5 -0.35 0.60 379 0.00 0.38 379
6 -0.49 0.80 317 0.04 0.39 317
7 -1.37 1.06 261 -0.29 0.38 261
8 -2.92** 1.22 207 -0.59 0.39 207
9 -3.58** 1.50 172 -0.84** 0.40 172
10 -3.85* 1.97 132 -1.14*** 0.43 132
11 -5.22** 2.32 107 -1.65*** 0.46 107
12 -8.99*** 2.50 81 -1.78*** 0.51 81
13 -8.10* 4.50 64 -1.66*** 0.54 64
14 -11.37* 6.07 45 -1.98*** 0.58 45
15 -11.03 6.82 30 -1.61** 0.72 30

Each line reports the coefficient of a regression of default
choice on minimum beliefs (left hand panel) and minimum
costs (right hand panel) measured at period k, looking
only at sets in which the first above-default alternative
appears after position k. * significant at 10% level, **
significant at 5% level, *** significant at 1% level.

for k = 1...15. For each of these regressions, we use data on choice sets of size greater than

K, and include all observations in our baseline treatment for which there is (a) an alternative

that is above the default value (b) the choice set is generated using values from the high

quality distribution and (c) the first such alternative appears after position k. min costki,j

is the minimum cost variable introduced in definition 13, which records the lowest cost such

that an optimal decision maker would stop searching at or before position k. As before we

estimate this model using OLS with errors clustered at the subject level.24

Recall that a high value of the minimum cost variable means that only people with high

search costs should stop searching before this point. Thus, we would anticipate a negative

relationship between minimum costs and default choice: a high value of the minimum cost

variable means more people should continue searching, and so have a chance of finding the

24In the preregistration plan we mistakenly reported that we were intending to use a discretized version of
the minimum cost variable. This provides similar results. For completeness we have included these results
in table D.1 in appendix D.
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above-default alternative.

The minimum cost variable combines information on both beliefs and the number of

items remaining to be searched derived through an optimizing model. For transparency we

repeat our analysis with a ‘minimum beliefs’ variable, which records the lowest level of belief

that values are being drawn from the high quality distribution prior to point k. Again, we

would expect to see a negative relationship between minimum beliefs and default choice: a

higher probability that the choice set is of high quality should raise the stopping threshold,

and thus make it less likely the default is chosen.

Table 4 reports the results of these regressions. It shows that both minimum beliefs and

minimum costs are significantly related to default choice, predominantly in later rounds.

6.5 Determinants of Stopping Behavior

The analysis of section 4 makes it clear that, to differentiate between the three variants of

the search model, it is useful to know the determinants of the decision to stop searching. In

order to perform such analysis, we will reformulate our data. Recall, that, for each choice

set, we observe the sequence of alternatives that the subject could see, and the point at

which they stopped searching. We will now take an observation to be stopping behavior

when faced with the kth alternative in the search order shown to subject i in round j.

In order to understand the determinants of the subject’s decision to stop searching we

run the following regression

stopki,j = αi + β1above
k
i,j + β2k + β3min costki,j + εki,j (2)

where stopki,j is a dummy that takes the value 1 if the subject has stopped searching at or

before observation k, aboveki,j is a dummy that takes the value 1 if the DM has seen an

alternative above the value of the default at or before alternative k and min costki,j is the

minimum cost variable calculated for alternative k in choice set j for person i. We estimate

the regression using OLS, including subject fixed effects and standard errors clustered at

the subject level, using data from our baseline treatment. We restrict to observations which

are not the last one in the search sequence (in which case the subject must de facto stop

searching), and choice sets in which the subjects began the search process.

For transparency, we also consider a regression specification in which the determinants
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Table 5: Determinants of Stopping Search

Searched Stopped

(1) (2)

Min. Cost -0.713***
(0.072)

Min. Beliefs -0.397***
(0.041)

k 0.031*** 0.029***
(0.001) (0.002)

Items Remaining -0.007***
(0.002)

Above 0.060*** 0.084***
(0.017) (0.017)

Const 0.329*** 0.322***
(0.018) (0.026)

R2 0.542 0.537
N 24,182 24,182
Subject f.e. Yes Yes

Dependent variable is whether or not search has
stopped by given observation. OLS regression
with standard errors clustered at the subject level
* significant at 10% level, ** significant at 5%
level, *** significant at 1% level.

of the minimum cost variable - minimum beliefs and the number of items left to search - are

included separately in the regression.

Distribution uncertainty would imply that the minimum cost variable (or minimum beliefs

and items remaining to search) is negatively related to stopping. The increasing costs model

would imply that k should be significantly and positively related to stopping, while the

simultaneous search model implies that the ‘above’ variable should not be predictive of

stopping behavior.

Table 5 shows the results for both specifications. All of the dependent variables are highly

significant, offering support for the distribution uncertainty and increasing costs channel, but

not the simultaneous search model.
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6.6 No Learning Control

In appendix D.1 we repeat the analysis above for the No Learning control treatment in

which we attempt to switch off distributional uncertainty. One challenge in doing so is that

a subject who has internalized our instructions should have beliefs that are invariant to the

values they have seen. In order to provide a more interesting test, we construct minimum

belief and minimum cost variables as if the subject’s believed they were in the Baseline

treatment. This allows us to test whether subjects are more likely to stop searching and

choose the default if they have seen low value alternatives.

The results are broadly in line with what we would expect: overload still exists in the

No Learning control treatment, but it is smaller, and appears less related to search and

distribution uncertainty.

Tables D.2 and D.3 show that there is still choice overload in the No Learning control,

though less than in the baseline treatment. Regression analysis confirms that there is signif-

icantly less overload in the control treatment, albeit due to higher default choice in the size

2 treatment. Tables D.4 and D.5 show that there is more ‘Classic’ relative to search based

choice of the default in the no learning treatment. There also appears to be somewhat fewer

mistakes. Figure D.1 shows that there is again a relationship between the position of the

first above-default alternative and default choice, albeit weaker in the baseline treatment.

Table D.6 shows either no relationship or a positive relationship between minimum beliefs or

minimum costs and choice of default, once the position of the first above-default alternative

is controlled for. Table D.7 shows that minimum beliefs and the number of alternatives

remaining are not predictive of stopping search. Minimum costs are still predictive, but the

relationship is much weaker than the baseline treatment.

6.7 Discussion and Conclusion

We have demonstrated, both theoretically and experimentally, that search theoretic concerns

can drive choice overload. Both increasing search costs and uncertainty mean that, in a choice

set with many mediocre options, a decision maker will fail to find a high quality alternative.

