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We study the G/GI /∞ queue in heavy-traffic using tempered
distribution-valued processes which track the age and residual service
time of each customer in the system. In both cases, we use the con-
tinuous mapping theorem together with functional central limit theo-
rem results in order to obtain fluid and diffusion limits for these pro-
cesses in the space of tempered distribution-valued processes. We find
that our diffusion limits are tempered distribution-valued Ornstein–
Uhlenbeck processes.

1. Introduction. Limit theorems for the infinite-server queue in heavy-
traffic have a rich history starting with the seminal work of Iglehart [17] on
the M/M/∞ queue. This work then inspired a line of research aimed at ex-
tending the results of [17] to additional classes of service time distributions.
Whitt [32] studies the GI /PH /∞ queue, having phase-type service-time
distributions, and Glynn and Whitt [11] consider the GI /GI /∞ queue with
service times taking values in a finite set. In [5], [25] and [31], the G/GI /∞
queue is studied with general service time distributions. Pang et al. [29] gives
a survey of these results.

In this paper, we study two Markov processes associated with theG/GI /∞
queue. The first process which we study is a tempered distribution-valued
process which tracks the age of each customer in the system. We refer to
this process as the age process. The second process which we study is also a
tempered distribution-valued process and it tracks the residual service time
of each customer in the system as well as the amount of time since departure
for each customer who has left the system. We refer to this process as the
residual service time process. Although analyzing either of these processes
might at first appear to be a difficult task, one of the key themes that runs
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throughout the present paper is that techniques originally developed for es-
tablishing heavy-traffic limits in the finite-dimensional setting may also be
successfully applied in the more abstract infinite-dimensional setting.

Our main results in this paper are to obtain fluid and diffusion limits for
both the age and residual service time processes. In particular, for both the
age and the residual service time processes, we use the continuous mapping
theorem together with functional central limit theorem results in order to
establish our main results. The corresponding diffusion limits that we ob-
tain for both the age and residual time processes may be characterized as
tempered distribution-valued Ornstein–Uhlenbeck processes.

The tempered distribution-valued representation which we use for the
residual service time process was also used by Decreusefond and Moyal [8]
in order to analyze theM/G/∞ queue. However, in the current paper we go
beyond analyzing the residual service time process and also analyze the age
process, which was not treated in [8]. In particular, we provide a diffusion
limit result for the tempered distribution-valued age process which is fun-
damentally different from the diffusion limit for the age process obtained in
[8]. Moreover, our general methodology for proving our main results differs
from that employed in [8]. Specifically, while the approach in [8] has as its
starting point the infinitesimal generator of the residual service time process,
in the present paper we begin by defining the model primitives and setting
up a governing system equation for both the age and residual service time
processes. As alluded to above, we then rely upon the continuous mapping
theorem and functional central limit theorem results when proving our main
results.

A second major contribution of our work is to make a connection between
the literature on infinite-dimensional heavy-traffic limits for queueing systems
[7–9, 12–14, 23] and the vast literature on infinite-dimensional Ornstein–
Uhlenbeck processes motivated by applications to interacting particle sys-
tems [2–4, 15, 16, 19, 20, 27, 28]. Our work especially relies upon [19] and
[20] in order to prove continuity of a particular regulator map.

Another set of papers related to ours are those of Kaspi and Ramanan
[23, 24]. Although these works analyze the many-server queue with general
service time distributions, their infinite-dimensional representation of the
system is similar to ours. Fluid limits are established for the system in [23]
in the space of Radon measure-valued processes. However, when establishing
corresponding diffusion limits, the limit process evidently falls out of the
space of Radon measure-valued processes and distribution-valued processes
are used instead in [24]. In the present paper, we follow the work of [8]
in which the space of tempered distributions is used. This space may be
characterized as the topological dual of Schwartz space, the space of rapidly
decreasing, infinitely differentiable functions.
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We also mention the work [30], where the authors build upon the work of
[11] and [25] in order to prove heavy-traffic limits for the G/GI /∞ queue in
a two-parameter function space. They analyze both the age and the residual
service time process as we do. The main difference between the present work
and [30] is that in the present work tempered distribution-valued processes
are used which allows one to apply the continuous mapping theorem and
other standard results in order to obtain heavy-traffic limits.

The remainder of this paper is now organized as follows. In Section 2,
we derive basic system equations for both the age process and the residual
service time process. These equations serve as the starting point for our
analysis in the remainder of the paper. In Section 3, we present a regulator
map result to be used in conjunction with the continuous mapping theorem
in order to prove our main results. In Section 4, we provide martingale
results that are used together with the regulator map of Section 3 in order
to obtain our fluid and diffusion limits. In Sections 5 and 6, we prove our fluid
and diffusion limits, respectively. In the Appendix, we provide the proofs of
several technical lemmas that are used throughout the paper.

1.1. Technical background. We now provide some technical background
which is useful for the remainder of the paper. We begin with some prelim-
inary details.

1.1.1. Preliminaries. All random variables and processes in this paper
are assumed to be defined on a common probability space (Ω,F ,P) and are
measurable maps from (Ω,F ,P) to an arbitrary topological space with an
associated Borel σ-algebra. It turns out that many of the random quantities
which we study in this paper take values in a topological space which is
not metrizable and so we now provide the definition of weak convergence
on an arbitrary topological space. We follow the approach of [21]. Let X
be an arbitrary topological space with associated Borel σ-algebra B(X).
We say that a sequence of probability measures (Pn)n≥1 on B(X) weakly
converges to a probability measure P on B(X), abbreviated as Pn ⇒ P, if
∫

f dPn →
∫

f dP for every bounded, continuous real functional f on X (see

Definition 2.2.1 of [21]). We also use the notation
P→ to denote convergence

in probability. For any two topological spaces X and Y , we denote by X×Y
the cartesian product of X and Y and we associate with X ×Y the product
topology. Note that using the above definition of weak convergence, it is
straightforward to show that the continuous mapping theorem continues to
hold (see, e.g., the proof of Theorem 3.4.1 of [33]). In particular, we have
the following.

Proposition 1.1. Let X and Y be two topological spaces and let (xn)n≥1

be a sequence of random elements of X such that xn ⇒ x. If g :X 7→ Y is a
continuous function, then g(xn)⇒ g(x) in Y .



4 J. REED AND R. TALREJA

Next, for each 0 < T <∞, let D([0, T ],R) denote the space of functions
from [0, T ] to R that are right-continuous on [0, T ) with left limits everywhere
on (0, T ]. We equip D([0, T ],R) with the Skorokhod J1-topology [1]. We also
note that we will commonly abbreviate the notation D([0, T ],R) by simply
writing D. Next, let D([0, T ],D) denote the space of functions from [0, T ] to
D that are right-continuous on [0, T ) with left limits everywhere on (0, T ].
We equip D([0, T ],D) with the Skorokhod J1-topology [1] as well. For an
element x ∈D([0, T ],R), we set

‖x‖T = sup
0≤t≤T

|x(t)|.

We denote by e= (t, t ∈ [0, T ]), the identity process on [0, T ].

1.1.2. Schwartz space. The space of rapidly decreasing functions, also
known as Schwartz space, plays an important rule in this paper and so we
now provide a brief review of some of the relevant facts concerning this
space. Much of the material found in this subsection may also be found in
[21].

Let R, R+ and R− denote the set of reals, nonnegative reals and non-
positive reals, respectively. Also, denote by N= {0,1,2, . . .} the set of non-
negative integers. Let C∞(R) denote the set of infinitely differentiable func-
tions from R to R and let C∞(R+) denote the set of infinitely differentiable
functions from R+ to R. Also, let C∞

b (R) denote the set of infinitely dif-
ferentiable, bounded functions from R to R whose derivatives of all orders
are bounded and, similarly, let C∞

b (R+) denote the set of infinitely differen-
tiable, bounded functions from R+ to R whose derivatives of all orders are
bounded.

Now define

S ≡ {ϕ ∈C∞(R) :‖ϕ‖α,β <∞ for all α,β ∈N},(1.1)

where

‖ϕ‖α,β ≡ sup
x∈R

|xαϕ(β)(x)|(1.2)

and ϕ(β) denotes the βth derivative of ϕ. The space S is commonly referred
to as Schwartz space or the space of rapidly decreasing functions [21].

The topology of S is given by the family of seminorms {‖ · ‖α,β :α,β ∈N}
defined in (1.2). In particular, ϕn → ϕ in S if ‖ϕn−ϕ‖α,β → 0 for all α,β ∈N.
We note that by Lemma 1.3.2 and Theorem 1.3.2 of [21], the space S is a
nuclear Frèchet space. Moreover, we also note that one may construct a
sequence of seminorms {‖ · ‖p :p ∈N} with the property that ‖ · ‖p ≤ ‖ · ‖p+1

for each p ∈ N and which also induce the same the topology on S as the
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seminorms {‖ · ‖α,β :α,β ∈N} given above. In particular, by Lemma 1.3.3 of
[21], one has that for each p ∈N, there exists a k ∈N and C > 0 such that

‖ϕ‖p ≤C max
0≤α,β≤k+1

‖ϕ‖α,β for all ϕ ∈ S,(1.3)

and, by Lemma 1.3.4 of [21], one has that for each α,β ∈ N, there exists a
p ∈N and M > 0 such that

max
0≤α,β≤k+1

‖ϕ‖α,β ≤M‖ϕ‖p for all ϕ ∈ S.(1.4)

For a precise construction of ‖ · ‖p for each p ∈N, one may consult page 24
of [21].

The set of all linear maps from S to S is denoted by L(S,S) and the
strong topology on L(S,S) is defined in the following manner. A subset B
of S is said to be bounded if for any neighborhood U of ϕ ≡ 0 ∈ S , there
exists a constant α > 0 such that α−1B ⊂ U (see Definition 1.1.7 of [21]).
The strong topology on L(S,S) is then given by the following definition (see
Theorem 1.2.1 of [21]).

Definition 1.2. For each bounded subset B of S and p ∈N, let

qB,p(T )≡ sup
ϕ∈B

‖Tϕ‖p for all T ∈L(S,S).

Then {qB,p} constitutes a family of seminorms on L(S,S) and the topology
given by these seminorms is referred to as the strong topology on L(S,S).

1.1.3. The space of tempered distributions. Many of the processes studied
in this paper take values in the topological dual of S , which we denote by
S ′. Recall that S ′ is the space of all continuous linear functionals on S .
Elements of S ′ are referred to as tempered distributions and we now review
some relevant facts concerning tempered distributions as well as tempered
distribution-valued processes.

For each µ ∈ S ′ and ϕ ∈ S , we denote the duality product of µ and ϕ by
〈µ,ϕ〉 ≡ µ(ϕ). The distributional derivative of µ ∈ S ′ is denoted by µ′ and is
defined to be the unique element of S ′ such that

〈µ′, ϕ〉=−〈µ,ϕ′〉 for all ϕ ∈ S.
It is clear by the definition of S that µ′ is well defined. For each µ ∈ S ′ and
t ∈R, we also define τtµ as the unique element of S ′ such that

〈τtµ,ϕ〉= 〈µ, τtϕ〉 for all ϕ ∈ S,
where τtϕ ∈ S is the function defined by τtϕ(·)≡ ϕ(· − t).

All statements in this paper regarding convergence in S ′ are with respect
to the strong topology on S ′, which we now define. One may consult Sec-
tion 1.1 of [21] for further details.
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Definition 1.3. For each bounded subset B ⊂ S , let
qB(µ)≡ sup

ϕ∈B
|〈µ,ϕ〉| for all µ ∈ S ′.(1.5)

Then the strong topology on S ′ is the topology induced by the family of
seminorms {qB}.

Unfortunately, the space S ′ is not metrizable with respect to the strong
topology (see Section 2 of [21]). Nevertheless, as we discuss below, one may
still usefully speak of weak convergence of S ′-valued random elements and
processes taking values in S ′.

Let D([0, T ],S ′) denote the space of functions from [0, T ] to S ′ that are
right-continuous on [0, T ) with left limits everywhere on (0, T ]. If (µt)t≥0 ∈
D([0, T ],S ′) and t ∈ [0, T ], we then define the tempered distribution

∫ t
0 µs ds

to be the unique element of S ′ (see Section 2 of [19]) such that
〈
∫ t

0
µs ds,ϕ

〉

=

∫ t

0
〈µs, ϕ〉ds for all t≥ 0, ϕ ∈ S.

As noted immediately following Definition 1.3 above, the space S ′ equipped
with the strong topology is not metrizable and so the Skorokhod metric and
ensuing Skorokhod J1-topology may not defined on D([0, T ],S ′) in the usual
manner. We therefore follow the approach of [21, 26] in defining an ap-
propriate topology on D([0, T ],S ′). Let Λ be the set of strictly increasing
continuous maps from [0, T ] onto itself such that for each λ ∈ Λ,

γ(λ) = sup
0≤s<t≤T

∣

∣

∣

∣

ln

(

λt − λs
t− s

)
∣

∣

∣

∣

<∞.

We then have the following definition (see [21, 26]).

Definition 1.4. For each seminorm qB defining the strong topology on
S ′, let

doqB(µ, ν) = inf
λ∈Λ

(

sup
0≤t≤T

|qB(µt − νλt
) + γ(λ)|

)

for all µ, ν ∈ S ′.

The topology on D([0, T ],S ′) is then defined by the family of pseudomet-
rics {doqB}.

By part (c) of Theorem 2.4.1 of [21], the topology given in Definition 1.4
above is equivalent to the topology defined by the family of pseudometrics
{dqB}, where

dqB(µ, ν) = inf
λ∈Λ

(

sup
0≤t≤T

|qB(µt − νλt
)|+ sup

0≤t≤T
|λt − t|

)

for all µ, ν ∈ S ′.



HEAVY-TRAFFIC LIMITS FOR THE G/GI /∞ QUEUE 7

We also note that under this topology, D([0, T ],S ′) is a completely regular
topological space [26].

The following result is an important consequence of Proposition 5.2 of
[26] regarding weak convergence of processes taking values in the dual of
a nuclear Frèchet space. It provides a convenient characterization of weak
convergence of processes taking values in S ′.

Theorem 1.5 (Mitoma’s theorem). Let (µn)n≥1 be a sequence of ran-
dom elements of D([0, T ],S ′). Then

µn ⇒ µ in D([0, T ],S ′)

if the following two statements hold:

(1) For each ϕ ∈ S, the sequence {〈µn, ϕ〉}n≥1 is tight in D([0, T ],R).
(2) For ϕ1, . . . , ϕm ∈ S and t1, . . . , tm ∈ [0, T ],

(〈µnt1 , ϕ1〉, . . . , 〈µntm , ϕm〉)⇒ (〈µt1 , ϕ1〉, . . . , 〈µtm , ϕm〉) in R
m.

We now conclude the technical background section with some comments
regarding martingales and, in particular, S ′-valued martingales. Let (Ft)t≥0

be a filtration on an underlying probability space (Ω,F ,P) and let M and
N be two R-valued Ft-martingales. The quadratic covariation of M and
N is denoted by (〈M,N〉t)t≥0 and the quadratic variation of M is denoted
by (〈〈M〉〉t)t≥0 ≡ (〈M,M〉t)t≥0. An S ′-valued process M is said to be an
S ′-valued Ft-martingale if for all ϕ ∈ S , (〈Mt, ϕ〉)t≥0 is an R-valued Ft-
martingale. For two S ′-valued martingales M and N , their tensor quadratic
covariation (〈M,N〉t)t≥0 is given for all t≥ 0 and all ϕ,ψ ∈ S by

〈M,N〉t(ϕ,ψ)≡ 〈〈M·, ϕ〉, 〈N·, ψ〉〉t,

and the tensor quadratic variation (〈〈M〉〉t)t≥0 of an S ′-valued martingale
is given by (〈〈M〉〉t)t≥0 ≡ (〈M,M〉t)t≥0. Two S ′-valued martingales, M and
N , are said to be orthogonal if 〈M,N〉 = 0 identically. Corresponding no-
tions for the optional quadratic variation process [M ] are defined analo-
gously.

2. System equations. In this section, we obtain semi-martingale decom-
positions of the tempered distribution-valued age process A≡ (At)t≥0 and
the tempered distribution-valued residual service time process R≡ (Rt)t≥0.
We begin in Section 2.1 by treating the age process A and then move on in
Section 2.2 to treating the residual service time process R.
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2.1. Age process. We consider a G/GI /∞ queue with general arrival
process (Et)t≥0 ∈D([0,∞),R). We assume that E0 = 0, P-a.s., and, for con-
venience in our proofs, we also define Et = 0 for t < 0. We also make the
assumption that for each t ≥ 0, we have that E[E2

t ] <∞. Next, for each
i≥ 1, we denote by

τi = inf{t≥ 0 :Et ≥ i}
the time of the arrival of the ith customer to the system after time t= 0. We
assume that E[τi]<∞ for each i= 1,2, . . . .We denote by ηi the service time
of the ith customer to arrive to the system after time t= 0 and we assume
that {ηi, i≥ 1} is an i.i.d. sequence of nonnegative, mean 1 random variables
with cumulative distribution function (c.d.f.) F , complementary cumulative
distribution function (c.c.d.f.) F̄ = 1− F , and probability density function
(p.d.f.) f . We also assume that the hazard rate function h of F satisfies the
following assumption.

Assumption 2.1. The function h ∈C∞
b (R+).

