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The Stationary Distribution of a Stochastic
Clearing Process

WARD WHITT

Bell Laboratories, Holmdel, New Jersey
(Received May 1979; accepted June 1980)

This research grew out of an investigation of utilization in capacity expansion.
The utilization at any time is the demand divided by the capacity. When there
is uncertainty about the evolution of demand, it is appropriate to model the
demand as a stochastic process, and thus the utilization also becomes a
stochastic process. It was found that a utilization stochastic process associ-
ated with exponentially growing stochastic demand is closely related to the
stochastic clearing processes introduced and investigated by Stidham. Inter-
est in the impact of uncertainty on utilization led to this study of the impact of
uncertainty on the stationary distribution of a stochastic clearing process.
Stidham showed for a large class of clearing processes that the stationary
distribution is never the uniform distribution, which is characteristic of deter-
ministic models with continuous linear input. Here it is shown for a larger class
of clearing processes that the stationary distribution is always stochastically
less than or equal to the uniform distribution in the sense of second-order
stochastic dominance (characterized by the expected value of all nondecreas-
ing concave functions). For various special cases, stronger stochastic order
relations are established. For a related capacity expansion model, it is shown
that greater uncertainty lowers the expected utilization.

ECENTLY Stidham (1974, 1977) and Serfozo and Stidham (1978)

have investigated a class of stochastic processes called clearing
processes, which have many applications in the study of stochastic input-
output systems, e.g., queues, dams and inventories; see Stidham (1977).
A clearing process represents the content of a service system that is
intermittently and instantaneously cleared. A clearing process starts at
zero and each time it exceeds a level q it instantaneously returns to zero
and starts over. A typical sample path is shown in Figure 1. The purpose
of this paper is to present some comparison results for clearing processes.
These comparisons help describe the impact of uncertainty in stochastic
input-output systems.

This research was motivated by a project to study the factors affecting
utilization in capacity expansion. We define the utilization at time ¢ as
the proportion of the capacity that is being used at time ¢, i.e., the
demand divided by the capacity: U(¢) = D(t)/C(t), t = 0. Suppose that
demand grows expotentially but randomly, i.e., let D(¢) = e¥?, t = 0,
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where Y(¢) is some stochastic process. Suppose that successive capacity
expansions occur at the epochs when demand exceeds capacity. Let the
new capacity at each expansion be a constant multiple y of the demand
at the expansion epoch. Since log U(¢t) = Y(¢) — log C(¢), it turns out
that the process V(¢) = log U(t) + log vy is a clearing content process
with respect to the input process Y(¢) and the clearing level log y. To see
this, let C, be the epoch of the nth capacity expansion and note that
Vi)=Y — Y(Cn), C, =t < Chsy, and

log U(#) = Y(t) — log C(t) = Y(¢) — log yD(Cy),
= Y(t) — Y(Cy) —logy = V(t) = log y, Co < t < Cpir.

(See Section 1 for more detail.) Hence, the utilization process U (¢) has a
stationary distribution if and only if the clearing content process V (¢)

CONTENT

2
—

TIME \/\./

Figure 1. A typical sample path of a stochastic clearing process.

has a stationary distribution. Moreover, if V*(0) has the stationary
distribution of the content process and U*(0) has the stationary distri-
bution of the utilization process, then U*(0) has the distribution of
y'eV" . Consequently, many (but not all) of the stochastic comparisons
here for clearing processes carry over to these utilization stochastic
processes. Where the comparisons do carry over, we see that uncertainty
tends to lower the expected utilization. For the model in which demand
is geometric Brownian motion, i.e., where the demand grows exponen-
tially and the associated stochastic process Y is Brownian motion as
in Section 4 here, we can quantify the decrease in expected utiliza-
tion caused by uncertainty. This utilization application is discussed in
Section 5.

Another application is the classical economic lot size inventory model.
Our analysis shows how the deterministic model is affected by uncertainty
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about demand. In the deterministic model let the cumulative demand for
a single divisible commodity in the interval [0, ¢] be ut, p > 0. Let the
designated policy be to order an amount ¢, which is delivered instanta-
neously, whenever the inventory level X (¢) reaches 0. The deterministic
inventory level process is not itself the content process of a clearing
system, but the closely related process {g¢ — X(¢), ¢ = 0} is. Clearly,
neither X (¢) nor ¢ — X (¢) has a limiting distribution as ¢ — o because
these processes are periodic. However, it is easy to see that both processes
have a unique stationary probability distribution, namely, the uniform
distribution over the interval [0, ¢]. The uniform distribution is the
unique randomization of the inventory level at time 0 such that the
distribution of the inventory level is unchanged for all ¢ = 0. At the same
time, it assigns to each subset of [0, ¢] a probability equal to the long-run
proportion of time the process spends in that subset.