These results lead to two further questions: How important are each of these forces

in choice situations outside the laboratory, and what does this mean for optimal ‘choice

architecture’ - or the design of the decision making environment? We believe that both are
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important topics for future research. Our expectation is that both fatigue and uncertainty

should, if anything, be more important for ‘real world’ decisions. Take, for example, the

job of selecting a retirement savings plan from a collection offered by an employer. It seems

likely that users would have a great deal of uncertainty about how these plans had been

selected, particularly those newly arrived at the company. Moreover each plan would require

significant effort to understand. Thus we would expect the two channels we have identified

to play an important role in their decision making.

A model incorporating the two elements we have identified could also be used to evaluate

the welfare effects of different choice environments. At a basic level, it could be used to

determine which and how many alternatives should be included in a choice set. Assuming

that there is uncertainty or heterogeneity in the tastes of the consumer, then there is a

trade off when adding options which may be good for some people, but bad for many. A

model incorporating the forces we identify will give new answers to these questions. The

same model could be used to evaluate more exotic options, such as ranking the alternatives

(and therefore giving a free signal about their quality), or presenting alternatives in smaller

groups (for example as in Besedeš et al. (2015). Unique amongst the models we (and others)

have considered, distribution uncertainty means that the composition of the choice set, and

the order in which they are seen, can affect stopping behavior. This gives a richer set of

tools for policy makers to consider when designing the choice environment.

41



References

Abaluck, Jason and Jonathan Gruber, “When less is more: Improving choices in health
insurance markets,” The Review of Economic Studies, 2023, 90 (3), 1011–1040.

Aguiar, Victor H and Mert Kimya, “Adaptive stochastic search,” Journal of Mathe-
matical Economics, 2019, 81, 74–83.

Aguiar, Victor, Maria Jose Boccardi Chalela, and Mark Dean, “Satisficing and
stochastic choice,” Journal of Economic Theory, 2016, 166 (C), 445–482.

Anderson, Christopher J, “The psychology of doing nothing: forms of decision avoidance
result from reason and emotion.,” Psychological bulletin, 2003, 129 (1), 139.

Beattie, Jane, Jonathan Baron, John C Hershey, and Mark D Spranca, “Psycho-
logical determinants of decision attitude,” Journal of Behavioral Decision Making, 1994,
7 (2), 129–144.
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A Proofs

A.1 Proof of Lemma 1

Proof. First, define for each number i the myopic optimal strategy which is the optimal

strategy if there were only one more alternative to search, and the search cost is k(i). This

is a threshold strategy t̄(i) where this value solves

k(i) =

∫ ∞

t̄(i)

(y − t̄(i))f(y)dy (3)

Note that, as k(i) is increasing in i, it must be the case that t̄(i) is decreasing in i.

Let V̂ (x) be the expected value of searching one more period if the utility of the best seen

alternative is x− i.e.

V̂ (x) =

∫ x

−∞
xf(y)dy +

∫ ∞

x

yf(y)d(y)

Note that

V̂ (x)− k(i) > x for x < t̄(i) (4)

V̂ (x)− k(i) < x for x > t̄(i)

We claim that the threshold strategy t̄(i) is in fact the fully optimal strategy τ̂k(i). We

show this for a search for a set of arbitrary size M using induction on j, the number of items

left to search. Definitionally the claim is true for j = 1, so assume it is true of j and consider

j + 1. Consider a DM who has searched M − j − 1 items and the best item seen so far has

value y > t̄(M − j − 1). The search should continue if

y < k(M − j − 1) + VM−j−1(y)

Where VM−i−j−1(y) is the value of continuing to search assuming optimal behavior in the

future. But as y > t̄(M−j−1) > t̄(M−j) = τk(M−j) (where the last equality follows from

the inductive assumption), we know that VM−j−1(y) = V̂ (y), as search will stop next period.

By inequality (4) we therefore have that y > k(M−j−1)+ V̂ (y) = k(M−j−1)+VM−j−1(y)

so it is optimal to stop searching.

Now consider the case in which y < t̄(M − j − 1). Now note that VM−j−1(y) ≥ V̂ (y),
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because VM−j−1(y) is the maximal value of continuing to search across all feasible search

strategies, while V̂ (y) is the value for a particular feasible strategy. Then we have that

y < k(M − j − 1) + V̂ (y) ≤ k(M − j − 1) + VM−j−1(y)

And so it is optimal for search to continue.

We have therefore established that the optimal threshold strategy is to set τ(i) = t̄(i) for

all i. Because t̄(i) is decreasing in i this completes the proof.

A.2 Proof of Theorem 3

Proof (Part 1). Let x be the first item in l that has utility above d. Fix a threshold function

τ . Then cτ,u(l) = d if and only if search stops before an alternative with utility above d is

found - i.e. sτ,u(l) ▷l x. This will occur if and only if, for some y ▷l x,

u(d) > τ(ly, |A(l)|) = τ̂k(|A(ly)|)

Let y∗ be the element that immediately precedes x in l. Then, as τ̂k is strictly decreasing,

the above condition will hold if and only if

u(d) > τ̂k(|A(ly
∗
)|)

As u and is fixed and τ = τ̂k is fixed, whether or not this condition holds depends only

on |A(ly∗)| = F . Thus, for any τ , 1 (cτ,u(l) = d) depends only on F , and therefore so does

ĉ(d, l) =
∑
τ∈T

T (τ)1(cτ,u(l) = d)

completing the proof.

Proof (Part 2). For any u, l τ = τ̂k and x

sτ,u(l) ⊵l x
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If and only if, for some y ⊵l x

max
z⊵ly

u(z) > τ(ly, |A(l)|) = τ̂k(|A(ly)|)

As, for all y ⊵l x, maxz⊵ly u(z) ≤ maxz⊵lx u(z) and τ̂k(|A(ly)|) ≥ τ̂k(|A(lx)|), this condi-
tion will hold if and only if

max
z⊵lx

u(z) > τ̂k(|A(lx)|)

The left hand side depends only on the maximal value of utility that occurs at of before x,

while the right hand side depends only on |A(lx)| - i.e. the position of x in l, thus completing

the proof.

A.3 Proof of Theorem 5

Proof (Part 1). Let x be the first item in l that has utility above d. Fix a threshold function

τ̂ sk . Then cτ̂sk ,u(l) = d if and only if search stops before an alternative with utility above d is

found - i.e. sτ̂sk ,u(l) ▷l x. Given that search will definitely stop at nk (assuming that this is

less than the length of list l), then we have cτ,u(l) = d if and only if nk ≤ F - the position of

the first above default alternative. Thus the probability that the default is chosen depends

only on the probability P (k|nk ≤ F ).

Proof (Part 2). For any u, l τ = τ̂ sk and x

sτ,u(l) ⊵l x

if and only if |A(lx)| ≥ nk i.e. the position of x in l. Thus the probability of stopping at or

before x is just P (k|nk ≤ |A(lx)|).