Now let (At)t≥0 ∈D([0,∞),D) be such that for each t≥ 0 and y ≥ 0, the
quantity At(y) represents the number of customers in the system at time
t≥ 0 that have been in the system for less than or equal to y units of time at
time t. For y < 0, we set At(y) = 0. At time t= 0, we assume that there are
A0(y) customers present who have been in the system for less than or equal
to y ≥ 0 units of time and that there are a total of A0(∞) customers present.
We assume that E[A2

0(∞)]<∞. For each i= 1, . . . ,A0(∞), we denote by

τ̃i =− inf{y ≥ 0 :A0(y)≥ i}
the “arrival” time of the ith initial customer to the system. We denote by
η̃i the remaining service time at time t= 0 of the ith initial customer in the
system. The distribution of η̃i, conditional on the arrival time τ̃i, is given by

P(η̃i >x|τ̃i) =
1− F (−τ̃i + x)

1− F (−τ̃i)
, x≥ 0.(2.1)

We denote by fτ̃i the conditional p.d.f. associated with this distribution and
we set hτ̃i(·) = h(· − τ̃i).

We now derive a convenient representation for the system equations for
(At)t≥0 and its tempered distribution-valued counterpart, A, which we de-
fine shortly. We begin by noting that by first principles we have that for
each t≥ 0 for y ≥ 0,

At(y) =

A0(∞)
∑

i=1

1{t−τ̃i≤y}1{t<η̃i} +

Et
∑

i=1

1{t−τi≤y}1{t−τi<ηi}.(2.2)

Our first result provides an alternative way to write (2.2). In the following,
we set

∑0
i=1 = 0.
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Proposition 2.2. For each t≥ 0 and y ≥ 0,

At(y) =A0(y)−
A0(∞)
∑

i=1

1{η̃i≤t∧(y+τ̃i)} −
A0(y)
∑

i=A0(y−t)+1

1{η̃i>y+τ̃i}

(2.3)

+Et −
Et
∑

i=1

1{ηi≤(t−τi)∧y} −
E(t−y)−
∑

i=1

1{ηi>y}.

Proof. By (2.2), we have that

At(y) =

A0(y)
∑

i=1

1{t−τ̃i≤y}1{t<η̃i} +

Et
∑

i=1

1{t−τi≤y}1{t−τi<ηi}

=A0(y) +

A0(y)
∑

i=1

(1{t−τ̃i≤y}1{t<η̃i} − 1) +Et(2.4)

+

Et
∑

i=1

(1{t−τi≤y}1{t−τi<ηi} − 1).

However,

1− 1{t−τ̃i≤y}1{t<η̃i}

= 1{t−τ̃i≤y}1{η̃i≤t} + 1{t−τ̃i>y}(2.5)

= (1{t−τ̃i≤y}1{η̃i≤t} + 1{t−τ̃i>y}1{−τ̃i+η̃i≤y}) + 1{t−τ̃i>y}1{−τ̃i+η̃i>y},

and, similarly,

1− 1{t−τi≤y}1{t−τi<ηi}

= 1{t−τi≤y}1{ηi≤t−τi} + 1{t−τi>y}(2.6)

= (1{t−τi≤y}1{ηi≤t−τi} + 1{t−τi>y}1{ηi≤y}) + 1{t−τi>y}1{ηi>y}.

Substituting (2.6) and (2.5) into (2.4) and summing over A0(y) and Et

completes the proof. �

We now provide an intuitive description of each of the terms appearing
in (2.3). The first term represents the number of customers in the system at
time t= 0 that have been in the system for less than or equal to y units of
time, the second term represents the number of departures by time t≥ 0 of
those initial customers that had total service less than or equal to y units
of time at time t = 0, and the third term represents the number of initial
customers whose total service time is greater than y units of time and had
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been in the system for less than or equal to y units of time at time t = 0
but have been in the system for greater than y units of time at time t≥ 0.
The fourth, fifth and sixth terms represent similar quantities but for those
customers that arrived to the system after time t= 0.

Now let D0 = (D0
t )t≥0 ∈D([0,∞),D) be defined by setting

D0
t (y) =

A0(∞)
∑

i=1

(

1{η̃i≤t∧(y+τ̃i)} −
∫ η̃i∧t∧(y+τ̃i)

0
hτ̃i(u)du

)

,(2.7)

for t ≥ 0, y ≥ 0, and set D0
t (y) = 0 for y < 0. Also, let D = (Dt)t≥0 ∈

D([0,∞),D) be defined by setting

Dt(y) =

Et
∑

i=1

(

1{ηi≤(t−τi)∧y} −
∫ ηi∧(t−τi)∧y

0
h(u)du

)

, t≥ 0, y ≥ 0,(2.8)

and set Dt(y) = 0 for y < 0. It then follows from (2.3) that for each t ≥ 0
and y ≥ 0, we may write

At(y) =A0(y) +Et −D0
t (y)−Dt(y)

−
A0(∞)
∑

i=1

∫ η̃i∧t∧(y+τ̃i)

0
hτ̃i(u)du−

Et
∑

i=1

∫ ηi∧(t−τi)∧y

0
h(u)du(2.9)

−
A0(y)
∑

i=A0(y−t)+1

1{−τ̃i+η̃i>y} −
E(t−y)−
∑

i=1

1{ηi>y}.

The above expression for At(y) will become useful in a moment. However,
we next move on to expressing the age process as a tempered distribution-
valued process using the Schwartz space S defined in (1.1). In particular,
we associate with the process A defined in (2.2) the S ′-valued process A=
(At)t≥0 such that for each t≥ 0 and ϕ ∈ S we set

〈At, ϕ〉=
∫

R

ϕ(y)dAt(y).(2.10)

In a similar manner, we associate the S ′-valued processes D0 = (D0
t )t≥0 and

D = (Dt)t≥0 with D0 and D, respectively. That is, for each t≥ 0 and ϕ ∈ S
we set

〈D0
t , ϕ〉=

∫

R

ϕ(y)dD0
t (y) and 〈Dt, ϕ〉=

∫

R

ϕ(y)dDt(y).

We also associate the S ′-valued random variable A0 with A0 by setting

〈A0, ϕ〉=
∫

R

ϕ(y)dA0(y), ϕ ∈ S.
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It is straightforward to see that for each t≥ 0, the quantities At, D0
t and Dt

are well-defined elements of S ′. Moreover, since for each fixed ϕ ∈ S the sam-
ple paths of (〈At, ϕ〉)t≥0, (〈D0

t , ϕ〉)t≥0 and (〈Dt, ϕ〉)t≥0 all lie in D([0,∞),R),
P-a.s., it follows that A,D0,D ∈D([0,∞),S ′), P-a.s.

For the remainder of the paper, we now replace the hazard rate function

h :R+ 7→ R with a function h̃ :R→ R such that h̃(x) = h(x) for x ≥ 0 and
h̃ ∈ C∞

b (R). In a similar manner, we replace the c.d.f. F and c.c.d.f. F̄

with corresponding functions F̃ and ˜̄F such that F̃ , ˜̄F ∈C∞
b (R). For ease of

notation, we continue to refer to h̃, F̃ and ˜̄F as h, F and F̄ , respectively.
Our next step is to use the expression (2.9) in order to provide a convenient

expression for the tempered distribution-valued process A. We begin by
noting that integrating test functions ϕ ∈ S term-by-term in (2.9) it follows
that for each t≥ 0 one has that

〈At, ϕ〉= 〈A0, ϕ〉 − 〈D0
t +Dt, ϕ〉

−
A0(∞)
∑

i=1

∫ −τ̃i+(η̃i∧t)

−τ̃i

ϕ(y)h(y)dy −
Et
∑

i=1

∫ ηi∧(t−τi)

0
ϕ(y)h(y)dy(2.11)

−
∫

R+

ϕ(y)d

( A0(y)
∑

i=A0(y−t)+1

1{−τ̃i+η̃i>y} +

E(t−y)−
∑

i=1

1{ηi>y}

)

.

The following two propositions now allow us to further simplify the ex-
pression in (2.11). We first have the following.

Proposition 2.3. For each t≥ 0,

A0(∞)
∑

i=1

∫ −τ̃i+(η̃i∧t)

−τ̃i

ϕ(y)h(y)dy +
Et
∑

i=1

∫ ηi∧(t−τi)

0
ϕ(y)h(y)dy =

∫ t

0
〈As, ϕh〉ds.

Proof. For each t≥ 0,

A0(∞)
∑

i=1

∫ −τ̃i+(η̃i∧t)

−τ̃i

ϕ(y)h(y)dy +
Et
∑

i=1

∫ ηi∧(t−τi)

0
ϕ(y)h(y)dy

=

A0(∞)
∑

i=1

∫ t

0
1{0≤s≤η̃i}ϕ(s− τ̃i)h(s− τ̃i)ds

+

Et
∑

i=1

∫ t

0
1{0≤s−τi≤ηi}ϕ(s− τi)h(s− τi)ds
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=

∫ t

0

(

A0(∞)
∑

i=1

1{0≤s≤η̃i}ϕ(s− τ̃i)h(s− τ̃i)

+
Et
∑

i=1

1{0≤s−τi≤ηi}ϕ(s− τi)h(s− τi)

)

ds

=

∫ t

0
〈As, ϕh〉ds.

This completes the proof. �

Next, we have the following.

Proposition 2.4. For each t≥ 0,

−
∫

R+

ϕ(y)d

(

A0(y)
∑

i=A0(y−t)+1

1{−τ̃i+η̃i>y} +

E(t−y)−
∑

i=1

1{ηi>y}

)

=Etϕ(0) +

∫ t

0
〈As, ϕ

′〉ds.

Proof. Let t≥ 0. Then, integrating by parts we have that

−Etϕ(0)−
∫

R+

ϕ(y)d

( A0(y)
∑

i=A0(y−t)+1

1{−τ̃i+η̃i>y} +

E(t−y)−
∑

i=1

1{ηi>y}

)

=

∫

R+

( A0(y)
∑

i=A0(y−t)+1

1{−τ̃i+η̃i>y} +

E(t−y)−
∑

i=1

1{ηi>y}

)

ϕ′(y)dy

=

∫

R+

(A0(∞)
∑

i=1

1{τ̃i≥−y,−τ̃i+η̃i>y,τ̃i+y<t} +

Et
∑

i=1

1{ηi>y,τi+y<t}

)

ϕ′(y)dy

=

A0(∞)
∑

i=1

∫

R+

1{τ̃i≥−y,−τ̃i+η̃i>y,τ̃i+y<t}ϕ
′(y)dy

+

Et
∑

i=1

∫

R+

1{ηi>y,τi+y<t}ϕ
′(y)dy

=

A0(∞)
∑

i=1

∫ t

0
1{0≤s−τ̃i≤−τ̃i+η̃i}ϕ

′(s− τ̃i)ds
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+

Et
∑

i=1

∫ t

0
1{0≤s−τi≤ηi}ϕ

′(s− τi)ds

=

∫ t

0

(A0(∞)
∑

i=1

1{0≤s−τ̃i≤−τ̃i+η̃i}ϕ
′(s− τ̃i) +

Et
∑

i=1

1{0≤s−τi≤ηi}ϕ
′(s− τi)

)

ds

=

∫ t

0

(
∫

R+

ϕ′(u)dAs(u)

)

ds

=

∫ t

0
〈As, ϕ

′〉ds.

This completes the proof. �

Now note that combining Propositions 2.3 and 2.4 with system equation
(2.11), one finds that for each t≥ 0 and ϕ ∈ S ,

〈At, ϕ〉= 〈A0, ϕ〉+ 〈Et −D0
t −Dt, ϕ〉

(2.12)

−
∫ t

0
〈As, hϕ〉ds+

∫ t

0
〈As, ϕ

′〉ds,

where we define the S ′-valued process E = (Et)t≥0 to be such that 〈Et, ϕ〉=
Etϕ(0) for each ϕ ∈ S and t≥ 0. In general, we refer to (2.12) as the semi-
martingale decomposition of A. This will become clear in Section 4 where
we show that the process (D0

t +Dt)t≥0 is a martingale.

2.2. Residual service time process. We next move on to analyzing the
residual service time process R. As in Section 2.1, we assume that we have
a G/GI /∞ queue in which customers arrive to the system according to a
general arrival process (Et)t≥0 ∈D([0,∞),R), where we assume that E0 = 0,
P-a.s. For each i≥ 1, we denote by

τi = inf{t≥ 0 :Et ≥ i}
the time of the ith customer arrival to the system after time t= 0 and we let
ηi be the service time of the ith customer to arrive to the system after time
t= 0. We assume that {ηi, i≥ 1} is an i.i.d. sequence of nonnegative, mean
1 random variables with cumulative distribution function F and probability
density function f . We also assume in this subsection that the hazard rate
function h of F satisfies Assumption 2.1 of Section 2.1.

Now let R= (Rt)t≥0 ∈D([0,∞),D) be such that for each t≥ 0 and y ∈R,
the quantity Rt(y) denotes the number of customers in the system at time
t≥ 0 that have less than or equal to y ∈ R units of service remaining. For
y < 0, we interpret Rt(y) as the number of customers who have departed
from the system by time t+ y. Thus, (Rt(y))y∈R not only keeps tracks of the



14 J. REED AND R. TALREJA

residual service times of those customers present in the system at time t,
but it also records the departure times of all customers who have departed
from the system by time t. We assume that at time t= 0 there are R0(y)
customers in the system that have less than or equal to y units of service
time remaining. By first principles, it then follows that for each t≥ 0 and
y ∈R we may write

Rt(y) =R0(t+ y) +

Et
∑

i=1

1{ηi−(t−τi)≤y}.(2.13)

The following proposition now presents an alternative expression for the
right-hand side of (2.13).

Proposition 2.5. For each t≥ 0 and y ∈R,

Rt(y) =R0(y) + (R0(t+ y)−R0(y))
(2.14)

+

Et
∑

i=1

1{ηi≤y} +

Et
∑

i=1

1{ηi>y,(τi+ηi)−t≤y}.

Proof. By (2.13),

Rt(y) =R0(t+ y) +

Et
∑

i=1

1{ηi−(t−τi)≤y}

(2.15)

=R0(y) + (R0(t+ y)−R0(y)) +

Et
∑

i=1

1{ηi−(t−τi)≤y}.

However, note that

1{ηi−(t−τi)≤y} = 1{ηi≤y} + 1{ηi>y,ηi−(t−τi)≤y}.(2.16)

Substituting (2.16) into (2.15) and summing over Et, completes the proof.
�

We now give an intuitive description for each of the terms appearing in
(2.15). The first term represents the number of customers in the system at
time t= 0 with less than or equal to y units of service time remaining. The
second term represents the number of customers in the system at time t= 0
with greater than y units of total service time but at time t ≥ 0 have less
than or equal to y units of service time remaining. The third and fourth
terms in (2.15) have analogous descriptions but for those customers that
arrive to the system after time t= 0.

Now let G= (Gt)t≥0 ∈D([0,∞),D) be defined by setting

Gt(y) =

Et
∑

i=1

(1{ηi≤y} −F (y)), t≥ 0, y ∈R.
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By Proposition 2.5, it then follows that for each t≥ 0 and y ∈R, Rt(y) may
be written as

Rt(y) =R0(y) + (R0(t+ y)−R0(y)) +Gt(y) +EtF (y)
(2.17)

+

Et
∑

i=1

1{ηi>y,(τi+ηi)−t≤y}.

The above representation for Rt(y) will be useful in a moment. How-
ever, we first proceed to define tempered distribution-valued versions of the
processes defined above. In particular, we let R= (Rt)t≥0 be the S ′-valued
process associated with R such that for each t≥ 0 and ϕ ∈ S we have that

〈Rt, ϕ〉=
∫

R

ϕ(y)dRt(y)

and we let G = (Gt)t≥0 be the S ′-valued process associated with G such that
for each t≥ 0 and ϕ ∈ S we have that

〈Gt, ϕ〉=
∫

R

ϕ(y)dGt(y).

We also define the elements F and Fe of S ′ by setting

〈F , ϕ〉 ≡
∫ ∞

0
ϕ(x)dF (x), ϕ ∈ S,

and

〈Fe, ϕ〉 ≡
∫ ∞

0
ϕ(x)(1− F (x))dx, ϕ ∈ S.

Now note that integrating test functions ϕ ∈ S against each of the terms
in (2.17), it follows that for each ϕ ∈ S and t≥ 0,

〈Rt, ϕ〉= 〈R0, ϕ〉+
∫

R

ϕ(y)d(R0(t+ y)−R0(y))

(2.18)

+ 〈Gt, ϕ〉+Et〈F , ϕ〉+
∫

R

ϕ(y)d

(

Et
∑

i=1

1{ηi>y,(τi+ηi)−t≤y}

)

.

The following proposition now allows us to simplify the right-hand side
of (2.18).