For the economic lot size model, it is natural to ask what is the impact
of uncertainty about demand. In particular, suppose that the determin-
istic economic lot size model is used to generate a policy even though
there is in fact some uncertainty about demand. The stochastic clearing
processes represent reasonable alternatives to the continuous linear de-
terministic demand. It is thus interesting to ask how the stationary
distribution of the inventory level in the stochastic case compares with
the uniform stationary distribution in the deterministic case. The com-
parisons here imply that the inventory level will tend to be higher with
uncertainty than without. Moreover, in some cases, such as with the
Brownian motion input processes discussed in Section 4, the inventory
level distribution increases with increasing uncertainty. Since the inven-
tory level is obviously directly related to costs, we see one way uncertainty
affects costs.

In fact, a major focus of the research in Serfozo and Stidham (1978),
Stidham (1974, 1977) has already been on the relation between the
stationary distribution and the uniform distribution which is character-
istic of deterministic models with continuous linear input. A principal
conclusion of Stidham (1974) was that for a large class of clearing
processes the stationary distribution is never uniform (except in certain
degenerate deterministic cases). The purpose of this paper is to establish
some additional comparison results for the stationary distributions of
clearing processes. We consider the clearing processes studied in Sections
3 and 4 of Stidham (1974), i.e., clearing processes with either a compound
input process or an input process with stationary independent increments.
However, we generalize by not requiring that the input process have
nondecreasing paths. That is important because the sample paths of
input processes are often not nondecreasing.

We show (Theorem 1 and Section 3) that the stationary content
distribution is always stochastically less than or equal to the uniform
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distribution in the sense of second-order stochastic dominance, which is
characterized by the expected value of all nondecreasing concave real-
valued functions; see Brumelle and Vickson (1975) and references there.
It is easy to show by example that in general this ordering cannot be
strengthened to first-order stochastic dominance, which is characterized
by the expected value of all nondecreasing real-valued functions. How-
ever, if the batch sizes associated with a compound input process are
nonnegative and the batch size distribution has a decreasing failure rate,
then the stationary distribution is stochastically less than or equal to the
uniform distribution in the first-order sense (Theorem 2). To obtain this,
we apply a recent result of Brown (1980) which establishes conditions
under which the renewal function is concave. The same first-order
stochastic dominance relationship is also shown to hold for processes
with stationary independent increments that have no positive jumps, e.g.,
Brownian motion (Theorem 4). We note (Theorem 3) that bounds can be
obtained for the stationary content distribution associated with com-
pound input processes by applying bounds for the renewal function in
Barlow and Proschan (1975), Brown, and Lorden (1970). These bounds
show that the stationary distribution is approximately uniform if the
clearling level is sufficiently high.

In Section 4 we briefly discuss clearing systems with compound input
processes in which the successive batch sizes form a Markov chain. We
also obtain additional stochastic order relations for various special cases,
including clearing systems with Brownian motion input processes. We
conclude the paper in Section 5 with a brief discussion of the application
to utilization in capacity expansion. We provide additional supporting
details in three appendices which have been omitted to save space; they
are available from the author.

1. REGENERATIVE CLEARING PROCESSES

As in Section 2 of Stidham (1974), we begin by considering clearing
content processes that are regenerative with respect to the clearing
epochs. Let the input process {Y(¢), ¢ = 0} have Y(0) = 0 and sample
paths which are right-continuous with left limits but not necessarily
nondecreasing. Let the system be immediately cleared whenever the
content exceeds the level g, which brings the content back to zero. Let
{C,, n = 1} be the sequence of clearing epochs, defined by C, = inf{¢ =
Chn-1: Y(t) > Y(Cn-1) + q}, n =1, with Co = 0. As part of the regenerative
assumption, we assume {C,, n = 1} is ii.d. and EC; < . Then the
content process {V(¢), t = 0} is defined by V(¢) = Y(¢) — Y(C,), C, =
t < Cus1, t=0. Let {V*(¢), t = 0} be the stationary version of the content
process, which exists as in Stidham (1974) because of the regenerative
structure. The stationary version is a strictly stationary stochastic process
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that is obtained by placing the origin appropriately in the interior of a
clearing cycle. The formal construction is described on p. 94 of Brown
and Ross (1972) and p. 1276 of Miller (1972). Because the input process
sample paths are right-continuous with left limits, existence is guaranteed.
In fact, we shall only be concerned with the one-dimensional marginal
distribution, i.e., the real-valued random variable V*(0). The distribution
of V*(0) can also be described as
t
P(V*(0) =y) = lim,_.t™" f L=y (V*(s))ds