A.4 Proof of Lemma 2

Proof. First, let T be decreasing. Let m > 1 be the smallest integer such that τ̂ ∗(m+ 1) <

τ̂ ∗(m) for some τ̂ ∗ in the support of T . This means, that for all τ̂ in the support of T the

thresholds are constant for points 1 to m (i.e. τ̂(1) = ... = τ̂(m)) and either constant or

strictly decreasing between m and m + 1. Now construct a set B which contains d, y and

x1, ..., xm. Select the utility function such that u(y) > τ̂ ∗(m) > u(d) > τ̂ ∗(m+ 1) > u(x1) >
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.... > u(xm). Consider the set A = {d, y}. There is only one possible list ordering in A,

which is dy. Thus, the probability of choosing the default is

p(d,A) =
∑
τ∈T

T (τ̂)1(τ̂(1) < u(d))

Specifically, the default will not be chosen under τ̂ ∗.

Now consider the set B. Note that any τ that led to the choice of the default in set A will

also lead to the choice of the default in set B under any list ordering, as for such thresholds

τ̂(1) < u(d), and so only the default will be searched. Furthermore, with some probability

the threshold τ̂ ∗ will lead to the choice of the default. Consider the list l = dx1....xmy. From

this list, because u(d) > τ̂ ∗(m+ 1), su,τ (l) = xm and cu,τ (l) = d. Thus we have

p(d,B) ≥

sumτ∈T T (τ̂)1(τ̂(1) < u(d)) + T (τ̂ ∗)
1

|LB|
>

sumτ∈T T (τ̂)1(τ̂(1) < u(d))

= p(d,A)

Thus demonstrating choice overload with uniform search.

Next assume that T is either increasing or constant and fix a utility function u. We

show that, if an increasing or constant threshold function τ̂ leads to a choice other than the

default for some list order in a set A, then it must lead to a choice other than the default

for any set B ⊃ A and list l′ ∈ LB. This is enough to establish the lemma, as it implies that

the probability of choice of default in set A must be lower than in set B. To see this claim,

note that, if d is not chosen from l ∈ LA according to τ̂ , it must be that, for some x ∈ A,

u(x) > u(d) and x ⊵l su,τ̂ (l). This means (i) that τ̂(1) > u(d) and (ii) that there exists an

x ∈ A(L) such that u(x) > u(d). Now consider any l′ ∈ LB. Note that, because τ̂(1) > u(d)

and τ̂(k) ≥ τ̂(1) for all |B| > k ≥ 1, search will either stop because (a) some y is found at

search point k such that u(y) ≥ t̂(k) > u(d), or (b) because the entire set has been searched,

in which case x has been seen. In either case there exists an element z such that u(z) > u(d)

and z ⊵l su,τ̂ (l
′), meaning that cu,τ̂ (l

′) ̸= d
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A.5 Proof of Theorem 6

Proof. Let τ̂k be the threshold function in the support of T that is consistent with the highest

cost k. This implies that τ̂k(µ, n) ≤ τ(µ, n) for every τ in the support of T , beliefs µ and

items remaining n.

Note that it must be the case that observing a (the worst possible alternative) increases

the likelihood that the choice set is of low quality, so µ(da) < µ(d) = 0.5. As k guarantees

learning, this means that τ̂k(µ(da), 1) < τ̂k(µ(d), 1).

Consider three alternatives d, a and x and a utility function u such that u(a) < u(d) <

u(x) and τ̂k(µ(da), 1) < u(d) < τ̂k(µ(d), 1).

We will show that this will cause choice overload when comparing the sets A = {d, x}
and B = {d, a, x}. Note first, that the default will never be chosen in set A. This is because

u(d) < τ̂k(µ(d), 1) ≤ τ(µ(d), 1) for every τ in the support of T . Thus x will always be

searched in choice set A, meaning that it will be chosen, as u(x) > u(d). We can therefore

conclude that p(d,A) = 0.

In order to show that T can generate choice overload with uniform search, it is therefore

enough to find one threshold in the support of T and one list order from B in which d is

chosen. This will be the case for the order dax ad the threshold τ̂k. This is because, by

assumption, τ̂k(µ(da), 1) < u(d), and so search stops after the sequence da is observed. As

u(d) > u(a), d will be chosen, implying

p(d,B) ≥ T (τ̂k)
1

2
> 0 = p(d,A)

A.6 Proof of Theorem 7

Proof (Part 1). Let y be the first item in l that has utility above d. Fix a threshold function

τ̂k. Then cτ̂k,u(l) = d if and only if search stops before an alternative with utility above d

is found - i.e. sτ̂k,u(l) ▷l y. Let x be the alternative immediately proceeding y, then by

definition

sτ̂k,u(l) ▷l y if and only if k ≥ ml,u(x)
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Thus

ĉ(d, l) =
∑
τ∈T

T (τ)1 (sτ,u(l) ▷l y)

=
∑
k∈K

P (k)1(k ≥ ml,u(x))

Proof (Part 2). This follows directly from the definition of the minimum cost that induces

stopping

∑
y⊵lx

ŝ(y, l)

=
∑
τ∈T

T (τ)1 (sτ,u(l) ⊵l x)

=
∑
k∈K

P (k)1(k ≥ ml,u(x))

A.7 Proof of Lemma 4

Proof. By Remark 1, we know that for a given k and |N | the solution to the optimal search

problem is a fixed reservation level. Furthermore the solution is given by the solution to the

miopic search problem - i.e. the x∗ that solves

k =

∫ ∞

x∗
(x− x∗)f|N |dx

For a fixed x∗, the right hand side of this expression is decreasing in |N |, as |M | > |N |,
implies that f|N | strictly first order stochastically dominates f|M |. Thus, for a fixed cost, an

increase in set size from |N | to |M | must be matched by a decrease in x∗ to ensure that the

right hand side of the expression equals the left hand side.

A.8 Proof of Theorem 8

Proof. First we show that decision avoidance is consistent with choice overload. Pick some

τ̂ d∗ in the support of T . By assumption, τ d∗(1) > τ d∗(2). Pick 3 alternatives, d, x and y,

Appendix–6



and a utility function u such that

τ d∗(1) > u(y) > u(d) > u(x) > τ d∗(2)

Now consider the set A = {d, y}. Here, there is one possible list - dy. The probability of

choosing the default in this list is equal to the probability of threshold functions such that

τ d(1) < u(d)

p(d,A) =
∑

T (τ)1(τ d(1) < u(d))

Note that τ d∗ is not part of this set.