Proposition 2.6. For each t≥ 0,
∫

R

ϕ(y)d(R0(t+ y)−R0(y)) +

∫

R

ϕ(y)d

(

Et
∑

i=1

1{ηi>y,(τi+ηi)−t≤y}

)

(2.19)

=−
∫ t

0
〈Rs, ϕ

′〉ds.
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Proof. The proof parallels the proof of Proposition 2.4. Let t≥ 0. Then,
integrating by parts, we have that

−
∫

R

ϕ(y)d(R0(t+ y)−R0(y))−
∫

R

ϕ(y)d

(

Et
∑

i=1

1{ηi>y,(τi+ηi)−t≤y}

)

=

∫

R

(R0(∞)
∑

i=1

1{y<η̃i≤t+y}

)

ϕ′(y)dy +

∫

R

(

Et
∑

i=1

1{ηi>y,(τi+ηi)−t≤y}

)

ϕ′(y)dy

=

R0(∞)
∑

i=1

∫

R

1{y<η̃i≤t+y}ϕ
′(y)dy +

Et
∑

i=1

∫

R

1{ηi>y,(τi+ηi)−t≤y}ϕ
′(y)dy

=

R0(∞)
∑

i=1

∫

R

1{η̃i−t≤y<η̃i}ϕ
′(y)dy +

Et
∑

i=1

∫

R

1{(τi+ηi)−t≤y<ηi}ϕ
′(y)dy

= 7

R0(∞)
∑

i=1

∫ t

0
ϕ′(η̃i − s)ds+

Et
∑

i=1

∫ t

0
1{τi≤s}ϕ

′(τi + ηi − s)ds

=

∫ t

0

(R0(∞)
∑

i=1

ϕ′(η̃i − s) +
Et
∑

i=1

1{τi≤s}ϕ
′(τi + ηi − s)

)

ds

=

∫ t

0

(
∫

R+

ϕ′ dRs(u)

)

ds

=

∫ t

0
〈Rs, ϕ

′〉ds.

This completes the proof. �

Substituting (2.19) into (2.18), one now obtains that for each t≥ 0 and
ϕ ∈ S ,

〈Rt, ϕ〉= 〈R0, ϕ〉+ 〈Gt, ϕ〉+Et〈F , ϕ〉 −
∫ t

0
〈Rs, ϕ

′〉ds.(2.20)

We refer to (2.20) as the semi-martingale decomposition of R. This is due
to the fact that in Section 4 it will be shown that the process G in (2.20) is
a martingale. We also point out the similarity of (2.20) with (4) of [8].

3. Regulator map result. Let B :S 7→ S be a continuous linear operator
and for each µ ∈ D([0, T ],S ′), consider the solution ν ∈ D([0, T ],S ′) to the
integral equation

〈νt, ϕ〉= 〈µt, ϕ〉+
∫ t

0
〈νs,Bϕ〉ds, t ∈ [0, T ], ϕ ∈ S.(3.1)
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In this section, we first show that under some mild restrictions on B, (3.1)
defines a continuous function ΨB :D([0, T ],S ′)→D([0, T ],S ′) mapping µ to
ν. We then proceed in Sections 3.1 and 3.2 to study particular continuous
linear operators associated with the age process and the residual service time
process, respectively.

We begin with the following definition from [19].

Definition 3.1. A family (St)t≥0 of linear operators on S is said to be
a strongly-continuous (C0,1) semigroup if the following three conditions are
satisfied:

(1) S0 = I , where I is the identity operator, and, for all s, t≥ 0, SsSt =
Ss+t.

(2) The map t→ St is continuous in the strong topology of L(S,S). That
is, if tn → t in R+, then for any bounded subset K ⊂ S and p≥ 1,

sup
ϕ∈K

‖Stnϕ− Stϕ‖p → 0.

(3) For each q ≥ 0, there exist numbers Mq, σq and p ≥ q such that for
all ϕ ∈ S and t≥ 0,

‖Stϕ‖q ≤Mqe
σqt‖ϕ‖p.

Remark 3.2. Note that condition (2) of Definition 3.1 is stronger than
the corresponding condition for a (C0,1) semigroup as given, for example,
in [19]. The weaker definition in [19] only requires that the map t→ Stϕ be
continuous in the weak topology of L(S,S). That is, if tn → t in R+, then
for all ϕ ∈ S and m≥ 1, ‖Stnϕ− Stϕ‖m → 0.

Recall now that for a family (St)t≥0 of linear operators on S , the infinites-
imal generator B of (St)t≥0 is defined to be such that

Bϕ= lim
t→0

Stϕ− ϕ

t
in S,

for all such ϕ ∈ S that the limit on the right-hand side above exits. We refer
to such ϕ ∈ S as D(B), the domain of B. We now have the following result,
which is our main result regarding the integral equation (3.1).

Theorem 3.3. Let B ∈ L(S,S) be the infinitesimal generator of a strong-
ly-continuous (C0,1) semigroup (St)t≥0. Then, for each µ ∈D([0, T ],S ′), the
equation (3.1) has a unique solution given by

〈νt, ϕ〉= 〈µt, ϕ〉+
∫ t

0
〈µs, St−sBϕ〉ds, t ∈ [0, T ], ϕ ∈ S.(3.2)

Furthermore, (3.2) defines a continuous function ΨB :D([0, T ],S ′)→D([0, T ],
S ′) mapping µ to ν.
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Proof. That ΨB is a well-defined function from D([0, T ],S ′) to D([0, T ],
S ′) and the form of the solution (3.2) follows from Theorem 2.1 of [19] (see
also Corollary 2.2 of [19]).

We now show that ΨB is continuous. By (3.2), it suffices to show that the
function mapping D([0, T ],S ′) to D([0, T ],S ′) defined by µ 7→

∫ ·
0B

∗S∗
·−sµs ds,

where B∗ and S∗
t denote the adjoint operators of B and St, respectively, is

continuous. Let (µn)n≥1 be a sequence converging to µ in D([0, T ],S ′). Then,
by Definition 1.4 and the comment below it (see also Theorem 2.4.1 of [21]),
there exists a sequence (λn)n≥1 of strictly increasing homeomorphisms of
the interval [0, T ] such that for each bounded set K ⊂ S ,

sup
0≤t≤T

sup
ϕ∈K

|〈µnt − µλn
t
, ϕ〉| → 0 and sup

0≤t≤T
|λnt − t| → 0

(3.3)
as n→∞.

Moreover, it suffices to consider homeomorphisms (λn)n≥1 that are abso-
lutely continuous with respect to Lebesgue measure on [0, T ] having corre-
sponding derivatives (λ̇n)n≥1 satisfying ‖λ̇n − 1‖T → 0 as n→∞ (see pages
112–114 of [1]). It then follows that for each t ∈ [0, T ] and ϕ ∈ S we may
write

∣

∣

∣

∣

〈
∫ t

0
B∗S∗

t−sµ
n
s ds−

∫ λn
t

0
B∗S∗

λn
t −sµs ds,ϕ

〉
∣

∣

∣

∣

=

∣

∣

∣

∣

〈
∫ t

0
B∗S∗

t−sµ
n
s ds−

∫ t

0
B∗S∗

λn
t −λn

s
µλn

s
λ̇ns ds,ϕ

〉
∣

∣

∣

∣

≤ ‖λ̇n − 1‖T
∣

∣

∣

∣

〈
∫ t

0
B∗S∗

λn
t −λn

s
µλn

s
ds,ϕ

〉
∣

∣

∣

∣

+

∣

∣

∣

∣

〈
∫ t

0
B∗(S∗

t−s − S∗
λn
t −λn

s
)µλn

s
ds,ϕ

〉∣

∣

∣

∣

(3.4)

+

∣

∣

∣

∣

〈
∫ t

0
B∗S∗

t−s(µ
n
s − µλn

s
)ds,ϕ

〉∣

∣

∣

∣

= ‖λ̇n − 1‖T
∣

∣

∣

∣

∫ t

0
〈µλn

s
, Sλn

t −λn
s
Bϕ〉ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0
〈µλn

s
, (St−s − Sλn

t −λn
s
)Bϕ〉ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0
〈µns − µλn

s
, St−sBϕ〉ds

∣

∣

∣

∣

.

In order to complete the proof, it now suffices to show that for each bounded
subset K ⊂S , the following three limits hold:

sup
t∈[0,T ]

sup
ϕ∈K

‖λ̇n − 1‖T
∣

∣

∣

∣

∫ t

0
〈µλn

s
, Sλn

t −λn
s
Bϕ〉ds

∣

∣

∣

∣

→ 0 as n→∞,(3.5)
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sup
t∈[0,T ]

sup
ϕ∈K

∣

∣

∣

∣

∫ t

0
〈µλn

s
, (St−s − Sλn

t −λn
s
)Bϕ〉ds

∣

∣

∣

∣

→ 0 as n→∞,(3.6)

sup
t∈[0,T ]

sup
ϕ∈K

∣

∣

∣

∣

∫ t

0
〈µns − µλn

s
, St−sBϕ〉ds

∣

∣

∣

∣

→ 0 as n→∞.(3.7)

We begin with (3.5). First note that for each bounded subset K ⊂S ,
sup

s∈[0,T ]
sup
ϕ∈K

|〈µs, ϕ〉|<∞.(3.8)

Now let K ⊂ S be an arbitrary bounded set. We show that the set K ′ ≡
{SuBϕ,u ∈ [0, T ], ϕ ∈ K} is bounded in S as well. Indeed, note that by
Definition 3.1, we have that for each q ≥ 0 there exist Mq , σq and p≥ q such
that

sup
ϕ∈K ′

‖ϕ‖q = sup
u∈[0,T ],ϕ∈K

‖SuBϕ‖q ≤Mqe
σqT sup

ϕ∈K
‖Bϕ‖p <∞,(3.9)

where the final inequality follows from the fact that continuous linear opera-
tors from S to R map bounded sets of S to bounded sets of R (see Theorem
1.2.1 of [21]). Thus, K ′ = {SuBϕ,u ∈ [0, T ], ϕ ∈ K} is bounded and so by
(3.8),

sup
s∈[0,T ]

sup
u∈[0,T ],ϕ∈K

|〈µs, SuBϕ〉|<∞.

It therefore follows since ‖λ̇n − 1‖T → 0 as n→∞, that

sup
t∈[0,T ]

sup
ϕ∈K

‖λ̇n − 1‖T
∣

∣

∣

∣

∫ t

0
〈µλn

s
, Sλn

t −λn
s
Bϕ〉ds

∣

∣

∣

∣

(3.10)
≤ ‖λ̇n − 1‖TT sup

s∈[0,T ]
sup

u∈[0,T ],ϕ∈K
|〈µs, SuBϕ〉|ds→ 0,

as n→∞, which implies (3.5).
We next prove the limit (3.6). First note that by Lemma 2.2 of [18], there

exist θ ≥ 0 and q ≥ 1 such that

sup
t∈[0,T ]

sup
ϕ∈K

∣

∣

∣

∣

∫ t

0
〈µλn

s
, (St−s − Sλn

t −λn
s
)Bϕ〉ds

∣

∣

∣

∣

≤ T sup
s∈[0,T ]

sup
0≤w≤v≤T

sup
ϕ∈K

|〈µs, (Sv−w − Sλn
v−λn

w
)Bϕ〉|(3.11)

≤ Tθ sup
0≤w≤v≤T

sup
ϕ∈K

‖(Sv−w − Sλn
v−λn

w
)Bϕ‖q.

Next, note that for w≤ v we may write

Sv−w − Sλn
v−λn

w
= 1{(v−w)−(λn

v−λn
w)≥0}(S(v−w)−(λn

v−λn
w) − I)Sλn

v−λn
w

+ 1{(λn
v−λn

w)−(v−w)≥0}(I − S(λn
v−λn

w)−(v−w))Sv−w.
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Thus, recalling the definition of the set K ′ = {SuBϕ,u ∈ [0, T ], ϕ ∈ K}, it
follows that

sup
0≤w≤v≤T

sup
ϕ∈K

‖(Sv−w − Sλn
v−λn

w
)Bϕ‖q

≤ sup
0≤w≤v≤T

sup
ϕ∈K

‖1{(v−w)−(λn
v−λn

w)≥0}(S(v−w)−(λn
v−λn

w) − I)Sλn
v−λn

w
Bϕ‖q

+ sup
0≤w≤v≤T

sup
ϕ∈K

‖1{(λn
v−λn

w)−(v−w)≥0}(I − S(λn
v−λn

w)−(v−w))Sv−wBϕ‖q(3.12)

≤ sup
0≤w≤v≤T

sup
ϕ∈K ′

‖1{(v−w)−(λn
v−λn

w)≥0}(S(v−w)−(λn
v−λn

w) − I)ϕ‖q

+ sup
0≤w≤v≤T

sup
ϕ∈K ′

‖1{(λn
v−λn

w)−(v−w)≥0}(I − S(λn
v−λn

w)−(v−w))ϕ‖q.

However, note that since ‖λ̇n − 1‖T → 0 as n→∞, it follows that

sup
0≤w≤v≤T

|(v−w)− (λnv − λnw)| → 0 as n→∞.

Thus, since by (3.9) the set K ′ ⊂ S is bounded, it follows by part (2) of
Definition 3.1 that

sup
0≤w≤v≤T

sup
ϕ∈K ′

‖1{(v−w)−(λn
v−λn

w)≥0}(S(v−w)−(λn
v−λn

w) − I)ϕ‖q

+ sup
0≤w≤v≤T

sup
ϕ∈K ′

‖1{(λn
v−λn

w)−(v−w)≥0}(I − S(λn
v−λn

w)−(v−w))ϕ‖q

→ 0 as n→∞,

which, by (3.11) and (3.12), implies (3.6).
Finally, (3.7) follows from the fact that

sup
t∈[0,T ]

sup
ϕ∈K

∣

∣

∣

∣

∫ t

0
〈µns − µλn

s
, St−sBϕ〉ds

∣

∣

∣

∣

(3.13)
≤ T sup

s∈[0,T ]
sup

u∈[0,T ],ϕ∈K
|〈µns − µλn

s
, SuBϕ〉| → 0,

as n→ ∞, where the final convergence follows from (3.3) and (3.9). This
completes the proof. �

3.1. Age process. Now let BA be the linear operator defined on S such
that

BAϕ= ϕ′ − hϕ for all ϕ ∈ S.(3.14)

Our main result in this subsection is to verify that BA generates a strongly-
continuous (C0,1) semigroup. This will then be useful in Sections 5.1 and 6.1,
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where we prove our fluid and diffusion limits, respectively, for the age pro-
cess. In particular, by Theorem 3.3 of the preceding subsection and (2.12)
of Section 2.1, this will then allow us to write

A=ΨBA(A0 + E − (D0 +D)),(3.15)

where the map ΨBA :D([0, T ],S ′) 7→ D([0, T ],S ′) is a continuous map. We
begin with the following lemma. Its proof may be found in the Appendix.

Lemma 3.4. (1) For each n≥ 1 and t≥ 0,

sup
x≥0

∣

∣

∣

∣

(

F̄ (x+ t)

F̄ (x)

)(n)∣
∣

∣

∣

<∞.(3.16)

(2) For each T > 0, there exists a sequence (Mn)n≥0 such that for each
s, t ∈ [0, T ],

sup
x≥0

∣

∣

∣

∣

(

F̄ (x+ t)

F̄ (x)
− F̄ (x+ s)

F̄ (x)

)(n)∣
∣

∣

∣

≤Mn|t− s|.(3.17)

Proof. See the Appendix. �

Next, we have the following.

Lemma 3.5. For each ϕ ∈ S, t ∈R and α,β ∈N, we have

‖τtϕ‖α,β ≤ (1∨ |t|α)2α max
0≤i≤α

‖ϕ‖i,β .(3.18)

Proof. For each ϕ ∈ S , t ∈R and α,β ∈N, we have

‖τtϕ‖α,β = ‖ϕ(· − t)‖α,β = sup
x∈R

|xαϕ(β)(x− t)|

= sup
x∈R

|[t+ (x− t)]αϕ(β)(x− t)|

= sup
x∈R

∣

∣

∣

∣

∣

α
∑

i=0

(

α
i

)

tα−i(x− t)iϕ(β)(x− t)

∣

∣

∣

∣

∣

≤
α
∑

i=0

(

α
i

)

|t|α−i‖ϕ‖i,β ≤ (1∨ |t|α)2α max
0≤i≤α

‖ϕ‖i,β .

This completes the proof. �

The following is now our main result of this subsection.
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Proposition 3.6. The linear operator BA defined by (3.14) generates
a strongly-continuous (C0,1) semigroup (SA

t )t≥0 given by

SA
t ϕ= (1/F̄ )τ−t(F̄ ϕ) for all ϕ ∈ S.(3.19)

Proof. We first check that BA is indeed the infinitesimal generator of
the semi-group given by (3.19). In order to do so, it suffices to check that
for each α,β ∈N,

lim
t→0

∥

∥

∥

∥

SA
t ϕ−ϕ

t
− (ϕ′ − hϕ)

∥

∥

∥

∥

α,β

= 0.(3.20)

We begin by noting that for each t≥ 0, x ∈R and ϕ ∈ S , we have that

|SA
t ϕ(x)| =

∣

∣

∣

∣

1−F (x− t)

1− F (x)
· τtϕ(x)

∣

∣

∣

∣

≤ e‖h‖∞t · |τtϕ(x)|,

and so it follows that SA
t ϕ ∈ S . Now let x ∈ R be fixed and note that for

each t≥ 0, we may write

SA
t ϕ(x) = exp

(

−
∫ x+t

x
h(v)dv

)

ϕ(x+ t).

Hence, by Taylor’s theorem, expanding in terms of t we obtain that we may
write

SA
t ϕ(x) = ϕ(x) + (ϕ′(x)− h(x)ϕ(x))t+R(x, t),(3.21)

where the remainder term R(x, t) has the from

R(x, t) =
1

2

∫ t

0

d2

du2

(

exp

(

−
∫ x+u

x
h(v)dv

)

ϕ(x+ u)

)

udu.

