Experiment 1: Velocity, acceleration and measurement of g

Nate Saffold
nas2173@columbia.edu
Office Hour: Monday, 5:30PM-6:30PM @ Pupin 1216

INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699

Overview

- Introduction
- Brief historical introduction (Galilei and Newton)
- The physics behind the experiment (equations of kinematics, force equation, elastic collisions)
- The experiment
- Description of the apparatus
- Part 1: the coefficient of restitution
- Part 2: acceleration of gravity, g
- Tips

History: Galieo Galilei

- Experiments aimed at studying the motion of bodies undergoing a uniform acceleration are literally the first scientific experiments of human history!

Galileo (circa 1638):

- Built his own smooth, frictionless inclined plane
- He realized that bodies possess inertia
- He showed for the first time that bodies undergoing constant acceleration move with displacement proportional to a squared time

- In doing this he set the criteria for the scientific method:
- 'Observation \rightarrow Prediction \rightarrow Experiment ${ }^{\prime}$

History: Sir Isaac Newton

- After Galileo, other very important experimental physicists studied the kinematics of bodies on Earth and in the sky (Johannes Kepler, Tycho Brahe, ...)
- They paved the road to the first great theoretical physicist: Sir Isaac Newton
"If I have seen further, it is by standing on the shoulders of giants" Isaac Newton
- Newton formulated a theory that has been regarded as the definitive, exact one for centuries
- To change this paradigm we will have to wait the revolutionary work of Albert Einstein in 1905

History: Sir Isaac Newton

- Three Newtonian laws of motion:
- First Law: A body will stay in constant motion unless it is acted upon by a force.
- Second Law: the acceleration due to a force is proportional to the force itself:

$$
\overrightarrow{\vec{F}}_{\text {tot }}=m \vec{a}_{\text {tot }}
$$

- Third Law: For every force there will be a reaction force equal in magnitude, but opposite in direction.
- The first law is due to the inertial nature of mass
- If a body is at rest it will stay so. If it is in motion with constant velocity it will stay so.

- Every change in motion must be due to a force!

Motion under constant acceleration

- If a body is subject to a constant acceleration in 2 dimensions it is easy to find the velocity as a function of time:

$$
\begin{aligned}
& \frac{d v_{x}}{d t}=a_{x}=\text { const. } \\
& \frac{d v_{y}}{d t}=a_{y}=\text { const. }
\end{aligned} \iint d v_{x}=a_{x} \int d t \quad \begin{aligned}
& v_{x}(t)=v_{0, x}+a_{x} t \\
& v_{y}(t)=v_{0, y}+a_{y} t
\end{aligned}
$$

Motion under constant acceleration

- If a body is subject to a constant acceleration in 2 dimensions it is easy to find the velocity as a function of time:

$$
\begin{aligned}
& \frac{d v_{x}}{d t}=a_{x}=\text { const } .
\end{aligned} \int \begin{aligned}
& \int d v_{x}=a_{x} \int d t \\
& \frac{d v_{y}}{d t}=a_{y}=\text { const. }
\end{aligned} \int \begin{aligned}
& v_{x}(t)=v_{0, x}+a_{x} t \\
& v_{y}(t)=v_{0, y}+a_{y} t
\end{aligned}
$$

- Integrating again we find the position as a function of time:

$$
\begin{array}{ll:l}
\int d x & =\int v_{x}(t) d t=\int\left(v_{0, x}+a_{x} t\right) d t \\
\int d y & =\int v_{y}(t) d t=\int\left(v_{0, y}+a_{y} t\right) d t
\end{array} \Longrightarrow y(t)=x_{0}+v_{0, x} t+\frac{1}{2} a_{x} t^{2}, v_{0, y} t+\frac{1}{2} a_{y} t^{2},
$$

- This is exactly what Galileo observed experimentally

Vector equations

- Very important:

Newton's law is a vectorial equation

It contains one equation for each direction in space!