Now consider a set B = {d, x, y} and note that, for any list order l, τ d∗ will lead to the

choice of the default: u(d) > τ d∗(2) means that sτd∗,u(l) = d and so cτd∗,u(d). Note also that

any threshold that lead to the choice of d in A will also lead to the same choice in B for any

search order, as the fact that d was chosen in A implies that τ d(1) < u(d), and the fact that

τ is strictly decreasing implies that τ d(2) < τ d(1). Thus we have

p(d,B) ≥
∑

T (τ)1(τ d(1) < u(d)) + T (τ d∗)

>
∑

T (τ)1(τ d(1) < u(d))

= p(d,A)

Next we show that contextual inference is consistent with choice overload. to see this, let

k∗ be the highest cost such that there exists a τ Ik∗(x) in the support of T . By assumption,

we know that τ Ik∗(2) > τ Ik∗(3). Pick three alternatives, d, x and y such that

τ Ik∗(2) > u(y) > u(d) > u(x) > τ Ik∗(3)

Note that, by construction τ Ik (2) ≥ τ Ik∗(2) > u(d) for every τ Ik (1) ∈ T , and so in the set

A = {d, y} we have that, for all such threshold functions the set will be completely searched,

and because u(y) > u(d), u(y) will be chosen. Thus p(d,A) = 0, and so to demonstrate

choice overload with uniform search, we only need to find a single search order from the

set B = {d, x, y} and single threshold in T such that the default is chosen. Note that

u(d) > τ Ik∗(3), and so sτI
k∗ ,u

(l) = d for any l such that |A(l)| = 3. As a result, cτI
k∗ ,u

(l) = d

for any search order derived from B, completing the proof.
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A.9 Proof of Theorem 9

Proof. We first deal with the case in which τ is consistent with either decision avoidance or

the search problem with contextual inference. In order to cause choice overload, it must be

that, with some probability, d was not chosen from the set A. This means that there must

be some x ∈ A such that u(x) > u(d). A necessary condition for choice overload is that for

some l ∈ LB cτ,u(l) = d. We therefore complete this part of the proof by first showing

cτ,u(l) = d ⇒ sτ,u(l) = d

We do so by showing that sτ,u(l) ̸= d then cτ,u(l) ̸= d. As τ is consistent with either

decision avoidance or contextual inference, we know that τ d(N) is weakly decreasing in N ,

the number of items remaining to search,25. If sτ,u(l) ̸= d it must be the case that that

τ(N − 1) > u(d), and so τ(i) > u(d) for all i < N − 1, as τ(N − 1) ≤ τ(i). Thus search will

only stop if, for some x searched at position j, u(x) > τ(N−j) > u(d), or all items have been

searched. In either case, (given that there is an alternative x in l such that u(x) > u(d)), we

have u(x) > u(d) for some x ⊵l sτ,u(l) and so cτ,u(l) ̸= d.

This confirms that sτ (l) = d for some l ∈ LB. However, as decision avoidance and

contextual inference stopping rules depend only on the number of alternatives, the fact that

sτ (l) = d for some l ∈ LB implies sτ (l) = d for all l ∈ LB.

We next show that, for any x ∈ A ⊂ B where x is an above-default alternative

p(d,B)− p(d,A) =
∑
l∈LB

πB(l)ŝ(d, l)−
∑
l∈LA

πA(l)ŝ(d, l)

As, for any set S,

p(d, S) =
∑
l∈LS

πS(l)ĉ(d, l)

It is enough to show that, for any set in which there is an above alternative

ĉ(d, l) = ŝ(d, l)

25It is strictly decreasing if τ is consistent with decision avoidance, constant if it is consistent with con-
textual inference.
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Given that we have already shown that

cτ,u(l) = d ⇒ sτ,u(l) = d

and as it is clearly true that sτ,u(l) = d ⇒ cτ,u(l) = d, we can conclude that

ĉ(d, l) =
∑
τ∈T

T (τ)1(sτ,u(l) = d) = ŝ(d, l)

We next consider the case in which the threshold function τ is consistent with either

search with increasing costs, static optimization or learning. We first need to show that

τ can generate choice overload only if, for some l ∈ LB, d ▷l sτ (l) ▷l xl where xl is the

first above default alternative in l. To see this, first note that, if sτ (l) = d for all l ∈ LB, it

means that u(d) > τ(d, |B|). All the threshold functions currently being considered are either

invariant to |B| (increasing costs or static optimization) or increasing in |B| (learning). So, as
|A| < |B|, this would imply that u(d) > τ(d, |A|) and so sτ (l) = d for all l ∈ LA. This would

in turn imply cτ (l) = d for all l ∈ LA, and so for any induced data set, p(d,A) = 1, making

choice overload impossible. This implies that, for choice overload to occur, a necessary

condition is that, for some l ∈ LB, d ▷l sτ (l). Next, note that, xl ⊵l sτ (l), implies that

cτ (l) ̸= d, as by construction u(xl) > u(d). Thus, it must be the case that, for some l such

that d ▷l sτ (l), it must also be that sτ (l) ▷l xl, otherwise every list order that leads to the

choice of default in B would also lead to the choice of default in A and so we would have

p(d,B) ≤ p(d,A).

Finally we show that, for any T that is consistent with either of these models and any

set A such that |A| = 2 and which contains an alternative better than the default

p(d,B)− p(d,A) ≤
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl

ŝ(y, l)

First, note that, for any list l with associated first above-default alternative xl the default

is chosen if and only if search stops before xl. Thus it is generally true for any set S that
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contains an above default alternative that

p(d, S) =
∑
l∈LB

πS(l)
∑

y∈B|d⊵ly▷lxl

ŝ(y, l)

=
∑
l∈LB

πS(l)ŝ(d, l) +
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl

ŝ(y, l)

Furthermore,

ŝ(d, l) =
∑
τ∈T

T (τ)1(sτ,u(l) = d)

= .
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

- i.e. search stops at d if and only if a threshold function is drawn such that the utility

of d is above the threshold.

Finally, note that, as |A| = 2, it is always the case that the only alternative before the

first above-default alternative is d itself, so

p(d,A) =
∑
l∈LB

πS(l)ŝ(d, l)

=
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

This implies that

p(d,B)− p(d,A)

=
∑
τ∈T

T (τ)1 (u(d) > τ(d, |B(l)|)) +
∑
l∈LB

πB(l)
∑

y∈B|d▷ly▷lxl

ŝ(y, l)

−
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

As argued above, for threshold functions in the classes considered, u(d) > τ(d, |B(l)|)
implies that u(d) > τ(d, |A(l)|), and so

∑
τ∈T

T (τ)1 (u(d) > τ(d, |B(l)|))−
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|)) ≤ 0

Providing the required results.
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A.10 Proof of Theorem 10

Proof. First note that, as shown in the proof of theorem 9, for models in this class, we have

that the default can only be chosen if it is the only alternative searched - i.e.

cτ,u(l) = d ⇒ sτ,u(l) = d

This implies that

ĉ(d, l) =
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l)|))

=
∑
τ∈T

T (τ)1 (u(d) > τ(d, |A(l′)|))

= ĉ(d, l′)

B Sequential Search with Learning

A decision maker faces a choice set with N options of scalar monetary rewards. These options

have been drawn from one of two probability distributions F (x|µ) or F (x|µ) with same

support [a, b] ⊂ R. F (x|µ) is a “good” distribution, while F (x|µ) is a “bad” distribution.