0

t
= lim,_mt'l f 1(7oo,y](V(s))ds
- 0 (1)

G
=EJ’ L(-wy(V(s))ds/EC:
0

=ET(y,q)/ET(q,q), y=gq,

where 14(x) is the indicator function of set A and T'(y, q) is the total
time Y spends in the set (—oo, y] before first hitting the set (g, ). The
first two terms on the right side of (1) are the asymptotic distributions of
the stationary version and the original content process, respectively;
compare p. 171 of Serfozo and Stidham. Equation (1) follows from the
regenerative structure; Proposition 5.9 of Ross (1970). If the distribution
of C, is nonlattice, then V(¢) converges in distribution as ¢t — o to V*(0);
see Theorem 3.1 of Miller. However, we do not assume the distribution
of C; is nonlattice. If Y (¢) is a Markov process, then ET'(y, g) is just the
potential measure of the set (—, y] associated with a unit left charge at
0 for the process Y (f) modified to be absorbing when it hits the set
(q, «); for further discussion, see Section 4. (These potential theory
concepts are not used in this paper.)

Recall that a random variable X is stochastically less than or equal to
another random variable X, in the sense of first-order stochastic domi-
nance, denoted by X; =% X,, if P(X, > t) < P(X, > ¢) for all ¢. It is well
known that X; =* X if and only if Ef(X;) < Ef(X.) for all nondecreasing
real-valued functions f for which the expectations exist. Let V;* be a
random variable uniformly distributed on the interval [0, ¢]. (The nota-
tion is intended to suggest the stationary distribution in the deterministic
case.) As an immediate consequence of (1), we see that V*(0) <% V* if
and only if ET(y, q)/y = ET(q, q)/q,y < q. To get this stochastic order,
it obviously suffices to have ET(y, q)/y be nonincreasing in y, as noted
in a less general setting on p. 94 of Stidham (1974).

A random variable X, is stochastically less than or equal to another
random variable X; in the sense of second-order stochastic dominance,



Stationary Distribution 299

denoted by X; <, X,, if Ef(X1) = Ef(X;) for all nondecreasing concave
real-valued functions. It is known that V*(0) <, V,* if and only if

t

f P(V*(0) zy)dysf P(ViF=ydy, O0=<t=gq; (2

0

see page 104 of Brumelle and Vickson. From (1), we see that V*(0) <,
Vq* if and only if
t

t°ET(q, q)/(2q) Sf ET(y,q)dy, 0=t=gq. 3)

0

In the following sections we shall exhibit conditions under which these
inequalities hold.

2. COMPOUND INPUT PROCESSES

In this section we consider clearing systems with compound input
processes as in Section 3 of Stidham (1974). Briefly, this means that at
time 7, + --- + 7, input batches of size o, arrive. The basic assumption
in Stidham (1974) is that {7,} and {0,} are independent sequences of
ii.d. nonnegative random variables, but we only assume that 7, is non-
negative for all n at the outset. With M(¢) = max{n = 0: 1 + .. +
™. < t}, t = 0, the input process {Y(¢), ¢t = 0} is defined as Y (¢) =

MO 6t =0.Let S, =01+ +++ + 05, n =1, and M,, = max{Sy, .-,
S,}. Let N(x, y) be the number of indices for which the partial sums are
less than or equal to x before the partial sums first exceed y, i.e.,

Nx,y)=#{n=1.S,=x, M, <y}, xX=<y. (4)

Let Z(y,q) = N(y,q) + 1,y < q, and U(y) = Z(y, y), y = 0. Obviously
U(y) is the first passage time or inverse process associated with the
sequence {S,}. The key random variable T'(y, q) can be represented here
as
T(y, @) = Yu? malijs =n(n), y=gq, (5)

where So = 0 and 14(n) is the indicator function of the set A. If the
sequence {7,} is ii.d. and independent of the sequence {o0.}, then T'(y, q)
clearly has the same distribution as Y2439 1, and ET(y, q) =
EZ(y, @q)ET,, which implies that the distribution of the stationary clearing
content V*(0) is independent of the distribution of 7. An example in
which {S,} is a Markov chain is discussed in Section 4.