Now differentiating with respect to x in (3.21), we obtain that for each
α,β ∈N,

lim
t→0

∥

∥

∥

∥

SA
t ϕ− ϕ

t
− (ϕ′ − hϕ)

∥

∥

∥

∥

α,β

= lim
t→0

sup
x∈R

∣

∣

∣

∣

xα
R(β)(x, t)

t

∣

∣

∣

∣

,

where R(β)(x, t) denotes the βth derivative of R(x, t) with respect to x.
Hence, in order to verify (3.20) it now suffices to show that for each α,β ∈N,

lim
t→0

sup
x∈R

∣

∣

∣

∣

xα
R(β)(x, t)

t

∣

∣

∣

∣

= 0.

First note that for each x∈R fixed, we may write

xαR(β)(x, t)
(3.22)

=
1

2

∫ t

0
xα
(

d2

du2

(

exp

(

−
∫ x+u

x
h(v)dv

)

ϕ(x+ u)

))(β)

udu.
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However, since h ∈Cb(R+) and ϕ ∈ S , it is straightforward to show that for
each α,β ∈ N, there exists a constant Cα,β <∞ such that for u sufficiently
small,

sup
x∈R

∣

∣

∣

∣

xα
(

d2

du2

(

exp

(

−
∫ x+u

x
h(v)dv

)

ϕ(x+ u)

))(β)∣
∣

∣

∣

<Cα,β.

Hence, by (3.22) we obtain that

lim
t→0

sup
x∈R

∣

∣

∣

∣

xα
R(β)(x, t)

t

∣

∣

∣

∣

< lim
t→0

∣

∣

∣

∣

Cα,β

2t

∫ t

0
udu

∣

∣

∣

∣

= lim
t→0

Cα,β

4
t= 0.

This now completes the verification of the fact that BA is the infinitesimal
generator of the semigroup (SA

t )t≥0 given by (3.19).
We next verify that the semigroup (SA

t )t≥0 is a strongly-continuous (C0,1)
semi-group. It is straightforward to see that part (1) of Definition 3.1 is
satisfied. We next check that part (2) of Definition 3.1 is satisfied. Consider
0 ≤ s < t, a bounded set K ⊂ S , and α,β ∈ N. We then have that we may
write

sup
ϕ∈K

‖SA
s ϕ− SA

t ϕ‖α,β

= sup
ϕ∈K

‖(1/F̄ )τ−s(F̄ ϕ)− (1/F̄ )τ−t(F̄ϕ)‖α,β

= sup
ϕ∈K

sup
x∈R

∣

∣

∣

∣

xα
(

F̄ (x+ s)

F̄ (x)
ϕ(x+ s)− F̄ (x+ t)

F̄ (x)
ϕ(x+ t)

)(β)∣
∣

∣

∣

(3.23)

≤ sup
ϕ∈K

sup
x∈R

∣

∣

∣

∣

xα
(((

F̄ (x+ s)

F̄ (x)
− F̄ (x+ t)

F̄ (x)

)

ϕ(x+ s)

)(β))∣
∣

∣

∣

+ sup
ϕ∈K

sup
x∈R

∣

∣

∣

∣

xα
(

F̄ (x+ t)

F̄ (x)
(ϕ(x+ s)−ϕ(x+ t))

)(β)∣
∣

∣

∣

.

We now handle each of the terms in (3.23) separately.
For the first term in (3.23), note that by Lemmas 3.4 and 3.5 we have

that

sup
ϕ∈K

sup
x∈R

∣

∣

∣

∣

xα
[((

F̄ (x+ s)

F̄ (x)
− F̄ (x+ t)

F̄ (x)

)

ϕ(x+ s)

)(β)]∣
∣

∣

∣

= sup
ϕ∈K

sup
x∈R

β
∑

i=0

(

β
i

)
∣

∣

∣

∣

xα
(

F̄ (x+ s)

F̄ (x)
− F̄ (x+ t)

F̄ (x)

)(β−i)

ϕ(i)(x+ s)

∣

∣

∣

∣

(3.24)

= |t− s|
β
∑

i=0

Mβ−i

(

β
i

)

sup
ϕ∈K

sup
x∈R

|xαϕ(i)(x+ s)|
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≤ |t− s|(1∨ |t|α)2α
β
∑

i=0

Mβ−i

(

β
i

)

sup
ϕ∈K

max
0≤j≤α

‖ϕ‖j,i.

We next focus on the second term in (3.23). For each n ≥ 1, denote the
left-hand side of (3.16) by Ln. By the mean value theorem, for each x ∈ R

there exists an rx ∈ [s, t] such that

sup
ϕ∈K

sup
x∈R

∣

∣

∣

∣

xα
(

F̄ (x+ t)

F̄ (x)
(ϕ(x+ s)−ϕ(x+ t))

)(β)∣
∣

∣

∣

= sup
ϕ∈K

sup
x∈R

β
∑

i=0

(

β
i

)∣

∣

∣

∣

xα
F̄ (x+ t)

F̄ (x)

(β−i)

(ϕ(i)(x+ s)−ϕ(i)(x+ t))

∣

∣

∣

∣

= sup
ϕ∈K

sup
x∈R

β
∑

i=0

(

β
i

)

Lβ−i|xα(ϕ(i)(x+ s)− ϕ(i)(x+ t))|(3.25)

≤ |t− s| sup
ϕ∈K

sup
x∈R

β
∑

i=0

(

β
i

)

Lβ−i|xαϕ(i+1)(x+ rx)|

≤ |t− s|(1∨ |t|α)2α
β
∑

i=0

(

β
i

)

Lβ−i sup
ϕ∈K

max
0≤j≤α

‖ϕ‖j,i+1,

where the final inequality follows as a consequence of Lemma 3.5. Combining
(3.24) and (3.25) with (3.23) and taking the limit as s→ t now yields part (2)
of Definition 3.1.

We now complete the proof by verifying that part (3) of Definition 3.1 is
satisfied. First note that for each ϕ ∈ S , t≥ 0 and α,β ∈N, we may write

‖SA
t ϕ‖α,β = sup

x∈R

∣

∣

∣

∣

xα
(

F̄ (x+ t)

F̄ (x)
ϕ(x+ t)

)(β)∣
∣

∣

∣

= sup
x∈R

∣

∣

∣

∣

∣

xα
β
∑

i=0

(

β
i

)(

F̄ (x+ t)

F̄ (x)

)(β−i)

ϕ(i)(x+ t)

∣

∣

∣

∣

∣

≤
β
∑

i=0

(

β
i

)

Lβ−i sup
x∈R

|xαϕ(i)(x+ t)|

≤ (1∨ |t|α)2α
β
∑

i=0

(

β
i

)

Lβ−i max
0≤j≤α

‖ϕ‖j,i

≤ (1∨ |t|α)2α+β max
0≤i≤β

Li max
0≤j≤α

max
0≤i≤β

‖ϕ‖j,i,
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where the final inequality above follows from Lemma 3.5. Part (3) of Defi-
nition 3.1 now follows from (1.3) and (1.4) of Section 1.1 and the fact that
‖ · ‖p ≤ ‖ · ‖p+1 for each p ∈N. This completes the proof. �

3.2. Residual service time process. Now let BR be the linear operator
defined on S such that

BRϕ=−ϕ′ for all ϕ ∈ S.(3.26)

In this subsection, we verify that BR generates a strongly-continuous (C0,1)
semi-group. This will be useful in Sections 5.2 and 6.2, where we prove our
fluid and diffusion limits, respectively, for the residual service time process.
In particular, by (2.20) of Section 2.2 and Theorem 3.3, this then implies
that we may write

R=ΨBR(R0 +EF + G),(3.27)

where the map ΨBR :D([0, T ],S ′) 7→D([0, T ],S ′) is a continuous map.
Our main result of this subsection is the following.

Proposition 3.7. The linear operator BR defined by (3.26) generates
the strongly-continuous (C0,1) semigroup (τt)t≥0.

Proof. First note that it is clear by Lemma 3.5 that for each t≥ 0 and
ϕ ∈ S , we have that τtϕ ∈ S . We next check that for each α,β ∈N, we have
the convergence

lim
t→0

∥

∥

∥

∥

τtϕ− ϕ

t
− (−ϕ′)

∥

∥

∥

∥

α,β

= 0.(3.28)

This will then be sufficient to verify that BR as defined by (3.26) generates
the semigroup (τt)t≥0. Let x ∈ R and ϕ ∈ S be fixed. It then follows by
Taylor’s theorem, expanding in terms of t, that we may write

τtϕ(x) = ϕ(x)− ϕ′(x)t+R(x, t),(3.29)

where the remainder term R(x, t) is given by

R(x, t) =
1

2

∫ −t

0
ϕ′′(x+ u)(−t− u)du.(3.30)

Now differentiating in (3.29) with respect to x, we obtain that

lim
t→0

∥

∥

∥

∥

τtϕ−ϕ

t
− (−ϕ′)

∥

∥

∥

∥

α,β

= lim
t→0

sup
x∈R

∣

∣

∣

∣

xα
R(β)(t, x)

t

∣

∣

∣

∣

,
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where R(β)(x, t) denotes the βth derivative of R with respect to x. Thus, in
order to prove (3.28), it now suffices to check that

lim
t→0

sup
x∈R

∣

∣

∣

∣

xα
R(β)(t, x)

t

∣

∣

∣

∣

= 0.(3.31)

First note that by (3.30) we may write

xαR(β)(x, t) =
xα

2

∫ −t

0
ϕ(β+2)(x+ u)(−t− u)du

=
1

2

∫ −t

0
xαϕ(β+2)(x+ u)(−t− u)du.

However, by Lemma 3.5 there exists a constant Cα,β < ∞ such that for
sufficiently small u,

sup
x∈R

|xαϕ(β+2)(x+ u)|<Cα,β .

We therefore obtain that

lim
t→0

sup
x∈R

∣

∣

∣

∣

xα
R(β)(t, x)

t

∣

∣

∣

∣

< lim
t→0

∣

∣

∣

∣

Cα,β

2t

∫ −t

0
(−t− u)du

∣

∣

∣

∣

= lim
t→0

Cα,β

4
t= 0,

thus proving (3.31). This completes our verification of the fact that BR as
defined by (3.26) generates the semigroup (τt)t≥0.

We next proceed to verify that (τt)t≥0 is a strongly-continuous (C0,1)
semigroup. In order to check this fact, we will verify that (τt)t≥0 satisfies
parts (1) through (3) of Definition 3.1. It is clear that (τt)t≥0 satisfies part (1)
of Definition 3.1. We next check that (τt)t≥0 satisfies part (2) of Defini-
tion 3.1. Let s < t, K ⊂ S be a bounded set, and let α,β ∈N. Then, by the
mean value theorem, for each x ∈R there exists an rx ∈ [x−t, x−s] such that

sup
ϕ∈K

‖τsϕ− τtϕ‖α,β

= sup
ϕ∈K

sup
x∈R

|xα(ϕ(β)(x− s)−ϕ(β)(x− t))|

= sup
ϕ∈K

sup
x∈R

|(rx + (x− rx))
α(ϕ(β)(x− s)−ϕ(β)(x− t))|

= sup
ϕ∈K

sup
x∈R

∣

∣

∣

∣

∣

α
∑

i=0

(

α
i

)

rα−i
x (x− rx)

i(ϕ(β)(x− s)− ϕ(β)(x− t))

∣

∣

∣

∣

∣

= |t− s| sup
ϕ∈K

sup
x∈R

∣

∣

∣

∣

∣

α
∑

i=0

(

α
i

)

rα−i
x (x− rx)

iϕ(β+1)(x− rx)

∣

∣

∣

∣

∣

≤ |t− s|
α
∑

i=0

(

α
i

)

(t+1)α−i sup
ϕ∈K

‖ϕ‖i,β+1.
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Part (2) of Definition 3.1 now follows from the bound (1.3) and the fact that
K is a bounded set.

We now complete the proof by verifying that (τt)t≥0 satisfies part (3) of
Definition 3.1. Note that for each ϕ ∈ S , t≥ 0 and α,β ∈N, we have that

‖τtϕ‖α,β = ‖ϕ(· − t)‖α,β
= sup

x∈R
|xαϕ(β)(x− t)|

= sup
x∈R

|[t+ (x− t)]αϕ(β)(x− t)|

= sup
x∈R

∣

∣

∣

∣

∣

α
∑

i=0

(

α
i

)

tα−i(x− t)iϕ(β)(x− t)

∣

∣

∣

∣

∣

≤
α
∑

i=0

(

α
i

)

tα−i‖ϕ‖i,β

≤ (1 ∧ tα)2α max
0≤i≤α

‖ϕ‖i,β .

Part (3) of Definition 3.1 now follows as a result of the bounds (1.3) and
(1.4). �

4. Martingale results. In this section, we show that the process D0 +D
defined in Section 2.1 and the process G defined in Section 2.2 are both
S ′-valued martingales. The fact that D0 + D is an S ′-valued martingale
will ultimately be used together with the martingale functional central limit
theorem [10] and the continuous mapping theorem [1] in Sections 5.1 and 6.1
in order to prove our fluid and diffusion limits, respectively, for the age
process. The fact that G is an S ′-valued martingale is not necessarily needed
in order to prove limit theorems for the residual service time process but may
be used to show that the residual service time process is in fact a Markov
process. We begin by studying D0 +D.

4.1. Age process. In this subsection, we show that the process D0 +D
defined in Section 2.1 is an S ′-valued martingale with respect to the filtration
(FA

t )t≥0 defined by

FA
t = σ{1{η̃i≤s−τ̃i}, s≤ t, i= 1,2, . . . ,A0(∞)}

∨ σ{τ̃i, i= 1, . . . ,A0(∞)}
∨ σ{1{ηi≤s−τi}, s≤ t, i= 1,2, . . . ,Et}
∨ σ{Es, s≤ t} ∨N .

Moreover, we explicitly identify the tensor quadratic variation of D0 +D.
The following is our main result of this subsection.
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Proposition 4.1. The process D0 +D is an S ′-valued FA
t -martingale

with tensor quadratic variation process given for all ϕ,ψ ∈ S by

〈〈D0 +D〉〉t(ϕ,ψ) =
A0(∞)
∑

i=1

∫ η̃i∧t

0
ϕ(x− τ̃i)ψ(x− τ̃i)hτ̃i(x)dx

(4.1)

+

Et
∑

i=1

∫ ηi∧(t−τi)+

0
ϕ(x)ψ(x)h(x)dx.

Proof. Let ϕ ∈ S . We claim that (〈(D0 + D)t, ϕ〉)t≥0 is an R-valued
FA
t -martingale, which is sufficient to show that D0 + D is an S ′-valued

FA
t -martingale. Let t≥ 0. We first show that E[|〈(D0 +D)t, ϕ〉|]<∞. Note

that by (2.7) and (2.8) we may write

E[|〈(D0 +D)t, ϕ〉|]

≤ E

[
∣

∣

∣

∣

∣

A0(∞)
∑

i=1

∫ t

0
ϕ(x− τ̃i)d

(

1{η̃i≤x} −
∫ η̃i∧x

0
hτ̃i(u)du

)

∣

∣

∣

∣

∣

]

+ E

[
∣

∣

∣

∣

∣

Et
∑

i=1

∫ (t−τi)
+

0
ϕ(x)d

(

1{ηi≤x} −
∫ ηi∧x

0
h(u)du

)

∣

∣

∣

∣

∣

]

≤ E

[

sup
0≤s<∞

|ϕ(s)|
A0(∞)
∑

i=1

(

1{η̃i≤t} +

∫ η̃i∧t

0
hτ̃i(u)du

)

]

(4.2)

+ E

[

sup
0≤s<∞

|ϕ(s)|
Et
∑

i=1

(

1{ηi≤(t−τi)+} +

∫ ηi∧(t−τi)
+

0
h(u)du

)

]

≤ sup
0≤s<∞

|ϕ(s)|(1 + t‖h‖∞)(E[A0(∞)] + E[Et])

<∞,

where the final inequality follows from the assumptions made on E[A0(∞)]
and E[Et] in Section 2.1. Thus, E[|〈(D0 +D)t, ϕ〉|]<∞ as desired.

Next, we show that (〈(D0+D)t, ϕ〉)t≥0 possesses the martingale property
with respect to the filtration (FA

t )t≥0. That is, we show that for each 0≤
s≤ t,

E[〈(D0 +D)t, ϕ〉|FA
s ] = 〈(D0 +D)s, ϕ〉.(4.3)

First note that by (2.7) and (2.8), we may write

〈(D0 +D)t, ϕ〉=
∞
∑

i=1

1{i≤A0(∞)}〈D0,i
t , ϕ〉+

∞
∑

i=1

〈Di
t, ϕ〉,(4.4)
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where, for each i≥ 1, we set

1{i≤A0(∞)}〈D0,i
t , ϕ〉

= 1{i≤A0(∞)}

∫ t

0
ϕ(x− τ̃i)d

(

1{η̃i≤x} −
∫ η̃i∧x

0
hτ̃i(u)du

)

and

〈Di
t, ϕ〉=

∫ (t−τi)
+

0
ϕ(x)d

(

1{ηi≤x} −
∫ ηi∧x

0
h(u)du

)

.(4.5)

We now show that for each i≥ 1,

E[〈Di
t, ϕ〉|FA

s ] = 〈Di
s, ϕ〉.(4.6)

The proof that

E[1{i≤A0(∞)}〈D0,i
t , ϕ〉|FA

s ](4.7)

= 1{i≤A0(∞)}E[〈D0,i
t , ϕ〉|FA

s ] = 1{i≤A0(∞)}〈D0,i
s , ϕ〉,(4.8)

for each i≥ 1, is similar and will not be included. For each i≥ 1 and y ≥ 0,
set

Di
t(y) = 1{ηi≤(t−τi)+∧y} −

∫ ηi∧(t−τi)
+∧y

0
h(u)du.(4.9)

We now claim that in order to show (4.6), it suffices to show that E[Di
t(y)|

FA
s ] =Di

s(y) for each y ≥ 0. This is true since it will then follow that

E[〈Di
t, ϕ〉|FA

s ] =−E

[
∫

R+

Di
t(y)ϕ

′(y)dy
∣

∣

∣
FA
s

]

=−
∫

R+

E[Di
t(y)|FA

s ]ϕ′(y)dy

=−
∫

R+

Di
s(y)ϕ

′(y)dy,

= 〈Di
s, ϕ〉.