They are both absolutely continuous, with respective probability density functions f(x|µ)
and f(x|µ), which satisfy a strict Monotone Likelihood Ratio property. This also implies that

F (x|µ) strictly first order stochastically dominates F (x|µ), i.e., F (x|µ) < F (x|µ) for all x ∈
(a, b).

The decision maker has a belief µ ∈ (0, 1) over the probability that the choice set they’re

facing was drawn from F (x|µ), and initially holds a prior µ0 ∈ (0, 1). Every belief µ defines

a new probability distribution F (x|µ) = µF (x|µ) + (1− µ)F (x|µ), with f(x|µ) analogously
defined. After looking at option x ∈ [a, b] when holding belief µ ∈ (0, 1), the decision maker

updates belief to µ(x) according to Bayes’ Rule:

µ(x) =
1

1 + (1−µ)
µ

f(x|µ)
f(x|µ)

.
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This defines a function (x, µ) 7→ µ(x) from options x and current beliefs µ to a new updated

belief µ(x). Notice that this resulting function µ(x) is increasing in µ and in x due to the

strict Monotone Likelihood Ratio assumption.26

The DM sequentially searches through the available options. All search options remain

available to choose - i.e. search with recall. Every period they have a value y ∈ [a, b] defining

the highest monetary reward encountered thus far in the search process and a current belief

µ ∈ (0, 1). They can either stop and pick the best option found so far, terminating the

problem, or search and look at a new option. Upon drawing a value x, they update their

belief to µ(x) as described above and update their best available option if x > y or not

otherwise, and move on to the next period.

The period variable n defines how far along the search process the agent is. Specifically it

marks how many options in the choice set are left to be searched. This defines the following

important periods. The agent starts at period n = N , with all options still unsearched, and

only the default option being seen. n = 1 is the final period, in which there is only a single

option left to search. n = 0 is the terminal period, in which all options have been searched

and the problem terminates. Each time the agent searches, the period counter decreases by

one.

This process defines a collection of value functions VN , VN−1, ..., V1, V0 : [a, b]×(0, 1) → R.

The value function Vn(y, µ) gives the value of reaching period n while holding belief µ and

having encountered a best option with value y thus far (i.e. after the value drawn in period n

has been revealed). These value functions are recursively connected to each other as follows.

By assumption, in the terminal period the process must terminate, and therefore:

V0(y, µ) = y for all y and µ.

And for n = 1, ..., N , the decision maker can either stop, and take option value y, or search,

in which case they might draw a value that is above or below their current best one, while

updating their beliefs accordingly. Therefore, we have the Bellman equation:

Vn(y, µ) = max

{
y,−k +

∫ y

a

Vn−1(y, µ(x))dF (x|µ) +
∫ b

y

Vn−1(x, µ(x))dF (x|µ)
}
.

26The following results depend only on these monotonicity properties of the updating process, and not
specifically on Bayesian updating. Any updating rule satisfying them will imply the same results.
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In particular, given V0 as assumed, in the last period n = 1:

V1(y, µ) = max

{
y,−k + yF (y|µ) +

∫ b

y

xdF (x|µ)
}
.

That is, in this last period, beliefs µ only affect the value function through the distribution

of values in period 0, hence the problem takes a typical form in which the learning aspect

can be ignored. Given a belief µ, the solution takes the form of a threshold τ1(µ) ∈ [a, b) such

that there’s search if y < τ1(µ) and stopping otherwise. It’s obtained by setting y = τ1(µ)

such that the two terms inside the max operator in V1 are equal. Applying integration by

parts on
∫ b

y
xdF (x|µ) then yields the standard equation defining τ1(µ):

k =

∫ b

τ1(µ)

1− F (x|µ)dx,

with τ(µ) = a if k ≥
∫ b

a
1− F (x|µ)dx.

It turns out that in earlier periods, despite the additional element of learning, the main

properties of the problem and its solution stay the same. Denoting π∗
n(y, µ) ∈ {stop, search}

the optimal policy function, the next proposition summarizes these properties.

Proposition 1. For any period n the following hold

1. Vn(y, µ) is a continuous function.

2. Given a belief µ, Vn(y, µ) is an increasing convex function of y.

3. Given a belief µ, Vn(y, µ) is absolutely continuous in y.27

4. ∂
∂y
Vn(y, µ) ≤ 1 for all y and belief µ such that it exists, with

i. ∂
∂y
Vn(y, µ) = 1 if π∗

n(y, µ) = stop.

ii. ∂
∂y
Vn(y, µ) < 1 if π∗

n(y, µ) = search.

5. For each belief µ, there’s a threshold τn(µ) ∈ [a, b) such that

i. π∗
n(y, µ) = stop if y ≥ τn(µ), π

∗
n(y, µ) = search otherwise.

ii. the resulting function τn(µ) is non-decreasing in µ.

27Note that this in turn implies that it is almost everywhere differentiable in y.
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iii. for every belief µ there’s kn(µ), increasing in µ, such that if the cost of searching is

k < kn(µ), then τn(µ) > a. If µ < µ′ are such that τn(µ) > a, then τn(µ) < τn(µ
′).

6. Given y, Vn(y, µ) is non-decreasing in beliefs µ. And, given µ < µ′, if y < τn(µ), then

Vn(y, µ) < Vn(y, µ
′).

Proof. The proof is by induction over the period n, starting from n = 1.

Before starting, define for each (x, y) ∈ [a, b]2 the continuous function φ given by φ(x, y) =

I{x < y}y + I{x ≥ y}x, with I being the indicator function. Define then, for any y ∈ [a, b]

and µ ∈ (0, 1) and non-terminal period n, the value of searching :

Sn(y, µ) =

∫ b

a

Vn−1(φ(x, y), µ(x))dF (x|µ),

with this being well-defined by the assumptions that will hold on Vn−1 during the proof,

namely continuity.

First, we establish (1)-(6) for V1.

That (1)-(5) hold for V1 follows from the discussion preceding the proposition. It might

only be necessary to notice that if π∗
1(y, µ) = search, ∂

∂y
V1(y, µ) =

∂
∂y
S1(y, µ) = F (y|µ) < 1 if

y < b, and is increasing in y. This derivative can be obtained by applying the Leibniz integral

rule. Given this, absolute continuity also follows. In fact, V1(y, µ) is Lipschitz continuous

with constant 1. When checking for Lipschitz continuity, the only case that might not be

immediate is if y1 and y2 are such that y1 ≤ τ1(µ) < y2. But then, by the definition of τ1(µ),

it follows that

y1 ≤ V1(y1, µ) = S1(y1, µ)− k ≤ τ1(µ) = S1(τ1(µ), µ)− k ≤ S(y2, µ)− k < y2 = V1(y2, µ).