Another simplification occurs if o; = 0 for all i. Then T'(y, ¢) = T(y, y)
= Y 10,y < q. If {7,} is iid. with E7) < 0 and U(y) is a stopping time
relative to {7,}, then ET(y, y) = EU(y)E™, by Wald’s equation, p. 137
of Chung (1974) and the distribution of V*(0) again is independent of the
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distribution of 7;. An important example occurs when {(7,, 0,), n = 1} is
a sequence of ii.d. random vectors, but 7, and 0, may be dependent.
(This observation and example are due to Richard Serfozo.)

For our main result, we use the following elementary lemma, see p. 521
of Lorden.

LemMA 1. If {0,} is i.id., then U(x + y) = Ui(x) + Uz(y) where Ui(x)
and Us(y) are independent random variables with the distribution of
U(x) and U(y) respectively.

Proof. If J(x) = Svuw) — x, then U(x + y) is distributed as Ui(x) +
Us(y — J(x)), where U(z) = 0 for z < 0 and U; and U, are independent.
Since U (z) is nondecreasing in z and J(x) = 0, Ux(y — J(x)) = Ua(y).

COROLLARY. If {0,} is i.id., then EU(x +y) = EU(x) + EU(y) for all
x,y=0.

For our main result, we also need some additional consequences of the
subadditivity obtained in the corollary above.

LEmMA 2. If h(x) is a real-valued function such that h(x + y) <
h(x) + h(y) for all x,y = 0, then
(a) xh(x) =2 j h(s)ds, x = 0.

0

and

1

b) A(x) = 2xf h(s)ds, x = 1.

0

Proof. (a) By the subadditivity assumption,

h(x) =x7! j h(x)ds < x7* f [A(s) + A(x — s)]ds = 2x~! J h(s)ds.
0 0 0

(b) Let z = x — [x], where [x] is the greatest integer less than or equal
to x. By the subadditivity assumption and part (a),

h(x) < ([x] — DA(1) + A1 + 2)

1 1
=2(x]-1) J’ h(s)ds + J’ [A(s) + (1 + 2z — s)]ds
0 0

=2([x]-1) J’ h(s)ds + J’ h(s)ds + 2[ h(s)ds + f h(1 + s)ds,
0 0 z 0
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and

z

j h(1+ s)ds sf [A(1) + A(s)]ds
0 0

r

= zh(1) +J h(s)ds

0
1 z
S2zJ h(s)ds+f h(s)ds.
0 0

The proof is completed by combining these inequalities.

Conditions for EU(y) to be finite when {o,} is i.i.d. follow from the
general theory of random walks; see Section 8.4 of Chung. It suffices for
01 to have a finite positive mean, but it is necessary and sufficient to have

Y1 n"'P(S, < 0) < oo, (6)

Condition (6) does not allow Eo; < 0; it covers the case in which a mean
does not exist.

Henceforth, we make the following assumptions. We assume that
{(on, Tn), n = 1} is an 1.i.d. sequence of random vectors with E1, < o and
o, satisfying (6). We also suppose that either ; = 0 or {0,} is independent
of {7,}. These assumptions guarantee that the content process V(¢) is
regenerative with respect to the clearing epochs and ET(y, q) < = for
y < q, so that the stationary version of the content process exists and is
given by (1). Moreover, the distribution of V*(0) in (1) is independent of
the distribution of 7,, because

ET(y,q) =EZ(y,q)ET, y=<q. (7

Our main result is that the stationary content V*(0) is always stochast-
ically less than or equal to V;* (the random variable that is uniformly
distributed on [0, q]) in the sense of second-order stochastic dominance.

THEOREM 1. V*(0) <, V *.

Proof. By (3) and (7), it suffices to show that t’EZ(q, q) =
2q [6 EZ(y, q)dy,0<t=gq. Let h(y) = EU(y). Since h(y) < EZ(y, q),
0 <y =<gq, and h(q) = EZ(q, q), it suffices to show that h(q) <
(2q/t® [5 h(y)dy, 0 < t < q. After a change of variables (s = y/t), it
suffices to show that A(q) < 2(q/t) [o h(s/t)ds, 0 < t < q. Let g(s) =
h(s/t) and x = q/t. Now it suffices to show that g(x) = 2x [5 g(s)ds,
x = 1. However, notice that g inherits the subadditivity property
from A obtained via the Corollary to Lemma 1. Hence, the proof is
completed by applying Lemma 2(b).
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CoroLLARY. EV*(0) = EV,* = q/2.