First note that since y ∧ (t− τi)
+ = (t∧ (τi + y)− τi)

+, we may write

Di
t(y) =Di

t∧(τi+y)(∞).

Next note that since by the assumptions in Section 2.1, we have that E[τi]<
∞, it is straightforward to verify that τi + y is an FA

t -stopping time for
each y ≥ 0. Thus, by Problem 3.2.4 of [22], it suffices to show that Di(∞) =
(Di

t(∞))t≥0 is an R-valued FA
t -martingale. First note that since ‖h‖∞ <∞,
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it is straightforward to show that E[|Di
t(∞)|]<∞ for each t≥ 0. Next note

that using the independence of τi and ηi, one may also verify that

E[Di
t(∞)|1{τi≤s},1{ηi≤s−τi}] =Di

s(∞).

Hence, since ηi is assumed to be independent of A0,{η̃k, k = 1, . . . ,A0(∞)},
E = (Et)t≥0 and ηk, k 6= i, we obtain that

E[Di
t(∞)|FA

s ] = E[Di
t(∞)|1{τi≤s},1{ηi≤s−τi}]

= E[Di
s(∞)|FA

s ]

=Di
s(∞),

and so Di(∞) is an R-valued FA
t -martingale as desired. This completes the

proof of (4.6). The proof of (4.8) is similar.
We now show that (4.6) and (4.8) imply (4.3). We claim that for each

k ≥ 1, the sum

k
∑

i=1

1{i≤A0(∞)}〈D0,i
t , ϕ〉+

k
∑

i=1

〈Di
t, ϕ〉

is dominated uniformly over k ≥ 1 by an integrable random variable. By
Lebesgue’s dominated convergence theorem for conditional expectations [6],
this then implies that

E[〈Dt, ϕ〉|FA
s ] = E

[

∞
∑

i=1

〈Di
t, ϕ〉

∣

∣

∣
FA
s

]

=
∞
∑

i=1

E[〈Di
t, ϕ〉|FA

s ](4.10)

=

∞
∑

i=1

〈Di
s, ϕ〉= 〈Ds, ϕ〉,

as desired. However, to obtain the bound is straightforward since
∣

∣

∣

∣

∣

k
∑

i=1

1{i≤A0(∞)}〈D0,i
t , ϕ〉+

k
∑

i=1

〈Di
t, ϕ〉

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

k
∑

i=1

1{i≤A0(∞)}

∫ t

0
ϕ(x− τ̃i)d

(

1{η̃i≤x} −
∫ η̃i∧x

0
hτ̃i(u)du

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

k
∑

i=1

∫ (t−τi)
+

0
ϕ(x)d

(

1{ηi≤x} −
∫ ηi∧x

0
h(u)du

)

∣

∣

∣

∣

∣

≤ sup
0≤s<∞

|ϕ(s)|(1 + t‖h‖∞)(A0(∞) +Et),
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and as in (4.2) we have that

sup
0≤s<∞

|ϕ(s)|(1 + t‖h‖∞)(E[A0(∞)] +E[Et])<∞.

We have therefore shown that (〈(D0 +D)t, ϕ〉)t≥0 is an R-valued FA
t -mar-

tingale for each ϕ ∈ S , which implies that D0 + D is an S ′-valued FA
t -

martingale.
We next proceed to calculate the tensor quadratic variation of D0 +D.

Let i≥ 1 and recall that by (4.5) we have that for each ϕ ∈ S and t≥ 0,

〈Di
t, ϕ〉=

∫ (t−τi)+

0
ϕ(x)d

(

1{ηi≤x} −
∫ ηi∧x

0
h(u)du

)

.(4.11)

Therefore, as on page 259 of [25], it follows that

〈〈 〈Di, ϕ〉 〉〉t =
∫ (t−τi)

+

0
ϕ(x)2 d

〈

1{ηi≤x} −
∫ ηi∧x

0
h(u)du

〉

(4.12)

=

∫ ηi∧(t−τi)+

0
ϕ(x)2h(x)dx,

which implies that

〈〈Di〉〉t(ϕ,ψ) = 〈〈Di, ϕ〉, 〈Di, ψ〉〉t

=
1

4
(〈〈 〈Di, ϕ+ψ〉 〉〉t − 〈〈 〈Di, ϕ−ψ〉 〉〉t)

=
1

4

(
∫ ηi∧(t−τi)+

0
(ϕ(x) +ψ(x))2h(x)dx

−
∫ ηi∧(t−τi)+

0
(ϕ(x)− ψ(x))2h(x)dx

)

=

∫ ηi∧(t−τi)
+

0
ϕ(x)ψ(x)h(x)dx,

where the second equality in the above follows from the polarization identity
and the third equality follows from (4.12). In a similar manner, one may also
show that for all i≥ 1,

〈〈1{i≤A0(∞)}D0,i〉〉t(ϕ,ψ) = 1{i≤A0(∞)}

∫ η̃i∧t

0
ϕ(x− τ̃i)ψ(x− τ̃i)hτ̃i(x)dx,

for all ϕ,ψ ∈ S .
We now claim that in order to show that the tensor quadratic variation

of D0 +D is given by (4.1), it suffices to show the following three facts:

(1) Di is orthogonal to Dj for i 6= j,
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(2) 1{i≤A0(∞)}D0,i is orthogonal to 1{j≤A0(∞)}D0,j for i 6= j,

(3) 1{i≤A0(∞)}D0,i is orthogonal to Dj for all i, j ≥ 1.

The fact that the tensor quadratic variation of D0 +D is given by (4.1) can
then be shown in the following manner. For each k ≥ 1, ϕ ∈ S and t≥ 0, let

〈(D0 +D)kt , ϕ〉=
k
∑

i=1

1{i≤A0(∞)}〈D0,i
t , ϕ〉+

k
∑

i=1

〈Di
t, ϕ〉,

and set (D0 + D)k = ((D0 + D)kt , t ≥ 0). It is then clear that claims (1)
through (3) above imply that

〈〈(D0 +D)k〉〉t(ϕ,ψ)

=
k
∑

i=1

1{i≤A0(∞)}

∫ η̃i∧t

0
ϕ(x− τ̃i)ψ(x− τ̃i)hτ̃i(x)dx

+
k
∑

i=1

∫ ηi∧(t−τi)
+

0
ϕ(x)ψ(x)h(x)dx.

Moreover, using similar arguments as above and the simple inequality (x1+
x2)

2 ≤ 4(x21 + x22), it is straightforward to show that for each k ≥ 1, one has
P-a.s. the bound

∣

∣

∣

∣

∣

〈(D0 +D)kt , ϕ〉〈(D0 +D)kt , ψ〉

−
(

k
∑

i=1

1{i≤A0(∞)}

∫ η̃i∧t

0
ϕ(x− τ̃i)ψ(x− τ̃i)hτ̃i(x)dx

+
k
∑

i=1

∫ ηi∧(t−τi)+

0
ϕ(x)ψ(x)h(x)dx

)
∣

∣

∣

∣

∣

≤ 4
(

sup
0≤s<∞

(|ϕ(s)|+ |ψ(s)|)
)2

(1 + t‖h‖∞)2(E2
t +A2

0(∞))

+ sup
0≤s<∞

(|ϕ(s)||ψ(s)|)(1 + t‖h‖∞)(Et +A0(∞)).

However, by the assumptions in Section 2.1, one has that E[E2
t +A2

0(∞)]<
∞ and E[Et +A0(∞)]<∞. Hence, using the dominated convergence theo-
rem for conditional expectations [6], it follows that for 0≤ s≤ t,

E[〈(D0 +D)t, ϕ〉〈(D0 +D)t, ϕ〉 − 〈〈(D0 +D)〉〉t(ϕ,ψ)|FA
s ]

= E

[

lim
k→∞

(〈(D0 +D)kt , ϕ〉〈(D0 +D)kt , ψ〉 − 〈〈(D0 +D)k〉〉t(ϕ,ψ))|FA
s

]
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= lim
k→∞

E[〈(D0 +D)kt , ϕ〉〈(D0 +D)kt , ψ〉 − 〈〈(D0 +D)k〉〉t(ϕ,ψ)|FA
s ]

= lim
k→∞

(〈(D0 +D)ks , ϕ〉〈(D0 +D)ks , ψ〉 − 〈〈(D0 +D)k〉〉s(ϕ,ψ))

= 〈(D0 +D)s, ϕ〉〈(D0 +D)s, ψ〉 − 〈〈(D0 +D)〉〉s(ϕ,ψ).

This then implies that the tensor quadratic variation of D0 +D is given by
(4.1). We now proceed to prove claims (1) through (3), which is sufficient to
complete the proof.

We begin with claim (1). Let ϕ,ψ ∈ S and i 6= j. We show that (〈Di
t,

ϕ〉〈Dj
t , ψ〉)t≥0 is an R-valued FA

t -martingale, which is sufficient to show that
Di is orthogonal to Dj . First note that it is clear as in (4.2) that for each

t ≥ 0, we have that E[|〈Di
t, ϕ〉〈Dj

t , ψ〉|] < ∞. Next, let 0 ≤ s ≤ t. By the
independence of ηi from A0,{η̃k, k = 1, . . . ,A0(∞)},E = (Et)t≥0 and ηk, k 6=
i, and, similarly, the independence of ηj from A0,{η̃k, k = 1, . . . ,A0(∞)},E =
(Et)t≥0 and ηk, k 6= j, it follows that

E[〈Di
t, ϕ〉〈Dj

t , ψ〉|FA
s ]

= E[〈Di
t, ϕ〉〈Dj

t , ψ〉|1{τi≤s},1{τj≤s},1{ηi≤s−τi},1{ηj≤s−τj}].

However, by the independence of ηi from ηj and τj , and, similarly, the in-
dependence of ηj from ηi and τi, we have that

E[〈Di
t, ϕ〉〈Dj

t , ψ〉|1{τi≤s},1{τj≤s},1{ηi≤s−τi},1{ηj≤s−τj}]

= E[〈Di
t, ϕ〉|1{τi≤s},1{ηi≤s−τi}]E[〈D

j
t , ψ〉|1{τj≤s},1{ηj≤s−τj}]

= 〈Di
s, ϕ〉〈Dj

s, ψ〉,

where the final equality follows from (4.6) and the fact that for k ≥ 1,

E[〈Dk
t , ϕ〉|1{τk≤s},1{ηk≤s−τk}] = E[〈Dk

t , ϕ〉|FA
s ].(4.13)

Thus, it is clear that (〈Di
t, ϕ〉〈Dj

t , ψ〉)t≥0 possesses the martingale prop-

erty and so (〈Di
t, ϕ〉〈Dj

t , ψ〉)t≥0 is an R-valued FA
t -martingale, and hence

Di is orthogonal to Dj . The proof of claim (2) above follows similarly.
The proof of claim (3) above follows in a similar manner as well. In par-

ticular, let i, j ≥ 1. We show that (1{i≤A0(∞)}〈D0,i
t , ϕ〉〈Dj

t , ψ〉)t≥0 is an R-

valued FA
t -martingale for each ϕ,ψ ∈ S , which is sufficient to show that

1{i≤A0(∞)}D0,i is orthogonal to Dj . For each t ≥ 0, it is clear as in (4.2)

that E[|1{i≤A0(∞)}〈D0,i
t , ϕ〉〈Dj

t , ψ〉|] <∞. Next, note that since η̃i is inde-
pendent of A0,{η̃k, k = 1, . . . ,A0(∞);k 6= i},E = (Et)t≥0 and ηk, k ≥ 1, and,
similarly, ηj is independent of A0,{η̃k, k = 1, . . . ,A0(∞)},E = (Et)t≥0 and
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ηk, k 6= j, we have that

E[1{i≤A0(∞)}〈D0,i
t , ϕ〉〈Dj

t , ψ〉|FA
s ]

= E[1{i≤A0(∞)}〈D0,i
t , ϕ〉〈Dj

t , ψ〉|τ̃i,1{τj≤s},1{η̃i≤s−τ̃i},1{ηj≤s−τj}].

However, by the independence of η̃i from ηj and τj and, similarly, the inde-
pendence of ηj from η̃i and τ̃i, we have that

E[1{i≤A0(∞)}〈D0,i
t , ϕ〉〈Dj

t , ψ〉|τ̃i,1{τj≤s},1{η̃i≤s−τ̃i},1{ηj≤s−τj}]

= E[1{i≤A0(∞)}〈D0,i
t , ϕ〉|τ̃i,1{η̃i≤s−τ̃i}]E[〈D

j
t , ψ〉|1{τj≤s},1{ηj≤s−τj}]

= 1{i≤A0(∞)}〈D0,i
s , ϕ〉〈Dj

s, ψ〉,
where the final equality follows by (4.6), (4.8), (4.13) and the fact that for
k ≥ 1,

E[1{k≤A0(∞)}〈D0,k
t , ϕ〉|τ̃k,1{η̃k≤s−τ̃k}] = E[1{k≤A0(∞)}〈D0,k

t , ϕ〉|FA
s ].

Thus, it is clear that (1{i≤A0(∞)}〈D0,i
t , ϕ〉〈Dj

t , ψ〉)t≥0 possesses the martin-

gale property and so (1{i≤A0(∞)}〈D0,i
t , ϕ〉〈Dj

t , ψ〉)t≥0 is an R-valued FA
t -

martingale, and hence D0,i is orthogonal to Dj . This proves claim (3), which
completes the proof. �

4.2. Residuals. In this subsection, we show that the process G defined in
Section 2.2 is a martingale. This fact may be useful in future work where one
wishes to show that the residual service time process is a Markov process.
Let (FG

t )t≥0 be the natural filtration generated by G. We then have the
following result.

Proposition 4.2. The process G is an S ′-valued FG
t -martingale with

tensor optional quadratic variation process given for all ϕ,ψ ∈ S by

[G]t(ϕ,ψ) =
Et
∑

i=1

(ϕ(ηi)− 〈F , ϕ〉)(ψ(ηi)− 〈F , ψ〉).(4.14)

Proof. Let ϕ ∈ S . We first show that (〈Gt, ϕ〉)t≥0 is an R-valued FG
t -

martingale. Define the filtration (Hk)k≥1 by setting Hk = σ{Et, t ≥ 0} ∨
σ{η1, η2, . . . , ηk}∨N for each k ≥ 1. Next, define the discrete-time D-valued
process (Gk)k≥1 by

Gk(y) =
k
∑

i=1

(1{ηi≤y} −F (y)), y ≥ 0,(4.15)
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and, for convenience, let Gk(y) = 0 for y < 0. Then let (Gk)k≥1 be the S ′-
valued process associated with Gk. Since ϕ ∈ S is bounded, it is clear that
E[|〈Gk , ϕ〉|]<∞ for each k ≥ 1. Moreover, by the independence of the service
times from the arrival process, one has that (〈Gk, ϕ〉)k≥1 possesses the mar-
tingale property with respect to (Hk)k≥1. Hence, (〈Gk, ϕ〉)k≥1 is an R-valued
Hk-martingale. However, since for each t≥ 0 we have by the assumptions in
Section 2.1 that E[Et]<∞, it is straightforward to see that Et is a stopping
time with respect to the filtration (Hk)k≥1. Thus, the filtration (HEt)t≥0 is
well defined and, furthermore, it follows by the optional sampling theorem
[22] that (〈Gt, ϕ〉)t≥0 = (〈GEt , ϕ〉)t≥0 is an HEt-martingale. The result now
follows since any martingale is a martingale relative to its natural filtration.

The form of the tensor optional quadratic variation (4.14) is immediate
by Theorem 3.3 of [29]. �

5. Fluid limits. In this section, we provide our main fluid limit results.
We begin in Section 5.1 by studying the age process and in Section 5.2 we
study the residual service time process. Our setup in both subsections is the
same. In particular, we consider a sequence of G/GI /∞ queues indexed by
n ≥ 1, where the arrival rate to the system grows large with n while the
service time distribution does not change with n.

5.1. Ages. We begin by studying the age processA defined in Section 2.1.
For each n≥ 1, define the fluid scaled quantities

Ān
0 ≡ An

0

n
, Ēn ≡ En

n
, D̄0,n ≡ D0,n

n
,

(5.1)

D̄n ≡ Dn

n
, Ān ≡ An

n
,

and set Ēn ≡ Ēnδ0. Using (2.12), Theorem 3.3 and Proposition 3.6, it is
straightforward to show that one may write

Ān =ΨBA(Ān
0 + Ēn − (D̄0,n + D̄n)),(5.2)

where the map ΨBA :D([0, T ],S ′) 7→D([0, T ],S ′) is continuous. We now prove

that if (Ān
0 + Ēn)n≥1 weakly converges, then so too does (Ān

0 + Ēn− (D̄0,n+
D̄n))n≥1.

Proposition 5.1. If Ān
0 + Ēn ⇒ Ā0+ Ē in D([0, T ],S ′) as n→∞, then

Ān
0 + Ēn − (D̄0,n + D̄n)⇒ Ā0 + Ē in D([0, T ],S ′) as n→∞.