To see (6), notice that, for any y and any µ, if π∗
1(y, µ) = search,

V1(y, µ) = S1(y, µ)− k = −k +

∫ b

a

φ(x, y)dF (x|µ).

Therefore, V1 is the maximum of y, constant in µ, and S1 − k. We establish now that S1

is non-decreasing in µ, hence so is V1, and if y < b, S1 is increasing in µ. Fix y and take µ

and µ′ such that µ′ > µ. Notice that F (·|µ′) first order stochastically dominates F (·|µ) and
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that, for a fixed y, φ is a non-decreasing function of x to obtain that

S1(y, µ) =

∫ b

a

φ(x, y)dF (x|µ) ≤
∫ b

a

φ(x, y)dF (x|µ′) = S1(y, µ
′).

If y < b, then this inequality is strict, since for x ≥ y, φ(y, x) = x is increasing and

strict stochastic dominance holds. Furthermore, then, given µ < µ′, if y < τ1(µ), then

y < τ1(µ) < τ1(µ
′) < b, hence V1(y, µ) = S1(y, µ) < S1(y, µ

′) = V1(y, µ).

We now proceed to the next step of the induction. Assume (1)-(6) hold for Vn−1 and

consider Vn. We start with some preliminary observations. Notice that

Vn(y, µ) = max{y, Sn(y, µ)− k}.

From the inductive assumption, Vn−1 is continuous, and since φ(x, y) and µ(x) are continuous

functions, Sn(y, µ) is continuous. Therefore, so is Vn(y, µ), it being the maximum of two

continuous functions. Thus (1) is established. The above allows us to establish the following

which will be of use later: π∗
n(y, µ) = search if Sn(y, µ) > y+k and π∗

n(y, µ) = stop otherwise.

In particular, π∗
n(b, µ) = stop for all beliefs µ. Indeed, φ(x, b) = b for all x ∈ [a, b], and since

τn−1(µ) < b by the inductive assumption, Sn(b, µ) = b < b+ k.

Now take a fixed belief µ and consider

∂

∂y
Sn(y, µ) =

∂

∂y

∫ b

a

Vn−1(φ(x, y), µ(x))dF (x|µ).

From the inductive assumptions on Vn−1, the Leibniz integral rule applies to Sn, hence it’s

absolutely continuous and we can switch the signs of differentiation and integration to obtain

the derivative, which exists almost everywhere:28

∂

∂y
Sn(y, µ) =

∫ b

a

∂

∂y
Vn−1(φ(x, y), µ(x))dF (x|µ) =

∫ y

a

∂

∂y
Vn−1(y, µ(x))dF (x|µ),

28Specifically, Vn−1(φ(x, y), µ(x)) is continuous and absolutely continuous in y, φ(x, y) being absolutely
continuous and bounded, with a bounded derivative. Under these conditions, it’s known that the Leibniz
integral rule still holds, hence Sn will be absolutely continuous with its derivative given by the switching
of the signs of differentiation and integration. See, for example, Theorem 3 in https://planetmath.org/

differentiationundertheintegralsign. In fact, it can be shown that the Leibniz integral rule still holds
under even weaker conditions by using generalized functions, as in Theorem 7.40 of Jones (1982, p.263).
Proofs relating these more general results to more specific cases such as ours can be found in Cheng (2010).
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with the last equality following by separating the integral over [a, y] and (y, b], the latter

upon which it is zero, since φ(x, y) = x.

We now establish that Sn(y, µ) is non-decreasing in beliefs µ, and if y < b it is increasing.

This follows similarly to S1. Fix y and consider beliefs µ, µ′ with µ′ > µ. From (6) on Vn−1,

Vn−1(φ(x, y), µ(x)) ≤ Vn−1(φ(x, y), µ
′(x)) for all x ∈ [a, b], and thus

Sn(y, µ) =

∫ b

a

Vn−1(φ(x, y), µ(x))dF (x|µ) ≤
∫ b

a

Vn−1(φ(x, y), µ
′(x))dF (x|µ).

Now first order stochastic dominance and Vn−1(φ(x, y), µ
′(x)) being non-decreasing in x,

from the inductive assumption and φ(x, y) and µ′(x) being non-decreasing in x, lead to

Sn(y, µ) ≤
∫ b

a

Vn−1(φ(x, y), µ
′(x))dF (x|µ) ≤

∫ b

a

Vn−1(φ(x, y), µ
′(x))dF (x|µ′) = Sn(y, µ

′).

And if y < b, then this last inequality is strict. This is because of strict stochastic dominance

and the fact that for x > y, Vn−1(φ(y, x), µ(x)) = Vn−1(x, µ(x)) is increasing in x.

(2)-(6) will now follow from these previous observations and the inductive assumptions

on Vn−1. We first register an intermediate result:

Claim. If π∗
n(y, µ) = stop, then π∗

n(y
′, µ) = stop at any y′ > y and if π∗

n(y, µ) = search

then π∗
n(y

′, µ) = search at any y′ < y.

Proof of Claim. By inductive assumption, ∂
∂y
Vn−1(y, µ) ≤ 1 for all y, µ, thus

∂

∂y
Sn(y, µ) =

∫ y

a

∂

∂y
Vn−1(y, µ(x))dF (x|µ) ≤ F (y|µ) < 1, if y < b.

That is, ∂
∂y
Sn(y, µ) < 1 for all y ∈ [a, b). Therefore, since ∂

∂y
Sn(y, µ) < 1 while ∂

∂y
y = 1, the

claim follows.

What the claim establishes is that, holding µ constant, there is, at most, one switch

from searching to stopping as one increases the value of the best option y. What remains to

obtain (5.i) is to show that, if π∗
n(y, µ) = search for some y, then a switch to π∗

n(y
′, µ) = stop

happens at some y′ < b. That is, while it’s possible to always stop, in particular if the cost

k is too high, it’s not possible to always search. There is always a non-degenerate interval

[τn(µ), b] at which there’s stopping.
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That is, from the claim and the fact that for any period n, given µ, π∗
n(b, µ) = stop,

it already follows that there’s τn(µ) ∈ [a, b] such that π∗
n(y, µ) = stop if y ≥ τn(µ) and

π∗
n(y, µ) = search otherwise. It remains to see that, in fact, τn(µ) < b. But notice that if

τn(µ) > a then Sn(y, µ) > y+ k for some y, while Sn(b, µ) < b+ k, so τn(µ) < b follows from

continuity. Thus (5.i) is established.