- This means that in general one has to apply the following procedure:

1. Choose a suitable, convenient system of Cartesian axes
2. Consider all the forces in play and compute their vector sum, $\vec{F}_{\text {tot }}$
3. Each component of $\vec{F}_{\text {tot }}$ will correspond to one Newton's equation for the body:

$$
\begin{aligned}
& F_{\mathrm{tot}, x}=m a_{x} \\
& F_{\mathrm{tot}, y}=m a_{y} \\
& F_{\mathrm{tot}, z}=m a_{z}
\end{aligned}
$$

Vector equations: an example

- Let's take a quick look at a simple example: a body on a table with two external forces applied as follow

- Newton's law along the x - and y-axes:

$$
\begin{aligned}
& F_{\mathrm{net}, x}=F_{1} \cos \theta-F 2=m a_{x} \\
& F_{\mathrm{net}, y}=N+F_{1} \sin \theta-m g=m a_{y}
\end{aligned}
$$

- If we know every force we can then solve for the accelerations. Viceversa, if we know the accelerations we can find some of the forces

(Quasi) elastic collision

- In a perfectly elastic collision both energy and momentum are conserved
- If you have a single body of mass m and velocity v bouncing elastically off a wall it will reverse its direction. Hence, from conservation of momentum:

$$
p_{i}=p_{f} \Rightarrow m v_{i}=-m v_{f} \Rightarrow v_{i}=v_{f}
$$

Mass of the body clearly stays the same

- If the collision is perfectly elastic the velocity only changes direction but the magnitude remains the same
- One can then have a measure of the elasticity of a collision by computing the coefficient of restitution:

$$
\text { ie }=\left|\frac{v_{f}}{v_{i}}\right|_{=}^{=}= \begin{cases}1 & \text { elastic } \\ <1 & \text { non elastic }\end{cases}
$$

The Experiment

Apparatus: the "frictionless" air-track

- Air-track: metal bar with pinholes for air to flow
- Thanks to the flow of air the rider runs on a nearly frictionless cushion of air
- Timing is performed by Sonic Ranger

Apparatus: position measurement

- Sends out pulses of sound waves with a frequency $f=20 \mathrm{~Hz}$.

Apparatus: position measurement

- Sends out pulses of sound waves with a frequency $f=20 \mathrm{~Hz}$.

- Detects reflected sound waves and records "round trip" time (τ) for each pulse.
- It then measures the distance to the reflecting object using the knowledge of τ and of the speed of sound $\left(v_{s}\right)$:

$$
x=\frac{v_{s} \tau}{2}
$$

Apparatus: velocity measurement

- Traditional radars measure the velocity of a body by detecting the shift in frequency between sent and received waves (Doppler effect)
- Our radar as a less sophisticated method. It simply computes the average velocity over very small time intervals:

$$
v(t)=\frac{\Delta x}{\Delta t}=\frac{x(t+\Delta t)-x(t)}{\Delta t}
$$

Apparatus: velocity measurement

- Traditional radars measure the velocity of a body by detecting the shift in frequency between sent and received waves (Doppler effect)
- Our radar as a less sophisticated method. It simply computes the average velocity over very small time intervals:

The output will look like this:

Main goals

- Measure $x(t)$ vs. t and $v(t)$ vs. t under different physical circumstances
- Part 1:
- Achieve motion with constant velocity with level air-track
- Collide the rider with one end of the air-track
- Measure coefficient of restitution
- Part 2:
- Achieve motion with constant acceleration with inclined air-track
- Extract the acceleration of gravity, g, from the $x(t)$ and $v(t)$ curves
- Estimate effect of friction

Leveling Air-track

- It is essential for the whole experiment to level the airtrack carefully before performing your measurements
- Use the following procedure:

1. Turn on air and place the rider on the air-track
2. Adjust the feet of the track until the air-track doesn't move on its own anymore
3. Check for different positions of the rider

- IMPORTANT NOTES:
- Some track might be slightly bent on different spots and therefore the rider might never be at rest. Check that the motion is random and slow
- Do not use shims to raise the track! You will need them later. You can use paper instead