Proof. We first note that by Theorem 1.5, it is sufficient to show that
if Ān

0 + Ēn ⇒ Ā0 + Ē as n→∞, then

D̄0,n + D̄n ⇒ 0 in D([0, T ],S ′) as n→∞.(5.3)
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Let T > 0 and 0≤ t≤ T . Then, for each ϕ ∈ S , we have by Proposition 4.1
that

|〈〈D̄0,n + D̄n〉〉t(ϕ,ϕ)|

=

∣

∣

∣

∣

∣

1

n2

(An
0 (∞)
∑

i=1

∫ η̃i∧t

0
ϕ2(x− τ̃ni )hτ̃ni (x)dx

(5.4)

+

En
t
∑

i=1

∫ ηi∧(t−τni )+

0
ϕ2(x)h(x)dx

)∣

∣

∣

∣

∣

≤ ‖h‖∞
n2

An
0 (∞)
∑

i=1

∫ t

0
ϕ2(x− τ̃ni )dx+

‖ϕ2h‖∞
n

Ēn
T .(5.5)

Thus, from (5.5) we obtain that for each 0≤ t≤ T ,

|〈〈D̄0,n + D̄n〉〉t(ϕ,ϕ)|

≤ ‖h‖∞
n2

An
0 (∞)
∑

i=1

∫ t

0
ϕ2(x− τ̃ni )dx+

‖ϕ2h‖∞
n

Ēn
T

=
‖h‖∞
n2

∫ t

0

An
0 (∞)
∑

i=1

ϕ2(x− τ̃ni )dx+
‖ϕ2h‖∞

n
Ēn

T(5.6)

=
‖h‖∞
n

∫ t

0
〈Ān

0 , τ−xϕ
2〉dx+ ‖ϕ2h‖∞

n
Ēn

T

≤ ‖h‖∞t
n

qK(Ān
0 ) +

‖ϕ2h‖∞
n

Ēn
T ,

where the set K is given by K = {τ−xϕ
2,0≤ x≤ t}. By Lemma 3.5, the set

K is bounded in S, and hence qK is a seminorm on S ′ by Definition 1.3.
This then implies that qK is a continuous function on S ′. Hence, since by
assumption Ān

0 ⇒ Ā0 and Ēn
T ⇒ ĒT , it follows by Slutsky’s theorem that

‖h‖∞t
n

qK(Ān
0 ) +

‖ϕ2h‖∞
n

Ēn
T ⇒ 0 as n→∞.

By (5.6), this then implies that

〈〈D̄0,n + D̄n〉〉(ϕ,ϕ)⇒ 0 in D([0, T ],R) as n→∞.(5.7)

We now verify that parts (1) and (2) of Theorem 1.5 are satisfied for the
sequence (D̄0,n + D̄n)n≥1, with the limit point being the function which is
identically 0. We begin with part (1). Using the fact that the maximum

jump of both 〈D̄0,n + D̄n, ϕ〉 and 〈〈D̄0,n + D̄n〉〉(ϕ,ϕ) is bounded over the
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interval [0, T ] uniformly in n, we obtain by (5.7) and the martingale FCLT
(see Theorem 7.1.4 of [10] or [34]) that

〈D̄0,n + D̄n, ϕ〉⇒ 0 in D([0, T ],R) as n→∞.(5.8)

Thus, part (1) of Theorem 1.5 holds. We next check that condition (2) holds.
Let m≥ 1 and let t1, . . . , tm ∈ [0, T ] and ϕ1, . . . , ϕm ∈ S . By (5.8), we have
that for each 1≤ i≤m,

〈(D̄0,n + D̄n)ti , ϕi〉 ⇒ 0 in R as n→∞.

However, by Theorem 3.9 of [1] this now implies that

(〈(D̄0,n + D̄n)t1 , ϕ1〉, . . . , 〈(D̄0,n + D̄n)tm , ϕm〉)⇒ (0, . . . ,0) in R
m,

as n→∞. Thus, we have shown that part (2) of Theorem 1.5 holds and so
(5.3) is proven. This completes the proof. �

We are now in a position to prove the main result of this subsection. We
have the following.

Theorem 5.2. If Ān
0 + Ēn ⇒ Ā0 + Ē in D([0, T ],S ′) as n→∞, then

Ān ⇒ Ā in D([0, T ],S ′) as n→∞,

where Ā is the unique solution to the integral equation

〈Āt, ϕ〉= 〈Ā0, ϕ〉+ 〈Ēt, ϕ〉 −
∫ t

0
〈Ās, hϕ〉ds+

∫ t

0
〈Ās, ϕ

′〉ds,
(5.9)

t ∈ [0, T ],

for all ϕ ∈ S.

Proof. By the assumption that Ān
0 + Ēn ⇒ Ā0 + Ē , it follows immedi-

ately by Proposition 5.1 that

Ān
0 + Ēn − (D̄0,n + D̄n)⇒ Ā0 + Ē in D([0, T ],S ′) as n→∞.(5.10)

Next, recall that by (5.2) we have that Ān =ΨBA(Ān
0 + Ēn − (D̄0,n + D̄n)),

where the map ΨBA :D([0, T ],S ′) 7→ D([0, T ],S ′) is continuous. The result
now follows by (5.10) and Proposition 1.1 applied to ΨBA . �

Remark 5.3. Note that one may now use Theorem 5.2 along with The-
orem 3.3 in order to obtain an explicit expression for Ā. Similarly, one may
obtain explicit expressions for R̄, Â and R̂ in Theorems 5.6, 6.5 and 6.9,
respectively, below.
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We also note that at a heuristic level, one may attempt to substitute the
function 1{x≥0} into the explicit formula provided by Theorem 3.3 for Ā
in order to obtain an expression for the limiting, fluid scaled total number
of customers in the system. For instance, suppose that Ā0 = 0 so that the
system is initially empty and that 〈Ē , ϕ〉 = λϕ(0)e for each ϕ ∈ S . Then,
using the form of the generator BA from (3.14) and the semigroup (SA

t )t≥0

from Proposition 3.6, one obtains after substituting into Theorem 3.3 that
heuristically the total number of customers in the system at time t ≥ 0 is
given by

λt− λ

∫ t

0
sf(t− s)ds= λ

∫ t

0
F̄ (t− s)ds.

We now conclude this subsection by providing an additional condition on
the arrival process under which a stationary solution to the fluid limit equa-
tion (5.9) may be explicitly found. Note also that our condition in Propo-
sition 5.4 below holds, for example, if the arrival process to the nth system
is a renewal process which has been sped up by a factor of n (as will be the
case for the GI /GI /∞ queue).

Proposition 5.4. If 〈Ē , ϕ〉 = λϕ(0)e for each ϕ ∈ S, then Ā = λFe is
a stationary solution to the fluid limit equation (5.9).

Proof. Substituting Ā = λFe and 〈Ē , ϕ〉 = λϕ(0)e into (5.9), we see
that it suffices to verify that

λ

∫

R+

ϕ(y)dFe(y)

= λ

∫

R+

ϕ(y)dFe(y) + λtϕ(0)− λt

∫

R+

(h(y)ϕ(y)−ϕ′(y))dFe(y).

However, this follows since

λt

∫

R+

(h(y)ϕ(y)−ϕ′(y))dFe(y)

= λt

∫

R+

(h(y)ϕ(y)−ϕ′(y))F̄ (y)dy

= λt

∫

R+

(f(y)ϕ(y)− F̄ (y)ϕ′(y))dy

=−λt
∫

R+

(F̄ (y)ϕ(y))′ dy

= λtϕ(0).

This completes the proof. �
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5.2. Residuals. We next proceed to analyze the residual service time
process R of Section 2.2. Our setup in this subsection is the same as that in
the previous subsection. However, in addition to the fluid scaled quantities
already defined in Section 5.1, we also now define for each n ≥ 1 the new
fluid scaled quantities

R̄n ≡ Rn

n
, R̄n

0 ≡ Rn
0

n
and Ḡ ≡ Gn

n
.

Using (2.20), Theorem 3.3 and Proposition 3.7, it is now straightforward to
show that

R̄n =ΨBR(R̄n
0 + ĒnF + Ḡn),(5.11)

where the map ΨBR :D([0, T ],S ′) 7→ D([0, T ],S ′) is continuous. In our first
result of this subsection, we prove that if (R̄n

0 + ĒnF)n≥1 weakly converges,
then so too does (R̄n

0 + ĒnF + Ḡn)n≥1.

Proposition 5.5. If R̄n
0 + ĒnF ⇒ R̄0 + ĒF in D([0, T ],S ′) as n→∞,

then

R̄n
0 + ĒnF + Ḡn ⇒R̄0 + ĒF in D([0, T ],S ′) as n→∞.(5.12)

Proof. We first note that by Theorem 1.5, it is sufficient to show that
if R̄n

0 + ĒnF ⇒ R̄0 + ĒF as n→∞, then

Ḡn ⇒ 0 in D([0, T ],S ′) as n→∞.(5.13)

Let T > 0 and 0≤ t≤ T . We then have by Proposition 4.2 and the assump-
tion that R̄n

0 + ĒnF ⇒ R̄0 + ĒF , that for each ϕ,ψ ∈ S ,

|[Ḡn]t(ϕ,ψ)| =
∣

∣

∣

∣

∣

1

n2

En
t
∑

i=1

ϕ(ηi)ψ(ηi)

∣

∣

∣

∣

∣

(5.14)

≤ 1

n2
En

T sup
0≤s<∞

|ϕ(s)ψ(s)| ⇒ 0 in R as n→∞.

The remainder of the proof now proceeds in a similar manner to the proof
of Proposition 5.1. We omit the details. �

The following is now our main result of this subsection.

Theorem 5.6. If R̄n
0 + Ē

nF ⇒ R̄0+ ĒF in D([0, T ],S ′) as n→∞, then

R̄n ⇒R̄ in D([0, T ],S ′) as n→∞,

where R̄ is the unique solution to the integral equation

〈R̄t, ϕ〉= 〈R̄0, ϕ〉+ Ēt〈F , ϕ〉 −
∫ t

0
〈R̄s, ϕ

′〉ds, t ∈ [0, T ],(5.15)

for all ϕ ∈ S.
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Proof. By the assumption that R̄n
0 + ĒnF ⇒ R̄0 + ĒF , it follows im-

mediately by Proposition 5.5 that

R̄n
0 + ĒnF + Ḡn ⇒R̄0 + ĒF in D([0, T ],S ′) as n→∞.(5.16)

Next, recall that by (5.11) we have that R̄n =ΨBR(R̄n
0 + Ē

nF + Ḡn), where
the map ΨBR :D([0, T ],S ′) 7→D([0, T ],S ′) is continuous. The result now fol-
lows by (5.16) and Proposition 1.1 applied to ΨBR . �

6. Diffusion limits. In this section, we prove our main diffusion limit re-
sults. In Section 6.1, we study the age process and in Section 6.2 we study
the residual service time process. Before we provide our main results, how-
ever, we first must provide the definition of an S ′-valued Wiener process and
a generalized S ′-valued Ornstein–Uhlenbeck process. Our definitions are the
same as those in [2].

Definition 6.1. A continuous S ′-valued Gaussian processW = (Wt)t≥0

is called a generalized S ′-valued Wiener process with covariance functional

K(s,ϕ; t,ψ) = E[〈Ws, ϕ〉〈Wt, ψ〉], s, t≥ 0 and ϕ,ψ ∈ S,
if it has continuous trajectories and, for each s, t≥ 0 and ϕ,ψ ∈ S ,K(s,ϕ; t,ψ)
is of the form

K(s,ϕ; t,ψ) =

∫ s∧t

0
〈Quϕ,ψ〉du,

where the operatorsQu :S →S ′, u≥ 0, possess the following two properties:

(1) Qu is linear, continuous, symmetric and positive for each u≥ 0,
(2) the function u 7→ 〈Quϕ,ψ〉 is in D([0,∞),R) for each ϕ,ψ ∈ S .

If Qu does not depend on u≥ 0, then the process W is called an S ′-valued
Wiener process.

Now, using the above definition of a generalized S ′-valued Wiener process,
we may provide the following definition of a generalized S ′-valued Ornstein–
Uhlenbeck process.

Definition 6.2. An S ′-valued process X = (Xt)t≥0 is called a (gener-
alized) S ′-valued Ornstein–Uhlenbeck process if for each ϕ ∈ S and t≥ 0,

〈Xt, ϕ〉= 〈X0, ϕ〉+
∫ t

0
〈Xu,Aϕ〉du+ 〈Wt, ϕ〉,

where W ≡ (Wt)t≥0 is a (generalized) S ′-valued Wiener process and A :S →
S is a continuous operator.
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6.1. Ages. In this subsection, we prove our main diffusion limit result
for the age process A defined in Section 2.1. Our setup is the same as that
in Section 5. That is, we consider a sequence of G/GI /∞ queues indexed
by n≥ 1, where the arrival rate to the system grows large with n while the
service time distribution does not change with n. For the remainder of this
subsection, we assume that Ān

0 + Ēn ⇒ Ā0 + Ē as n→∞, where Ā0+ Ē is a
nonrandom quantity. By Theorem 5.2 of Section 5.1, this then implies that
Ā is a nonrandom quantity as well. Setting Ān

0 (∞) = n−1An
0 (∞) for each

n≥ 1 and letting T ≥ 0, we also assume that the sequences {Ān
0 (∞), n≥ 1}

and {Ēn
T , n≥ 1} are uniformly integrable.

Now, for each n≥ 1, define the diffusion scaled quantities

Ân ≡√
n(Ān − Ā), Ân

0 ≡√
n(Ān

0 − Ā0), Ên ≡√
n(Ēn − Ē),

D̂0,n ≡√
nD̄0,n, D̂n ≡√

nD̄n,

and set Ên ≡ Ênδ0. Then, recalling the form of the fluid limit Ā from The-
orem 5.2, note that using system equation (2.12) in conjunction with The-
orem 3.3 and Proposition 3.6, one has that for each n≥ 1,

Ân =ΨBA(Ân
0 + Ên − (D̂0,n + D̂n)),(6.1)

where the map ΨBA :D([0, T ],S ′) 7→D([0, T ],S ′) is continuous. Our strategy

now is to first prove a weak convergence result for the sequence (Ân
0 + Ên −

(D̂0,n+ D̂n))n≥1 and then to apply Theorem 1.1 together with (6.1) in order

to prove our diffusion limit result for the sequence (Ân)n≥1.
We begin with the following result. Its proof may be found in the Appendix.

Lemma 6.3. If Ân
0 + Ên ⇒ Â0 + Ê in D([0, T ],S ′) as n→∞, then

D̂0,n + D̂n ⇒ D̂0 + D̂ in D([0, T ],S ′) as n→∞,(6.2)

where D̂0 + D̂ is a generalized S ′-valued Wiener process with covariance
functional given for each ϕ,ψ ∈ S and s, t≥ 0 by

KD̂0+D̂(s,ϕ; t,ψ) =

∫ s∧t

0
〈Āu, ϕψh〉du.(6.3)

Proof. See the Appendix. �

We next have the following result, which provides a weak limit for the
sequence (Ân

0 + Ên − (D̂0,n + D̂n))n≥1.

Proposition 6.4. If Ân
0 + Ên ⇒ Â0+ Ê in D([0, T ],S ′) as n→∞, then

Ân
0 + Ên − (D̂0,n + D̂n)⇒ Â0 + Ê − (D̂0 + D̂)

(6.4)
in D([0, T ],S ′) as n→∞,

where D̂0 + D̂ is as given in Lemma 6.3 and is independent of Â0 + Ê .
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Proof. We will check that the sequence (Ân
0 + Ên−(D̂0,n+D̂n))n≥1 sat-

isfies parts (1) and (2) of Theorem 1.5. We begin with part (1). Let ϕ ∈ S . By
assumption, the sequence (〈Ân

0 + Ên, ϕ〉)n≥1 weakly converges and hence is

tight in D([0, T ],R), and, by Lemma 6.3, the sequence (〈(D̂0,n+ D̂n), ϕ〉)n≥1

weakly converges, and hence is tight in D([0, T ],R). Therefore, there must
exist a subsequence (n)n≥1 along which we have the joint convergence

(〈Ân
0 + Ên, ϕ〉, 〈(D̂0,n + D̂n), ϕ〉)⇒ (〈Ǎ0 + Ě , ϕ〉, 〈(Ď0 + Ď), ϕ〉)

in D2([0, T ],R) as n→∞. Now note that clearly 〈Ǎ0 + Ě , ϕ〉 has the same

distribution as 〈Â0+ Ê , ϕ〉 and, similarly, 〈(Ď0 + Ď), ϕ〉 has the same distri-

bution as 〈(D̂0 + D̂), ϕ〉. We now verify that 〈Ǎ0 + Ě , ϕ〉 and 〈(Ď0 + Ď), ϕ〉
are independent of one another. This will then imply the convergence

〈Ân
0 + Ên, ϕ〉 − 〈(D̂0,n + D̂n), ϕ〉 ⇒ 〈Â0 + Ê , ϕ〉 − 〈(D̂0 + D̂), ϕ〉

in D([0, T ],R) as n→∞, along the given subsequence. However, since the
subsequence was arbitrary, this will then imply convergence along the entire
sequence, thus verifying part (1) of Theorem 1.5.