To establish (5.ii), notice that for any period n, given any y, if π∗
n(y, µ) = stop then

π∗
n(y, µ

′) = stop for all µ′ < µ. Indeed, if Sn(y, µ) ≤ y + k, since Sn(y, µ) is non-decreasing

in beliefs, then given µ′ < µ, Sn(y, µ
′) ≤ Sn(y, µ) ≤ y + k.

For (5.iii), start by noticing that

Sn(a, µ) =

∫ b

a

Vn−1(x, µ(x))dF (x|µ) ≥
∫ b

a

xdF (x|µ) > a.

Hence kn(µ) = Sn(a, µ)− a, increasing in µ since Sn(a, µ) is, is such that if k < kn(µ), then

Sn(a, µ) > a+ k and thus τn(µ) > a.

Now, if µ < µ′ are such that τn(µ) > a, then τn(µ) + k = Sn(τn(µ), µ) < Sn(τn(µ), µ
′),

because τn(µ) < b. Therefore, π∗(τn(µ), µ
′) = search, which implies that τn(µ) < τn(µ

′).

With the threshold functions τn(µ) in hand, we can say that

Vn(y, µ) =

Sn(y, µ)− k, if y < τn(µ)

y, otherwise
.

The remaining properties can now be more directly established.

For (6), Vn(y, µ) is constant in µ when τn(µ) ≤ y, and non-decreasing in µ when τn(µ) > y.

Therefore, Vn is the maximum of two non-decreasing functions of µ, and so is non-decreasing

in µ. Now, the second part of (6) follows as in n = 1. If µ < µ′ are such that y < τn(µ),

then y < τn(µ) < τn(µ
′) < b, hence Vn(y, µ) = Sn(y, µ) < Sn(y, µ

′) = Vn(y, µ).

For (3) and (4), Vn(y, µ) is absolutely continuous in y, being the maximum of two abso-

lutely continuous functions of y. In (τn(µ), b],
∂
∂y
Vn(y, µ) = 1, and in [a, τn(µ)),

∂
∂y
Vn(y, µ) =

∂
∂y
Sn(y, µ) < 1 for a ≤ y < τn(µ) < b as already established.

Finally, for (2), Vn(y, µ) is linear and increasing in y in y ≥ τn(µ), and in y < τn(µ),

Vn(y, µ) = Sn(y, µ) is an increasing convex function. Indeed, notice first that ∂
∂y
Vn(y, µ) =

∂
∂y
Sn(y, µ) > 0 from the inductive hypothesis that ∂

∂y
Vn−1(y, µ) > 0. Second, for the con-

vexity of Sn, notice that, for all x, φ(x, y) is a convex function of y. Therefore, since
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by the inductive assumption Vn−1(y, µ) is increasing and convex in y for all µ, we have that

Vn−1(φ(x, y), µ(x)) is a convex function of y for all x. Hence, Sn(y, µ) is convex in y. Vn(y, µ)

is, then, the maximum of two convex increasing functions of y, establishing (2).

Beyond these properties for any given period, the value functions and the threshold

functions also have a relationship between them across periods. As might be expected, a

decrease in the number of options left to search decreases value, and therefore decreases

the thresholds. This captures an exploration-exploitation trade-off that exists because this

model has a finite horizon. As more and more options are searched, the opportunity for

learning decreases, and so it becomes more profitable to stop searching and choose.

Proposition 2. 1. For any y, µ, Vn−1(y, µ) ≤ Vn(y, µ) for any period n.

2. For any µ, τn−1(µ) ≤ τn(µ) for any period n.

Proof. The proof is again by induction over n.

Since the search process terminates in n = 0, V1(y, µ) ≥ y = V0(y, µ) for any y and µ,

and we can take τ0(µ) = a for all µ, hence τ1(µ) ≥ τ0(µ).

Now assume (1) and (2) hold for n and consider Vn+1(y, µ) and τn+1(µ) for some y, µ.

We will show that Vn+1(y, µ) ≥ Vn(y, µ), establishing (1), and in the process will also show

that it cannot be that π∗
n(y, µ) = search but π∗

n+1(y, µ) = stop, hence τn+1(µ) ≥ τn(µ), which

establishes (2).

If π∗
n(y, µ) = stop and π∗

n+1(y, µ) = stop, Vn+1(y, µ) = y = Vn(y, µ). If π∗
n(y, µ) = stop

and π∗
n+1(y, µ) = search, Vn(y, µ) = y ≤ Vn+1(y, µ) by definition. If π∗

n(y, µ) = search and

π∗
n+1(y, µ) = search, then

Vn+1(y, µ) = Sn+1(y, µ)− k ≥ Sn(y, µ)− k = Vn(y, µ)

since Sn+1(y, µ) ≥ Sn(y, µ) by the inductive assumption that Vn(y, µ) ≥ Vn−1(y, µ) for all

y, µ.

And it cannot be that π∗
n(y, µ) = search but π∗

n+1(y, µ) = stop. Indeed, this would imply

that

Sn(y, µ)− k = Vn(y, µ) > y = Vn+1(y, µ) ≥ Sn+1(y, µ)− k
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which, as mentioned above, would contradict the inductive assumption (1) on Vn and Vn−1.

In the main text, lemma 3 connects the results from propositions 1 and 2 to our general

sequential search framework. Since in our general framework we allow for varying costs of

search, we further index the threshold functions obtained in the propositions by the cost k.

It is immediate from the definition of these thresholds that they are lower the higher the

costs.

Notice that for thresholds to be strictly interior for all periods and beliefs, it’s sufficient

that limµ→0 τ1(µ) > a because of statements 5.ii from proposition 1 and 2 from proposition

2. To see that such costs guaranteeing search exist, define k∗ =
∫ b

a
xdF (x|µ) − a > 0 and

notice that kn(µ) =
∫ b

a
Vn−1(x, µ(x))dF (x|µ)− a ≥ k∗ for all µ and n. Therefore, any k < k∗

is such that it satisfies the desired properties. We then define that a cost k guarantees search

if the threshold for that cost is strictly interior for period 1 and all beliefs, in which case

they are strictly increasing in beliefs from statement 5.iii in proposition 1.

C Additional Lemmata

C.1 Testing for Choice Overload

Lemma 5. Let B and A be two sets such that A ⊂ B. Both B and A have been constructed

by drawing items uniformly (without replacement) from a grand set X. Let |A| = 2, and

d ∈ A. Let T be a subset of X. Then, if the stochastic choice function p does not exhibit

choice overload, then

E(p(d,A)|A ∩ T ̸= 0) ≥ E(p(d,B)|B ∩ T ̸= 0)

Proof. Ennumerate T = {t1...tn}. Note that

E(p(d,A)|A ∩ T ̸= 0)

=
∑
j∈T

1

n
p(d, {d, tj})

Now let F (t, j) be the event that B contains t, and that the number of elements of t in
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B in total is j - i.e. t ∈ B and j|B ∩ T | = 2

We can then write

E(p(d,B)|B ∩ T ̸= 0)

=

[
n∑

i=1

1

i
P (F (t1, i))E [p(d,B)|F (t1, i)]

]

+

[
n∑

i=1

1

i
P (F (t2, i))E [p(d,B)|F (t1, i)]

]
+....