Example 1. This example shows that the expected value ordering in
Theorem 1 need not hold when the input process is generalized. We
consider a clearing system with a compound input process having {o,}
and {7} independent, {r.} i.i.d., but {o.} not iid. For a given g, let
o3r-2 = @ — 1 and o03,—1 = o3, = 1 for all £ = 1 with probability one. It
is easy to see that the content process V is regenerative, but EV*(0) =
(29 — 1)/3 > q/2 for q > 2.

Example 2. This example shows that stronger stochastic order rela-
tions between V*(0) and V,* need not hold. In particular, the order
relation

Ef[V*(O)]Sq—IJ’ f(y)dy
0

need not hold for all nondecreasing convex real-valued functions f. To
substantiate this claim, let ¢ = 1 and consider a compound input process
with constant batch size o; = 1. Then P(V*(0) = 0) = P(V*(0) =
1) = %. Now consider f(x) = e*. Then Ef[V*(0)]=(1+¢e)/2=e— 1=
Ef{Va*].

Example 3. This example shows that a stochastic order relation be-
tween two batch size distributions does not imply any ordering between
the associated stationary distributions. Let o;; be the size of the first
batch in the ith clearing system, { = 1, 2. Suppose P(o1; = ¢ + 1) = 1 and
P(os = q + 1) = P(021 = —1) = %. Then on >3 021 and P(V1*(0) =0) =
1. It is easy to see that V;*(0) and V>*(0) are not comparable with
stochastic order. For sufficiently large q, EV1*(0) < EV,*(0) too.

We now show that it is possible to make stronger comparisons if we
make additional assumptions about the batch size distribution. Recall
that a nonnegative random variable X is said to have a DFR (decreasing
failure rate) distribution if P(X >¢) >0 foralltand P(X =s + t| X = ¢)
is nondecreasing in ¢ for all s; see Barlow and Proschan.

THEOREM 2. If the batch size o, is nonnegative with a DFR distribution,
then V*(0) <% Vg*.

Proof. By Theorem 3 of Brown, the renewal function associated with
the sequence of batch sizes, EU(y) = ET(y, q)/E™, is concave under
the DFR assumption, which implies that EU(y)/y is decreasing iny (—U
is star-shaped, p. 106 of Barlow and Proschan). As noted in Section 1,
this implies the stochastic order.

Remark. The stochastic ordering for the case of constant failure rate,
i.e., the exponential distribution, was noted by Stidham (1974) in Example
3.5. It is also easy to see that the stationary distribution associated with



Stationary Distribution 303

exponential batch size is stochastically increasing as the mean of the
exponential distribution decreases.

We now bound the stationary distribution using the first two moments
of the batch size distribution.

THEOREM 3. If 0, =0, Eo, = jt1 and Eo,® = s, then
¥/(q + pepi’) = P(V*(0) =y) S y/q+p/qu, O0=y=gq.
Proof. By Wald’s identity, we have the well known ordering
EU(y) =ypi', y=0,
and, by Theorem 1 of Lorden,
EU(y) <yui' + pepi®,  y=0.

Simply apply these inequalities in the equilibrium distribution as given
in (1) and (7) with EU(y) = EZ(y,y) = EZ(y, q).

Remarks. (1) Refinements of these bounds are available under addi-
tional assumptions; see p. 171 of Barlow and Proschan, Brown and
references there.

(2) The lower bound in Theorem 3 is valid if the batch size o, is not
constrained to be nonnegative because

EZ(y,q)/EZ(q, q) = EZ(y,y)/EZ(q, q).

In this case 2 can be replaced by E {(0:")?}, see Lorden. Obviously, more
interesting bounds when o; is not constrained to be nonnegative would
follow from bounds on EZ(y, q).

(3) As noted by Stidham (1974) the elementary renewal theorem
implies that V*(0) approaches the uniform distribution as ¢ — o« when
01 = 0. Theorem 3 provides a bound on the rate of convergence.