Let t1, t2 ∈ [0, T ] with t1 ≤ t2 and let a1, a2, b1, b2 ∈R and let x, y ∈R. We
will show that

P(a1〈Ân
0 + Ên

t1 , ϕ〉+ a2〈Ân
0 + Ên

t2 , ϕ〉 ≤ x,

b1〈(D̂0,n
t1 + D̂n

t1), ϕ〉+ b2〈(D̂0,n
t2 + D̂n

t2), ϕ〉 ≤ y)
(6.5)

→ P(a1〈Â0 + Êt1 , ϕ〉+ a2〈Â0 + Êt2 , ϕ〉 ≤ x)

× P(b1〈(D̂0
t1 + D̂t1), ϕ〉+ b2〈(D̂0

t2 + D̂t2), ϕ〉 ≤ y)

as n→ ∞. The analogous proof for t1, . . . , tm ∈ [0, T ] with m > 2 follows
similarly. This will then be sufficient to show that 〈Ǎ0 + Ě , ϕ〉 and 〈(Ď0 +
Ď), ϕ〉 are independent of one another. First note that we may write

P(a1〈Ân
0 + Ên

t1 , ϕ〉+ a2〈Ân
0 + Ên

t2 , ϕ〉 ≤ x,

b1〈(D̂0,n
t1 + D̂n

t1), ϕ〉+ b2〈(D̂0,n
t2 + D̂n

t2), ϕ〉 ≤ y)

= E[1{a1〈Ân
0+Ên

t1
,ϕ〉+a2〈Ân

0+Ên
t2
,ϕ〉≤x}1{b1〈(D̂

0,n
t1

+D̂n
t1
),ϕ〉+b2〈(D̂

0,n
t2

+D̂n
t2
),ϕ〉≤y}].

However, by the tower property of conditional expectations [6], we have that

E[1{a1〈Ân
0+Ên

t1
,ϕ〉+a2〈Ân

0+Ên
t2
,ϕ〉≤x}1{b1〈(D̂

0,n
t1

+D̂n
t1
),ϕ〉+b2〈(D̂

0,n
t2

+D̂n
t2
),ϕ〉≤y}]

= E[1{a1〈Ân
0+Ên

t1
,ϕ〉+a2〈Ân

0+Ên
t2
,ϕ〉≤x}

×E[1
{b1〈(D̂

0,n
t1

+D̂n
t1
),ϕ〉+b2〈(D̂

0,n
t2

+D̂n
t2
),ϕ〉≤y}

|An,En]].
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We now claim that

E[1{b1〈(D̂0,n
t1

+D̂n
t1
),ϕ〉+b2〈(D̂

0,n
t2

+D̂n
t2
),ϕ〉≤y}|A

n,En]

(6.6)
P→ P(b1〈(D̂0

t1 + D̂t1), ϕ〉+ b2〈(D̂0
t2 + D̂t2), ϕ〉 ≤ y)

as n→∞. Then, since by assumption

E[1{a1〈Ân
0+Ên

t1
,ϕ〉+a2〈Ân

0+Ên
t2
,ϕ〉≤x}]

→ P(a1〈Â0 + Êt1 , ϕ〉+ a2〈Â0 + Êt2 , ϕ〉 ≤ x)

as n→∞, this will then imply (6.5), thus verifying part (1) of Theorem 1.5.
In order to see that (6.6) holds, first note that

E[1
{b1〈(D̂

0,n
t1

+D̂n
t1
),ϕ〉+b2〈(D̂

0,n
t2

+D̂n
t2
),ϕ〉≤y}

|An,En]

= P(b1〈(D̂0,n
t1

+ D̂n
t1), ϕ〉+ b2〈(D̂0,n

t2
+ D̂n

t2), ϕ〉 ≤ y|An,En).

Now recall from (4.4) that we may write

b1〈(D̂0,n
t1 + D̂n

t1), ϕ〉+ b2〈(D̂0,n
t2 + D̂n

t2), ϕ〉

=

An
0 (∞)
∑

i=1

(〈D̂0,n,i
t1 , b1ϕ〉+ 〈D̂0,n,i

t2 , b2ϕ〉) +
En

t2
∑

i=1

(〈D̂n,i
t1 , b1ϕ〉+ 〈D̂n,i

t2 , b2ϕ〉).

Moreover, given An and En, we have that the random variables (〈D̂0,n,i
t1 , b1ϕ〉+

〈D̂0,n,i
t2 , b2ϕ〉), i= 1, . . . ,An

0 (∞), and (〈D̂n,i
t1 , b1ϕ〉+ 〈D̂n,i

t2 , b2ϕ〉), i= 1, . . . ,En
t2 ,

are mutually independent, with mean zero. In addition, it is straightforward
to calculate that

E

[An
0 (∞)
∑

i=1

(〈D̂0,n,i
t1 , b1ϕ〉+ 〈D̂0,n,i

t2 , b2ϕ〉)2
∣

∣

∣
An

0 ,En

]

+E

[En
t2
∑

i=1

(〈D̂n,i
t1 , b1ϕ〉+ 〈D̂n,i

t2 , b2ϕ〉)
2
∣

∣

∣
An

0 ,En

]

(6.7)

=E

[
∫ t1

0
〈Ān

u, (b1ϕ+ b2ϕ)
2h〉du

∣

∣

∣
An

0 ,En

]

.

Also, note that for each i= 1, . . . ,An
0 (∞),

E[(〈D̂0,n,i
t1 , b1ϕ〉+ 〈D̂0,n,i

t2 , b2ϕ〉)3|An
0 ,En]

=E[(〈D̂0,n,i
t1 , b1ϕ〉+ 〈D̂0,n,i

t2 , b2ϕ〉)2(〈D̂0,n,i
t1 , b1ϕ〉+ 〈D̂0,n,i

t2 , b2ϕ〉)|An
0 ,En]

(6.8)
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≤ (|b1|+ |b2|)‖ϕ‖∞(1 + t2‖h‖∞)√
n

×E[(〈D̂0,n,i
t1 , b1ϕ〉+ 〈D̂0,n,i

t2 , b2ϕ〉)2|An
0 ,En],

and, similarly, for each i= 1, . . . ,En
t2 ,

E[(〈D̂n,i
t1 , b1ϕ〉+ 〈D̂0,n,i

t2 , b2ϕ〉)3|An
0 ,En]

≤ (|b1|+ |b2|)‖ϕ‖∞(1 + t2‖h‖∞)√
n

(6.9)

×E[(〈D̂n,i
t1 , b1ϕ〉+ 〈D̂n,i

t2 , b2ϕ〉)
2|An

0 ,En].

Now let Φ denote the c.d.f. of a standard, normal random variable. It then
follows by (6.7), (6.8), (6.9) and an application of the Berry–Esseen theo-
rem [6] for independent (but not necessarily identically distributed) random
variables that

∣

∣

∣

∣

P

(

b1〈(D̂0,n
t1 + D̂n

t1), ϕ〉+ b2〈(D̂0,n
t2 + D̂n

t2), ϕ〉
(E[
∫ t1
0 〈Ān

u, (b1ϕ+ b2ϕ)2h〉du|An
0 ,En])1/2

≤ y|An,En

)

−Φ(y)

∣

∣

∣

∣

≤ 1√
n

(|b1|+ |b2|)‖ϕ‖∞(1 + t2‖h‖∞)

(E[
∫ t1
0 〈Ān

u, (b1ϕ+ b2ϕ)2h〉du|An
0 ,En])1/2

.

Hence, in order to complete the proof of (6.6) and hence verify part (1) of
Theorem 1.5, it suffices to show that

E

[
∫ t1

0
〈Ān

u, (b1ϕ+ b2ϕ)
2h〉du

∣

∣

∣
An

0 ,En

]

P→
∫ t1

0
〈Āu, (b1ϕ+ b2ϕ)

2h〉du
(6.10)

as n→∞.

However, note that by Theorem 5.2 and the continuity of the integral map
[1], we have that

∫ t1

0
〈Ān

u, (b1ϕ+ b2ϕ)
2h〉du P→

∫ t1

0
〈Āu, (b1ϕ+ b2ϕ)

2h〉du,(6.11)

as n→∞. Next, note that the uniform integrability of {Ān
0 (∞), n≥ 1} and

{Ēn
T , n≥ 1} implies the uniform integrability of

{
∫ t1

0
〈Ān

u, (b1ϕ+ b2ϕ)
2h〉du,n≥ 1

}

.(6.12)

It is then straightforward to show that (6.11) implies (6.10), thus completing
the verification of part (1) of Theorem 1.5. The proof of the verification of
part (2) of Theorem 1.5 follows in a similar manner to the above and has
been omitted for the sake of brevity. This completes the proof. �
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The following is now our main result of this section. Its proof is a straight-
forward consequence of Theorem 1.1, (6.1) and Proposition 6.4.

Theorem 6.5. If Ân
0 + Ên ⇒ Â0 + Ê in D([0, T ],S ′) as n→∞, then

Ân ⇒ Â in D([0, T ],S ′) as n→∞,(6.13)

where Â is the solution to the stochastic integral equation

〈Ât, ϕ〉= 〈Â0, ϕ〉+ 〈Êt, ϕ〉 − 〈D̂0 + D̂, ϕ〉
(6.14)

−
∫ t

0
〈Âs, hϕ〉ds+

∫ t

0
〈Âs, ϕ

′〉ds,

for each t ∈ [0, T ] and ϕ ∈ S. In addition, if Ê is an S ′-valued Wiener process

with covariance functional KÊ(s,ϕ; t,ψ) = σ2(s ∧ t)ϕ(0)ψ(0), then Â is a
generalized S ′-valued Ornstein–Uhlenbeck process driven by a generalized S ′-
valued Wiener process with covariance functional

KÊ−(D̂0+D̂)(s,ϕ; t,ψ) = σ2(s ∧ t)ϕ(0)ψ(0) +
∫ s∧t

0
〈Āuh,ϕψ〉du.(6.15)

Proof. First note that by (6.1) we have that Ân = ΨBA(Ân
0 + Ên −

(D̂0,n + D̂n)), where the map ΨBA :D([0, T ],S ′) 7→D([0, T ],S ′) is a continu-
ous map. The convergence (6.13) now follows by Theorem 1.1 and Proposi-
tion 6.4.

Next, suppose that Ê is an S ′-valued Wiener process with covariance
functionalKÊ(s,ϕ; t,ψ) = σ2(s∧t)ϕ(0)ψ(0). Then, combining this with (6.3)

and the fact that D̂0+ D̂ and Â0 + Ê are independent from Proposition 6.4,
yields (6.15). Thus, by Definition 6.2, Â is an S ′-valued Ornstein–Uhlenbeck
process. �

Recall now from Proposition 5.4 of Section 5.1 that if 〈Ē , ϕ〉= λϕ(0)e for
each ϕ ∈ S and some λ ≥ 0, then a stationary solution to the fluid limit
equation (5.9) is given by Ā= λFe. We now show that under the additional

condition that Ê is an S ′-valued Wiener process with covariance functional
KÊ (s,ϕ; t,ψ) = σ2(s∧ t)ϕ(0)ψ(0), then the resulting limiting diffusion scaled

age process Â of Theorem 6.5 is a time-homogeneous Markov process. Our
result is the following. Note also that a similar approach may be used to
analyze the diffusion limit of the residual service time process in Theorem
6.9 in the following subsection.

Proposition 6.6. If 〈Ē , ϕ〉 = λϕ(0)e for each ϕ ∈ S, Ā0 = λFe and

Ê is an S ′-valued Wiener process with covariance functional KÊ (s,ϕ; t,ψ) =
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σ2(s∧ t)ϕ(0)ψ(0), then Â is an S ′-valued Ornstein–Uhlenbeck process driven
by an S ′-valued Wiener process with covariance functional given for each
ϕ,ψ ∈ S and s, t≥ 0 by

KÊ−(D̂0+D̂)(s,ϕ; t,ψ) = (s ∧ t)〈σ2δ0 + λF , ϕψ〉.(6.16)

Proof. It is clear that the covariance functional of Ê is given by

KÊ (s,ϕ; t,ψ) = (s ∧ t)〈σ2δ0, ϕψ〉.(6.17)

We now show that the covariance functional of D̂0 + D̂ is given by

KD̂0+D̂(s,ϕ; t,ψ) = λ(s ∧ t)〈F , ϕψ〉.(6.18)

Then, since Ê and D̂0 + D̂ are independent, summing (6.17) and (6.18) will
prove (6.16), which will complete the proof.

Note that by Proposition 5.4 we have that since by assumption Ā0 = λFe,
it follows that Ā= λFe is the unique solution to the fluid limit equation (5.9).
Therefore, by Lemma 6.3 we have that for each ϕ,ψ ∈ S and s, t≥ 0,

KD̂0+D̂(s,ϕ; t,ψ) =

∫ s∧t

0
〈Āu, ϕψh〉du

=

∫ s∧t

0

∫

R+

ϕ(x)ψ(x)h(x)dĀu(x)du

= λ(s ∧ t)
∫

R+

ϕ(x)ψ(x)h(x)F̄ (x)dx

= λ(s ∧ t)
∫

R+

ϕ(x)ψ(x)f(x)dx.

This proves (6.18), which completes the proof. �

We now note that using (3.2) of Theorem 3.3 and (3.19) of Proposition 3.6,

one may obtain an explicit representation of Â in terms of the S ′-valued
Wiener process given in Proposition 6.6 above. Direct calculations may then
be used in order to obtain the transient and limiting distribution of Â. In
particular, assuming that Â0 is a Gaussian random variable, one may then
show that for each t ∈ [0, T ], Ât is a Gaussian random variable with mean

E[〈Ât, ϕ〉] = 〈Â0, F̄
−1τ−t(ϕF̄ )〉, ϕ ∈ S,(6.19)

and covariance functional given for each ϕ,ψ ∈ S and t ∈ [0, T ] by

E[〈Ât, ϕ〉〈Ât, ψ〉] = λ〈Fe, F̄
−1τ−t(ϕψF̄ )(1− F̄−1τ−tF̄ )〉

(6.20)

+

∫ t

0
ϕ(u)ψ(u)(λF (u) + σ2F̄ (u))F̄ (u)du.
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In addition, taking limits as t→∞, one also finds that Ât weakly converges
as t→∞ to a Gaussian random variable A∞ with mean zero and covariance
functional given for each ϕ,ψ ∈ S by

E[〈Â∞, ϕ〉〈Â∞, ψ〉] = 〈Fe, (λF + σ2F̄ )ϕψ〉.
We now conclude this subsection by noting that one may heuristically

attempt to substitute the test function 1{x≥0} into the formula for Â pro-
vided by Theorem 3.3 in order to obtain an expression for the limiting diffu-
sion scaled total number of customers in the system. For instance, suppose

that Â0 = 0 and that, as in the statement of Proposition 6.6, we have that
〈Ē , ϕ〉= λϕ(0)e for each ϕ ∈ S and Ā0 = λFe and Ê is an S ′-valued Wiener
process with covariance functional KÊ (s,ϕ; t,ψ) = σ2(s ∧ t)ϕ(0)ψ(0). Then,
using the form of the generator BA from (3.14), the semi-group (SA

t )t≥0 from
Proposition 3.6 and (6.16) of Proposition 6.6, one obtains after a substitu-
tion into Theorem 3.3 that the limiting diffusion scaled number of customers
in the system at time t≥ 0 is heuristically given by

B̂t −
∫ t

0
B̂sf(t− s)ds=

∫ t

0
F̄ (t− s)dB̂s,

where B̂ = (B̂t)t≥0 is a Brownian motion with infinitesimal variance σ2 +λ.

6.2. Residuals. We next proceed to study the residual service time pro-
cess R defined in Section 2.2. Our setup is the same as in Section 5.2. That is,
we consider a sequence of G/GI /∞ queues indexed by n, where the arrival
rate to the nth system is of order n and the service time distribution does
not change with n. For the remainder of this subsection, we also assume that
R̄n

0 + Ē
nF ⇒ R̄0+ ĒF as n→∞, where R̄0+ ĒF is a nonrandom quantity.

By Theorem 5.6 of Section 5.2, this implies that R̄ is nonrandom as well.
Now, for each n≥ 1, in addition to the diffusion scaled quantities defined

in Section 6.1, let us also now define the diffusion scaled quantities

R̂n ≡√
n(R̄n − R̄), R̂n

0 ≡√
n(R̄n

0 − R̄0) and Ĝn ≡√
nḠn.

Then, after recalling the form of the fluid limit R̄ from Theorem 5.6, note
that using system equation (2.20) in conjunction with Theorem 3.3 and
Proposition 3.7, one has that

R̂n =ΨBR(R̂n
0 + ÊnF + Ĝn),(6.21)

where the map ΨBR :D([0, T ],S ′) 7→ D([0, T ],S ′) is a continuous map. Our
strategy now is to proceed similar to as in Section 6.1. That is, we first prove
a weak convergence result for the sequence (R̂n

0 + ÊnF + Ĝn)n≥1 and then
we apply Theorem 1.1 together with (6.21) in order to obtain a diffusion

limit result for the sequence (R̂n)n≥1.
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We first show that for each n ≥ 1, the process Ĝn may be well approxi-
mated by a process which is independent of R̂n

0 + ÊnF . For each n≥ 1, let
Ǧn be the S ′-valued process defined for ϕ ∈ S by

〈Ǧn
t , ϕ〉=

1√
n

⌊nĒt⌋
∑

i=1

(ϕ(ηi)− 〈F , ϕ〉), t≥ 0.

Note that it is clear that Ǧn is independent of R̂n
0 + ÊnF . We now have the

following result. Its proof may be found in the Appendix.