+

[
n∑

i=1

1

i
P (F (tn, i))E [p(d,B)|F (t1, i)]

]

Now, by symmetry, it must be the case that 1
i
P (F (t1, i)) = 1

n
, so we can rewrite the

above as

E(p(d,B)|B ∩ T ̸= 0)

=

[
1

n

n∑
i=1

1

i
nP (F (t1, i))E [p(d,B)|F (t1, i)]

]

+

[
1

n

n∑
i=1

1

i
nP (F (t2, i))E [p(d,B)|F (t1, i)]

]
+....

+

[
1

n

n∑
i=1

1

i
nP (F (tn, i))E [p(d,B)|F (t1, i)]

]

Finally note that, for each j, if p does not exhibit choice overload, then p(d, {d, tj}) ≥
p(d,B) for every B in F (t1, i). Therefore as

∑n
i=1

1
i
nP (F (t1, i)) = 1, we have

p(d, {d, tj}) ≥
n∑

i=1

1

i
nP (F (t1, i))E [p(d,B)|F (t1, i)]

And so we have the desired result
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Table D.1: The Effect of Distribution Uncertainty

Min. Beliefs Min. Costs
k Coeff s.e. N Coeff s.e. N
1 -0.04 0.04 650 0.00 0.04 650
2 -0.09** 0.04 564 -0.04 0.04 564
3 -0.05 0.04 508 -0.03 0.05 508
4 -0.04 0.05 436 -0.04 0.05 436
5 0.01 0.05 379 -0.01 0.05 379
6 0.02 0.06 317 -0.02 0.55 317
7 -0.05 0.06 261 -0.08 0.06 261
8 -0.08 0.06 207 -0.14** 0.06 207
9 -0.05 0.07 172 -0.16** 0.07 172
10 -0.08 0.08 132 -0.18** 0.09 132
11 -0;08 0.09 107 -0.25** 0.10 107
12 -0.23** 0.11 81 -0.33*** 0.11 81
13 -0.22* 0.11 64 -0.22* 0.13 64
14 -0.33** 0.14 45 -0.24* 0.14 45
15 -0.19 0.17 30 -0.27 0.17 30

Each line reports the coefficient of a regression of de-
fault choice on a dummy variable for whether minimum
beliefs (left hand panel) and minimum costs (righ hand
panel) measured at period k are above the median, look-
ing only at sets in which the first above-default alterna-
tive appears after position k. * significant at 10% level,
** significant at 5% level, *** significant at 1% level.
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Table D.2: Default Choice by Set Size -
No Learning Control

Set Size % Default Choice N
2 26 47
11 39 218
16 41 310
21 43 379

Percentage of sets that contained at least
one item better than the default in which the
default was chosen. Data from No Learning
control treatment

D Additional Results

Table D.1 repeats the analysis of table 4, but replacing the independent variables with

discretized versions of themselves

D.1 No Learning Control

The following tables and figures replicate the main analysis using data from the no learning

control treatment
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Table D.3: Regression Results-
No Learning Control

Default Choice

S=11 0.134*
(0.070)

S=16 0.154**
(0.070)

S=21 0.177**
(0.070)

Constant 0.255***
(0.064)

R2 0.006
N 954

OLS regression of default choice
on set size dummies. Standard er-
rors clustered at the subject level.
* significant at 10% level, ** signif-
icant at 5% level, *** significant at
1% level.

Table D.4: Categorizing Choice Overload - No Learning Control

Size Choose Default Classic Search Mistake N
2 26% 9% 0% 17% 57
11 39% 15% 7% 17% 218
16 41% 16% 10% 15% 310
21 43% 16% 14% 13% 379

s > 2 minus s = 2 16% 7% 11% -2%

For each choice set size, reports the fraction of sets that contain an above-default option
in which the default was chosen (Chose Default), then categorizes these as occurring due
to decision avoidance/contextual inference (Classic), search based processes (Search) or
calculation errors (Mistakes).

Appendix–23



Table D.5: Categorizing Choice Overload -
Search vs No Search

Baseline No Learning
Size Classic Search Classic Search
2 100 0 100 0
11 40 60 67 33
16 25 75 61 39
21 21 79 54 46

For the Baseline treatment and No-Learning con-
trol, shows the split between Search vs Classic rea-
sons for not choosing the default (excluding the
‘mistakes’ category).

Figure D.1: Effect of position of first above-default alternative on default choice - No Learning
Control. Bars show the probability of default being chosen. Error bars represent standard
errors.
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Table D.6: The Effect of Distribution Uncertainty -
No Learning Control

Min. Beliefs Min. Costs
k Coeff s.e. N Coeff s.e. N
1 -0.02 0.09 834 0.01 0.51 834
2 -0.03 0.18 765 -0.04 0.34 765
3 0.11 0.29 692 0.12 0.29 692
4 0.13 0.41 627 0.20 0.24 627
5 0.08 0.58 550 0.12 0.24 550
6 0.55 0.85 481 0.22 0.25 481
7 -1.60 1.07 425 0.10 0.25 425
8 0.28 1.43 359 0.22 0.27 359
9 0.73 1.84 302 0.34 0.28 302
10 -0.02 2.26 238 0.16 0.32 238
11 3.45 2.76 204 0.31 0.36 204
12 3.52 3.33 171 0.05 0.39 171
13 5.02 3.87 138 0.08 0.43 138
14 10.84*** 3.48 107 0.36 0.50 107
15 11.86*** 4.22 74 0.16 0.57 74

Each line reports the coefficient of a regression of de-
fault choice on minimum beliefs (left hand panel) and
minimum costs (righ hand panel) measured at period
i, looking only at sets in which the first above-default
alternative appears after position i. * significant at 10%
level, ** significant at 5% level, *** significant at 1%
level.
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Table D.7: Determinants of Stopping Search
- No Learning Control

Searched Stopped

(1) (2)

Min. Cost -0.403***
(0.081)

Min. Beliefs -0.061
(0.038)

Searched 0.028*** 0.031***
(0.002) (0.002)

Items Remaining -0.001
(0.002)

Above 0.156*** 0.177***
(0.016) (0.016)

Const 0.199*** 0.123***
(0.023) (0.028)

R2 0.481 0.478
N 22,431 22,431
Subject f.e. Yes Yes

Dependent variable is whether or not search has
stopped by given observation. OLS regression
with standard errors clustered at the subject
level * significant at 10% level, ** significant at
5% level, *** significant at 1% level.
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