Part 1: quasi-elastic collision

- Put the rubber band on the rider
- Push the rider away from the sonic ranger and let it bounce off the other side
- Your $x(t)$ vs. t plot will look like the one on the right
- Use Data Studio to obtain the slopes (with errors!) of the lines before and after the collision

- Perform the collision 10 times and repeat the above steps

Part 1: analysis

- The slope of each $x(t)$ vs. t is the (constant) velocity of the rider
- For each of the 10 measurement you can then compute the coefficient of restitution:

$$
e=\left|\frac{v_{f}}{v_{i}}\right|=\left|\frac{\text { slope after }}{\text { slope before }}\right|
$$

- Remember to propagate errors!
- After that you will have 10 values of $e \pm \sigma_{e}$
- Use them to compute both uniwicighted and weighted average and error for the coefficient of restitution
- This will be your final result

Part 2: set up

- In the set up of this experiment (typical inclined plane) the perpendicular component of g is canceled by the normal reaction
- The parallel component is instead given by:

$$
a_{x}=g \sin \theta=g \frac{h}{L}
$$

Part 2: set up

- In the set up of this experiment (typical inclined plane) the perpendicular component of g is canceled by the normal reaction
- The parallel component is instead given by:

$$
a_{x}=g \sin \theta=g \frac{h}{L}
$$

- You can change h by placing shims under the track

Part 2: measurements

- For a fixed value of the height do:

1. Release the rider on the plane
2. Start taking data right before the rider hits the elastic bumper
3. Take data until the next collision with the bumper
4. Obtain the slope (with error!) of the $v(t)$ vs. t line
5. Repeat 10 times

Part 2: measurements

- For a fixed value of the height do:

1. Release the rider on the plane

2. Start taking data right before the rider hits the elastic bumper
3. Take data until the next collision with the bumper
4. Obtain the slope (with error!) of the $v(t)$ vs. t line
5. Repeat 10 times

- For a few trial (~ 3) check the consistency of the value of a_{x} obtained from $v(t)$ with that obtained from a quadratic fit of $x(t)$
- Repeat everything for a total of 4 heights

Part 2: analysis

- For a fixed value of the height h you will have 10 values of the slope with errors
- Starting from those values compute the weighted $\bar{a}_{x} \pm \sigma_{a_{x}}$
- Now you have 4 pairs of measured $\left(a_{x}, h\right)$
- Recall that:

$$
a_{x}=\left(\frac{g}{L}\right) h
$$

- Make a plot of $a_{x} v s$. h and show that the shape is linear
- Using a weighted fit estimate slope and intercept:
- From the slope compute $\bar{g} \pm \sigma_{g}$. Compare with the expected value $g=9.807 \mathrm{~m} / \mathrm{s}^{2}$
- Compute the intercept and check if it is statistically compatible with zero. If not, discuss why.

Part 2: estimating friction

- From the $v(t)$ data estimate the initial velocity (immediately after the riders hits the bumper) $\longrightarrow v_{1}$
- From the $x(t)$ data estimate the total distance traveled between collisions (distance from top to bottom of the parabola) $\longrightarrow l_{2}$
- If energy is conserved: $\frac{1}{2} m v_{1}^{2}=m g l_{2} \sin \theta$
- For a few sample trials compute (w/ error) $\quad \Delta=\frac{v_{1}^{2}}{2 a_{x} l_{2}}-1$
- Statistical deviations of this quantity from zero indicate that energy has been lost because of friction

Tips

- IMPORTANT: never place or move the rider on the airtrack without the air flow on! That would ruin the track
- The experiment is fairly easy and hence not so many tips are needed. However:

1. Make sure very carefully that the track is level before every new set of measurements. This is particularly important for part 2 since a small unaccounted angle would affect severely your acceleration a_{x}
2. Do not trust the height of the shims reported on them. Once you selected a certain number of them measure their total height directly using a caliper