Lemma 6.7. If R̂n
0 + ÊnF ⇒ R̂0 + ÊF in D([0, T ],S ′) as n→∞, then

Ĝn − Ǧn ⇒ 0 in D([0, T ],S ′) as n→∞,(6.22)

and

Ǧn ⇒ Ĝ in D([0, T ],S ′) as n→∞,(6.23)

where Ĝ is an S ′-valued Wiener process with covariance functional given for
ϕ,ψ ∈ S and s, t≥ 0 by

KĜ(s,ϕ; t,ψ) = (Ēs ∧ Ēt)Cov(ϕ(η), ψ(η)),(6.24)

where η is a random variable with c.d.f. F .

Proof. See Appendix. �

Using Lemma 6.7, we may now prove the following result on the weak
convergence of (R̂n

0 + ÊnF + Ĝn)n≥1. We have the following.

Proposition 6.8. If R̂n
0 + ÊnF ⇒ R̂0 + ÊF in D([0, T ],S ′) as n→∞,

then

R̂n
0 + ÊnF + Ĝn ⇒R̂0 + ÊF + Ĝ in D([0, T ],S ′) as n→∞,(6.25)

where Ĝ is as given in Lemma 6.7 and is independent of R̂0 + ÊF .

Proof. Since Ǧn is independent of R̂n
0 + ÊnF for each n≥ 1, it follows

Theorem 1.5 and (6.23) of Lemma 6.7 that we have the convergence

R̂n
0 + ÊnF + Ǧn ⇒R̂0 + ÊF + Ĝ in D([0, T ],S ′) as n→∞.(6.26)

The result now follows by (6.26), Theorem 1.5, (6.22) of Lemma 6.7 and the
fact that we may write

R̂n
0 + ÊnF + Ǧn = R̂n

0 + ÊnF + Ǧn + (Ĝn − Ǧn). �

The following is now the main result of this subsection. It provides a weak
limit for the sequence (R̂n)n≥1.
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Theorem 6.9. If R̂n
0 + Ê

nF ⇒ R̂0+ ÊF in D([0, T ],S ′) as n→∞, then

R̂n ⇒R̂ in D([0, T ],S ′) as n→∞,(6.27)

where R̂ is the solution to the stochastic integral equation

〈R̂t, ϕ〉= 〈R̂0, ϕ〉+ 〈Ĝt, ϕ〉+ Êt〈F , ϕ〉 −
∫ t

0
〈R̂s, ϕ

′〉ds,
(6.28)

t ∈ [0, T ], ϕ ∈ S.
In addition, if Ê is a Brownian motion with diffusion coefficient σ, then R̂ is
a generalized S ′-valued Ornstein–Uhlenbeck process driven by a generalized
S ′-valued Wiener process with covariance functional

KÊF+Ĝ(s,ϕ; t,ψ)
(6.29)

= σ2(s∧ t)E[ϕ(η)]E[ψ(η)] + (Ēs ∧ Ēt)Cov(ϕ(η), ψ(η)),

where η is a random variable with c.d.f. F .

Proof. First note that by (6.21) we have that R̂n =ΨBR(R̂n
0 + ÊnF +

Ĝn), where the map ΨBR :D([0, T ],S ′) 7→ D([0, T ],S ′) is a continuous map.
The convergence (6.27) now follows by Theorem 1.1 and Proposition 6.8.

Next, note that if Ê is a Brownian motion with diffusion coefficient σ, then
it is easily checked that ÊF is an S ′-valued Wiener process with covariance
functional

KÊF (s,ϕ; t,ψ) = σ2(s ∧ t)E[ϕ(η)]E[ψ(η)].(6.30)

Combining (6.24) with (6.30) and the fact that ÊF and Ĝ are independent,
yields (6.29). �

Remark 6.10. Note that in the special case when the arrival process to
the nth system is a Poisson process with rate λn, we then have that Ē = λe
and so Ê turns out to be a Brownian motion with diffusion coefficient λ. It
then follows that KÊF (s,ϕ; t,ψ) = λ(s ∧ t)E[ϕ(η)ψ(η)] and so Theorem 6.9
gives us a version of Theorem 3 of [8].

APPENDIX

In the Appendix, we provide the proofs of several supporting lemmas from
the main body of the paper. We begin with the proof of Lemma 3.4.

Proof of Lemma 3.4. We prove part (1) by induction. For each n≥ 0
and t ≥ 0 fixed, denote the quantity on the lefthand side of (3.16) by Ln.
For the base case of n= 0, it is straightforward to see that L0 ≤ 1. Next, for
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the inductive step, suppose that (3.16) holds for n= 0, . . . , k− 1, and t≥ 0.
Then, we have that
∣

∣

∣

∣

(

F̄ (x+ t)

F̄ (x)

)(k)∣
∣

∣

∣

=

∣

∣

∣

∣

((

F̄ (x+ t)

F̄ (x)

)(1))(k−1)∣
∣

∣

∣

=

∣

∣

∣

∣

(

(h(x)− h(x+ t))
F̄ (x+ t)

F̄ (x)

)(k−1)∣
∣

∣

∣

≤
k−1
∑

i=0

(

k− 1
i

)

|(h(x)− h(x+ t))(k−1−i)|
∣

∣

∣

∣

(

F̄ (x+ t)

F̄ (x)

)(i)∣
∣

∣

∣

≤ 2
k−1
∑

i=0

(

k− 1
i

)

‖h(k−1−i)‖∞Li

<∞.

This completes the proof of part (1).
We next prove part (2) by induction as well. First recall that for s, t≥ 0,

we may write

F̄ (x+ t)

F̄ (x+ s)
= exp

(

−
∫ x+t

x+s
h(u)du

)

.(A.1)

Hence, for the base case of n= 0, we have that

sup
x≥0

∣

∣

∣

∣

F̄ (x+ t)

F̄ (x)
− F̄ (x+ s)

F̄ (x)

∣

∣

∣

∣

= sup
x≥0

∣

∣

∣

∣

F̄ (x+ s)

F̄ (x)

(

1− F̄ (x+ t)

F̄ (x+ s)

)
∣

∣

∣

∣

≤ sup
x≥0

∣

∣

∣

∣

F̄ (x+ s)

F̄ (x)

∣

∣

∣

∣

sup
x≥0

∣

∣

∣

∣

1− F̄ (x+ t)

F̄ (x+ s)

∣

∣

∣

∣

≤ sup
x≥0

∣

∣

∣

∣

1− F̄ (x+ t)

F̄ (x+ s)

∣

∣

∣

∣

≤ 1− e−‖h‖∞|t−s|

≤ ‖h‖∞|t− s|,
where the third inequality above follows from (A.1) and the final inequality
follows from the mean value theorem. Next, for the inductive step, suppose
that (3.17) holds for n= 0,1, . . . , k− 1. We then have that

sup
x≥0

∣

∣

∣

∣

(

F̄ (x+ t)

F̄ (x)
− F̄ (x+ s)

F̄ (x)

)(k)∣
∣

∣

∣

= sup
x≥0

∣

∣

∣

∣

(

(h(x)− h(x+ s))
F̄ (x+ s)

F̄ (x)
− (h(x)− h(x+ t))

F̄ (x+ t)

F̄ (x)

)(k−1)∣
∣

∣

∣
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= sup
x≥0

∣

∣

∣

∣

(

(h(x+ t)− h(x+ s))
F̄ (x+ s)

F̄ (x)
(A.2)

− (h(x)− h(x+ t))

(

F̄ (x+ t)

F̄ (x)
− F̄ (x+ s)

F̄ (x)

))(k−1)∣
∣

∣

∣

= sup
x≥0

∣

∣

∣

∣

∣

k−1
∑

i=0

(

k− 1
i

)

[(h(x+ t)− h(x+ s))](k−1−i)

(

F̄ (x+ s)

F̄ (x)

)(i)

−
k−1
∑

i=0

(

k− 1
i

)

(h(x)− h(x+ t))(k−1−i)

(

F̄ (x+ t)

F̄ (x)
− F̄ (x+ s)

F̄ (x)

)(i)
∣

∣

∣

∣

∣

.

Now note that since by Assumption 2.1 we have that h ∈C∞
b (R+), it follows

that all of the derivatives of h are bounded and hence uniformly continuous
as well. Using this fact, part (1) and the inductive hypothesis it now follows
that (A.2) is less than or equal to

2|t− s|
k−1
∑

i=0

(

k− 1
i

)

(‖h((k−1−i)−1)‖∞Li + ‖h(k−1−i)‖∞Mi)≡Mk|t− s|.

This proves part (2) and completes the proof. �

We next provide the proof of Lemma 6.3

Proof of Lemma 6.3. We must show that

D̂0,n + D̂n ⇒ D̂0 + D̂ in D([0, T ],S ′) as n→∞.(A.3)

Let ϕ,ψ ∈ S and let t≥ 0. It then follows by Proposition 4.1 that we may
write

〈〈D̂0,n + D̂n〉〉t(ϕ,ψ)

=
1

n

(An
0 (∞)
∑

i=1

∫ η̃i∧t

0
ϕ(u− τ̃ni )ψ(u− τ̃ni )hτ̃ni (u)du

+

En
t
∑

i=1

∫ ηi∧(t−τni )

0
ϕ(u)ψ(u)h(u)du

)

=

∫ t

0
〈Ān

s , ϕψh〉 ds,

where the second equality above follows as a result of Proposition 2.3. How-
ever, by the continuity of the integral mapping on D([0, T ],R), it now follows
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by Theorem 5.2 that
∫ e

0
〈Ān

s , ϕψh〉ds⇒
∫ e

0
〈Ās, ϕψh〉ds in D([0, T ],R)(A.4)

as n→∞.
We now verify that (D̂0,n + D̂n)n≥1 satisfies parts (1) and (2) of Theo-

rem 1.5. We begin with part (1). Let ϕ= ψ in (A.4) and note that using the

fact that the maximum jumps of both 〈D̂0,n+ D̂n, ϕ〉 and 〈〈D̂0,n+ D̂n〉〉(ϕ,ϕ)
over the interval [0, T ] are uniformly bounded in n, along with the martingale
FCLT [10] and (A.4), yields the limit

〈D̂0,n + D̂n, ϕ〉 ⇒ 〈D̂0 + D̂, ϕ〉 in D([0, T ],R) as n→∞.

Thus, part (1) of Theorem 1.5 is satisfied. We next proceed to verify part (2)
of Theorem 1.5. Let m≥ 1 and let ϕ1, . . . , ϕm ∈ S and 1 ≤ i, j ≤m. Then,
using the fact that the maximum jumps of both (〈D̂0,n+ D̂n, ϕ1〉, . . . , 〈D̂0,n+

D̂n, ϕm〉) and 〈D̂0,n + D̂n〉(ϕi, ϕj) are bounded over the interval [0, T ], uni-
formly in n, it follows by the martingale FCLT [10] and (A.4) that

(〈D̂0,n + D̂n, ϕ1〉, . . . , 〈D̂0,n + D̂n, ϕm〉)
⇒ (〈D̂0 + D̂, ϕ1〉, . . . , 〈D̂0 + D̂, ϕm〉)

in D
m([0, T ],R) as n→∞. This limit then provides convergence of the finite-

dimensional distributions of the random vector on the lefthand side above,
which is sufficient to verify part (2) of Theorem 1.5. Thus, (A.3) holds,

where D̂0 + D̂ is an S ′-valued Gaussian martingale with tensor quadratic
covariation given by (A.4). Equation (6.3) now holds since 〈D̂0 + D̂, ϕ〉 has
independent increments for each ϕ ∈ S . �

Next, we provide the proof of Lemma 6.7.

Proof of Lemma 6.7. We first prove that

Ĝn ⇒ Ĝ in D([0, T ],S ′) as n→∞.(A.5)

In order to do so, we will verify that parts (1) and (2) of Theorem 1.5 are
satisfied. We begin with part (1). Let ϕ,ψ ∈ S and note that by Proposi-
tion 4.2, the functional strong law of large numbers [33] and the random
time change theorem [1], we have that

[Ĝn](ϕ,ψ) =
1

n

En
∑

i=1

(ϕ(ηi)− 〈F , ϕ〉)(ψ(ηi)− 〈F , ψ〉)

(A.6)
⇒ ĒCov(ϕ(η), ψ(η)) in D([0, T ],R) as n→∞,



HEAVY-TRAFFIC LIMITS FOR THE G/GI /∞ QUEUE 53

where η is a random variable with c.d.f. F . Now letting ϕ= ψ in (A.6) and

using the fact that the maximum jump of 〈Ĝn, ϕ〉 over the interval [0, T ] is
bounded uniformly in n, along with the martingale FCLT [10], yields the
limit

〈Ĝn, ϕ〉⇒ 〈Ĝ, ϕ〉 in D([0, T ],R) as n→∞.

Thus, part (1) of Theorem 1.5 holds. We next prove that part (2) of Theo-
rem 1.5 holds. Let m≥ 1 and let ϕ1, . . . , ϕm ∈ S . Then, using the limit (A.6)

and the fact that the maximum jump of (〈Ĝn, ϕ1〉, . . . , 〈Ĝn, ϕm〉) over the
interval [0, T ] is bounded uniformly in n, along with the martingale FCLT
[10], yields the limit

(〈Ĝn, ϕ1〉, . . . , 〈Ĝn, ϕm〉)⇒ (〈Ĝ, ϕ1〉, . . . , 〈Ĝ, ϕm〉) in D
m([0, T ],R)

as n→ ∞. This limit then provides convergence of the finite-dimensional
distributions of the random vector on the left-hand side above, which shows
that part (2) of Theorem 1.5 holds. Thus, (A.5) it proven.

In order to complete the proof, it now suffices to show that

Ĝn − Ǧn ⇒ 0 in D([0, T ],S ′) as n→∞.(A.7)

However, in order to show (A.7), it suffices by Theorem 1.5 to show that for
each ϕ ∈ S ,

〈Ĝn, ϕ〉 − 〈Ǧn, ϕ〉 ⇒ 0 in D([0, T ],R) as n→∞.(A.8)

We proceed as follows. In a similar manner to the above, one may show
using the martingale FCLT that

Ǧn ⇒ Ĝ in D([0, T ],S ′) as n→∞.(A.9)

Hence, for each ϕ ∈ S , the sequence (〈Ĝn, ϕ〉−〈Ǧn, ϕ〉)n≥1 is tight in D([0, T ],
R) and so in order to show (A.8), it suffices to show that for each 0≤ t≤ T ,

〈Ĝn
t , ϕ〉 − 〈Ǧn

t , ϕ〉 ⇒ 0 as n→∞.(A.10)

First note that we may write

〈Ĝn
t , ϕ〉 − 〈Ǧn

t , ϕ〉

= 1{En
t ≥⌊nĒt⌋}

1√
n

( En
t
∑

i=⌊nĒt⌋

(ϕ(ηi)− 〈F , ϕ〉)
)

− 1{⌊nĒt⌋≥En
t }

1√
n

(⌊nĒt⌋
∑

i=En
t

(ϕ(ηi)− 〈F , ϕ〉)
)

.
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Now squaring both sides of the above and using the basic identity (x1 +
x2)

2 ≤ 2(x21 + x22), it is straightforward to show that one may write

(〈Ĝn
t , ϕ〉 − 〈Ǧn

t , ϕ〉)2

≤ 1{Ēn
t ≤2Ēt}

2

n

( En
t ∨⌊nĒt⌋
∑

i=En
t ∧⌊nĒt⌋

(ϕ(ηi)− 〈F , ϕ〉)
)2

(A.11)

+ 1{Ēn
t ≥2Ēt}

2

n

( En
t ∨⌊nĒt⌋
∑

i=En
t ∧⌊nĒt⌋

(ϕ(ηi)− 〈F , ϕ〉)
)2

.(A.12)

We now show that each of the terms (A.11) and (A.12) converges to 0 in
probability as n tends to ∞, which implies (A.10) and completes the proof.

We begin with (A.11). First note that by the independence of {ηi, i≥ 1}
from the arrival process En, and the i.i.d. nature of the sequence {ηi, i≥ 1},
we have that

E

[

2

n
1{Ēn

t ≤2Ēt}

( En
t ∨⌊nĒt⌋
∑

i=En
t ∧⌊nĒt⌋

(ϕ(ηi)− 〈F , ϕ〉)
)2]

=
2

n
E

[

1{Ēn
t ≤2Ēt}

En
t ∨⌊nĒt⌋
∑

i=En
t ∧⌊nĒt⌋

(ϕ(ηi)− 〈F , ϕ〉)2
]

≤ 2

n
E

[ (En
t ∧⌈2nĒt⌉)∨⌊nĒt⌋

∑

i=(En
t ∧⌈2nĒt⌉)∧⌊nĒt⌋

(ϕ(ηi)− 〈F , ϕ〉)2
]

≤ 8‖ϕ2‖∞E[|(Ēn
t ∧ 2Ēt)− Ēt|].

However, since Ēn
t ⇒ Ēt as n→∞, it follows that

E[|(Ēn
t ∧ 2Ēt)− Ēt|]→ 0 as n→∞.

This then implies that (A.11) converges to 0 in probability as n tends to ∞,
as desired.

We next proceed to (A.12). Note that since Ēn
t ⇒ Ēt as n→∞, it follows

that for each ε > 0:

lim
n→∞

P

(

1{Ēn
t ≥2Ēt}

2

n

( En
t ∨⌊nĒt⌋
∑

i=En
t ∧⌊nĒt⌋

(ϕ(ηi)− 〈F , ϕ〉)
)2

> ε

)

= 0.

This shows that (A.12) converges to 0 in probability as n tends to ∞, which
completes the proof. �
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