3. INPUT PROCESSES WITH STATIONARY INDEPENDENT
INCREMENTS

Many properties of clearing systems with compound input processes
easily extend to clearing systems with stochastically continuous input
processes having stationary independent increments either because such
input processes are the continuous analogs of compound input processes
or because such input processes can be represented as the limit of a
sequence of compound input processes; see Section 4 of Stidham (1974)
and Section IX.6 of Gikhman and Skorohod (1969). The stochastic
continuity entails no important loss of generality and provides some
regularity properties; see pp. 304-306 of Breiman (1968).

The stationary distribution of the clearing process with an input
process having stationary independent increments is again given by (1).
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If the input process has nondecreasing paths, then 7'(y, ¢) coincides with
T(y, y) whose expected value reduces to the sojourn measure W(y) in
Stidham (1974). In order to have T'(y, ¢) < » for y < q, we assume that

Yr kT'P(Y(R) < 0) < oo, (8)

As with condition (6), (8) implies that the expected number of steps
before the random walk {Y (%), 2 = 1} exceeds ¢ is finite, which in turn
obviously implies that ET(q, ¢) is finite. A sufficient condition for (8) is
of course E|Y(1)| < 0 and EY (1) > 0. It is easy to see that Lemma 1
and, thus, Theorem 1 extends to this setting. Hence, V*(0) <, V,*.

It is elementary but significant that convergence of the input processes
(even weak convergence in the function space setting) does not imply
convergence of the equilibrium distributions. However, for any given
input process Y with stationary independent increments, it is clearly
possible to choose a special sequence of compound input processes {Y,.}
such that V,*(0) converges in distribution to V*(0) as n — o. In this
way, we could obtain an alternate proof of the analog of Theorem 1.
Given the input process Y with stationary independent increments, the
sequence of compound input process {Y,, n > 1} is constructed by setting
Te=2"and o, = Y(K2™") — Y((k - 1)27"),k=1and n = 0.

We conclude this section with another stochastic order relationship.

THEOREM 4. If the input process Y(t) with stationary independent
increments has no positive jumps (called the spectrally negative case),
then V*(0) =% V,*.

Proof. First, for any n = 1, T'(y, y) is distributed as the sum of n i.i.d.,
random variables with the distribution of 7'(y/n, y/n). Hence, ET (cq,
cq) = cET(q, q) first for all rationals ¢ and then for ¢ = y/q by taking
limits. Finally, ET(y, q) = ET(y,y) = (y/q)ET(q, q).

An example of an input process covered by Theorem 4 is Brownian
motion with a positive draft. However, we exhibit the stationary distri-
bution of the content process in this case in the next section and obtain
an even stronger ordering.

4. SPECIAL CASES

In this section we first return to compound input processes. We assume
that {7,} is i.i.d. and independent of {0,}, but we do not assume {o,} is
1.i.d. We assume that an independent copy of {o,} is used for each clearing
cycle. Within each cycle, we assume {S,.} is a Markov chain with station-
ary transition probabilities. As we have seen in Section 2, without loss of
generality we can assume P(r; = 1) = 1, which makes the content process
a Markov chain.
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For simplicity of exposition, we assume the Markov chain {S,} is on
the integers as in Kemeny et al. (1966). Let the clearing level g be an
integer. To analyze the clearing process, we make the set of states
{k:k > q} absorbing. We assume that the Markov chain with these
designated absorbing states is absorbing (see Kemeny et al,, p. 112). By
the strong Markov property (see p. 88) the content process V associated
with this input process Y is regenerative and has a unique stationary
distribution (also see Stidham [1974], Section 2). The stationary distri-
bution is easily expressed in terms of the fundamental matrix N (Kemeny
et al., p. 107), or the potential measure » associated with a unit left charge
at 0 (p. 192). Recall that

N =370 Q"
where @ is the transition matrix of the Markov chain restricted to the
nonabsorbing states, @° = I and » is the potential measure associated

with the transition matrix @ and the left charge p where u({x}) = 80, (x):
»(¥, @) = Y J=—= Ny In this Markov setting,

P(V¥0)=y) =v(y,q)/v(g,q),y=q.

A special case of interest is a random walk on the integers. Then
Q. = pj-i for some probability vector p and N;; is the Green function (see
Spitzer [1964], pp. 111, 274). It is easy to construct examples showing
that the expected value ordering EV*(0) < q/2 can fail in the Markov
chain case, but it holds in the random walk case by virtue of Theorem 1.

There are some special cases for which stronger orderings can be
established. First, for the simple random walk with p_1 =p,p1 =r,p +
r =1and r > p, it is not difficult to calculate the fundamental matrix N
(see Appendices 1-3, available from the author):

_lama+p/ir+ o+ (p/)7),  isjsg,
Ny {<p/r>‘-fNu, i<i=q

It is then easy to see (Appendix 2) that the family of probability mass
functions {P(V,*(0) =J), % < r < 1} associated with a family of clearing
systems indexed by the positive-step probability r satisfies the monotone
likelihood ratio property (Ferguson [1967], p. 208), which implies that
V,*(0) is stochastically increasing in r; see Whitt (1980) for additional
properties. In fact, V,*(0) increases stochastically to V1*(0), the stationary
content level in the deterministic lattice case, having P(V1*(0) = k) =
(1+¢)"',0<k=gq,and EV,*(0) = q/2; Example 3.6 of Stidham (1974).

We now observe that stochastic order also holds between V1*(0) and
the random variable V*(0) associated with any random walk that moves
up at most one step at a time (and satisfies (6)). The following theorem
is proved just like Theorem 4.
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THEOREM 5. If pr. = 0 for k = 2, then V*(0) =* V,*(0).

The results for the simple random walk in (9) obviously extend to
Brownian motion because Brownian motion is the continuous analog of
a random walk. (The connection is made precise in Appendix 3.) If
Y (¢t) = ut + oB(t), where B(?) is standard Brownian motion, u > 0 and
o = 0, then the expected first passage time to g is ¢/u, independent of ¢
(see Karlin and Taylor [1975], p. 361), and V*(0) has the continuous
density ‘

=11 _ p~Mg—x) - 4 <
fro(®) = {glﬁ e ZeEe (10)

where A = 2u/¢”. This can be proved using (9) via a limit theorem for
random walks (as shown in Appendix 3) or directly from diffusion theory;
Theorem 2 of Puterman (1975) or Theorem 2 of Whitt (1973). The
moments of V*(0) can be calculated from the moment generating func-
tion, which is

Ee®”" @ = \e?” - 1)/(gs(A\ +5)), s=0. 11)

It is easy to see that the family of densities { fv - (x), A > 0} satisfies the
monotone likelihood ratio property too. Hence, the random variable
VA\*(0) increases stochastically to the uniform distribution as A —
(6 — 0 and/or u — ). The stochastic ordering V,*(0) <* V,* also follows
from Theorem 4.

With Brownian motion there are always excursions below zero in each
clearing cycle, so.one might think that is the reason for the ordering.
However, the stochastic ordering with the uniform distribution is still
valid if a reflecting barrier is put at the origin. It is not difficult to see
that the stationary distribution with the reflecting barrier is just the
conditional distribution P(V,*(0) < y|V,*(0) = 0) which also increases
stochastically to the uniform distribution as A — oo,

5. UTILIZATION IN CAPACITY EXPANSION

As we mentioned in the introduction, this research was largely moti-
vated by efforts to gain a better understanding of utilization in capacity
expansion. In order to learn how to interpret utilization measurements,
we have developed (jointly with H. Luss) models to describe how utili-
zation is affected by various important factors. We now describe one such
model that employs the clearing process with Brownian motion input
that we have just considered at the end of Section 4.

Let the utilization at time ¢ be the proportion of the capacity that is
being used at time ¢, i.e., the demand divided by the capacity: U(¢t) =
D(t)/C(¢t), t = 0. Assume that a fixed proportion a (possibly zero) of the
demand is needed as administrative spare to manage the system effi-
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ciently, for example, as a safety factor. Let successive capacity expansions
occur at the epochs when demand plus administrative spare exceeds
capacity. Let the new capacity at each expansion be a constant multiple
vy of the demand plus administrative spare at the expansion epoch. Also
assume that capacity is continuously retired at a rate p times the existing
capacity; that is, when ¢ is not an expansion epoch, dC(t)/dt = —pC(¢).
Finally, assume that demand is geometric Brownian motion: D(¢) =
D(0)e* 8@ ¢t = 0; pp. 357 and 363 of Karlin and Taylor. If time 0 is an
expansion epoch, then the utilization at time ¢ (before the next expansion)
is given by

U(¢t) = D(t)/C(t) = D(0)e**B¥/C(0)e "

(12)
= e+ BU /((1 + q)y), t=0.
The next expansion occurs at the random time 7 defined by
r=inf{t=0:U@#) =1+ a)™'}
(13)

= inf{t = 0: (un + p)t + aB(¢) > log v}.

From (12) and (13), we see that the retirement factor p can be combined
with the demand drift term p and the administrative spare factor a
appears as the constant multiplicative term (1 + «)~'. Moreover, as
outlined in the introduction, logU (¢) + log(y(1 + «)) is a clearing content
process with respect to the Brownian motion input process Y (¢) = (u +
p)t + oB(t) and the clearing level log y. In Section 4 we noted that the
clearing content process associated with this input process Y has the
unique stationary distribution (which is also the limiting distribution)
given in (10), with A = 2(u + p)/0” now. Hence, the utilization process
{U(¢), t = 0} has a unique stationary distribution which is stochastically
increasing in A. Since the utilization process has a limiting distribution,
it is natural to interpret a utilization measurement (when this model is
appropriate) as an observation from this limiting distribution.

Since U*(0) = [(1 + a)y]'e"”"®, we obtain the following simple product
formula (which we have not been able to resist calling the Whitt-Luss
utilization formula):

EU*(0) = A/ + 1)1/ + a))((y — 1)/(y log v)), (14)

where A = 2(u + p)/o®. Formula (14) is obtained from (11) by setting
s =1and q = log y. From (14), it is easy to see the impact of the factors
i, 0, p, « and y-on the expected utilization.

ACKNOWLEDGMENT

This research stems from a project at Bell Laboratories conducted
jointly with Hanan Luss to study utilization in capacity expansion. I am



308 Whitt

grateful to Hanan Luss, Larry McDonald and Richard Serfozo of Bell
Laboratories for their helpful suggestions.

REFERENCES

BarLow, R. E., AND F. PROSCHAN. 1975. Statistical Theory of Reliability and
Life Testing. Holt, Rinehart & Winston, New York.

BREIMAN, L. 1968. Probability. Addison-Wesley, Reading, Mass.

BrowN, M. 1980. Bounds, Inequalities and Monotonicity Properties for Some
Specialized Renewal Processes. Ann. Prob. 8, 227-240.

BrownN, M., AND S. M. Ross. 1972. Asymptotic Properties of Cumulative Pro-
cesses. SIAM J. Appl. Math. 22, 93-105.

BRUMELLE, S. L., AND R. G. VicksoN. 1975. A Unified Approach to Stochastic
Dominance. In Stochastic Optimization Models in Finance, pp. 101-113, W.
T. Ziemba and R. G. Vickson (eds.). Academic Press, New York.

CHUNG, K. L. 1974. A Course in Probability Theory, Ed. 2. Academic Press, New
York.

FERGUSON, T. S. 1967. Mathematical Statistics. Academic Press, New York.

GikHMAN, L. I, AND A. V. SKOROHOD. 1969. Introduction to the Theory of
Random Processes (English translation). W. B. Saunders, Philadelphia.

KARLIN, S., AND H. M. TAYLOR. 1975. A First Course in Stochastic Processes,
Ed. 2. Academic Press, New York.

KEMENY, J. G., J. L. SNELL AND A. W. KNAPP. 1966. Denumerable Markov
Chains. Van Nostrand, Princeton, N.J.

LorDEN, G. 1970. On Excess over the Boundary. Ann. Math. Statist. 41, 520-527.

MILLER, D. R. 1972. Existence of Limits in Regenerative Processes. Ann. Math.
Statist. 43, 1275-1282.

PuTtErMAN, M. L. 1975. A Diffusion Process Model for a Storage System. In
Logistics (North-Holland/TIMS Studies in the Management Sciences), Vol. 1,
pp. 143-159, M. Geisler (ed.). American Elsevier, New York.

Ross, S. M. 1970. Applied Probability Models with Optimization Applications.
Holden-Day, San Francisco.

SERFOZO, R. F., AND S. STiDHAM, JR. 1978. Semistationary Clearing Processes.
Stoch. Processes Appl. 6, 165-178.

SPITZER, F. 1964. Principles of Random Walk. Van Nostrand, Princeton, N.J.

STIDHAM, S., JR. 1974. Stochastic Clearing Systems. Stoch. Processes Appl. 2,
85-113.

STIDHAM, S., JR. 1977. Cost Models for Stochastic Clearing Systems. Opns. Res.
25, 100-127.

WHiItT, W. 1973. Diffusion Models for Inventory and Production Systems, un-
published paper, Department of Administrative Sciences, Yale University.

WHITT, W. 1980. Uniform Conditional Stochastic Order. JJ. Appl. Prob. 17, 112-
123.



