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ABSTRACT

In great generdlity, the basic steady-state distributions in the BMAP/G/1
gueue have asymptotically exponential tails. Here we develop asymptotic
expansions for the asymptotic decay rates of these tail probabilities in powers of
one minus the traffic intensity. The first term coincides with the decay rate of the
exponential distribution arising in the standard heavy-traffic limit. The
coefficients of these heavy-traffic expansions depend on the moments of the
service-time distribution and the derivatives of the Perron-Frobenius eigenvalue
0(2) of the BMAP matrix generatl ng function D(z) at z = 1. We give recursive
formulas for the derivatives 8K (1). The asymptotic expansions provide the
basis for efficiently computing the asymptotic decay rates as functions of the
traffic intensity, i.e., the caudal characteristic curves. The asymptotic expansions
also reveal what features of the model the asymptotic decay rates primarily
depend upon. In particular, &(z) coincides with the limiting time-average of the
factorial cumulant generating function (the logarithm of the generating function)
of the arrival counting process, and the derivatives 3 (1) coincide with the
asymptotic factorial cumulants of the arrival counting process. This insight is
important for admission control schemes in multi-service networks based in part
on asymptotic decay rates. The interpretation helps identify appropriate statistics
to compute from network traffic datain order to predict performance.



1. Introduction

In this paper we consider the BMAP/G/1 queue, which has a single
server, unlimited waiting room, the first-in first-out service discipline and
i.i.d. service times that are independent of a batch Markovian arrival
process (BMAP). The BMAP is an aternative representation of the versatile
Markovian point process of Neuts [28, 30] with an appealing simple
notation, which was introduced by Lucantoni [25]. The BMAP/G/1 queue
is equivalent to the N/G/1 queue considered by Ramaswami [31]. The
BMAP generalizes the MAP by alowing batch arrivals, the MAP
generalizes the Markov modulated Poisson processes (MMPP) by allowing
an arrival and a change of environment state to occur simultaneoudly.
MMPPs, MAPs and BMAPs are useful for studying superposition arrival
processes, e.g., arising in models of statistical multiplexing, because
superpositions of independent arrival processes of each type is again of the
same type. Indeed, MAPs are sufficiently general that they can serve as
approximations for any stationary point process (possibly at the expense of
requiring large matrices); see Asmussen and Koole [6]. For an overview of

the BMAP/G/1 queue, see Lucantoni [26].

In Abate, Choudhury and Whitt [2] we showed that in great generality

the basic steady-state distributions in the BMAP/G/1 queue have



asymptotically exponential tails. (For related work, see Asmussen [5],
Asmussen and Perry [7], Baiocchi [8], Chang[9], Elwalid and Mitra
[14,15], Glynn and Whitt [18] and van Ommeren [40].) Our purpose here
IS to obtain heavy-traffic asymptotic expansions (in powers of 1 — p where
p is the traffic intensity) for the asymptotic decay rates. These asymptotic
expansions provide a convenient way to compute the asymptotic decay
rates. The asymptotic decay rates also can be computed by root finding, but
the asymptotic expansions yield the asymptotic decay rates as functions of
p (i.e., the caudal characteristic curves; see Neuts [29]), whereas the root
finding must be repeated for each separate value of p. The asymptotic
expansions also reveal what features of the model the asymptotic decay
rates primarily depend upon. In particular, the asymptotic decay rates
primarily depend on the BMAP through its lower asymptotic cumulants, the
first three of which are the arrival rate, the asymptotic variance and the
asymptotic central third moment. Although our proofs depend on the
BMAP structure, this characterization does not; it applies to arbitrary

stochastic point processes.

In Abate and Whitt [3] we showed that a heavy-traffic asymptotic
expansion is possible for multi-channel queues in which the individua

arrival and service channels are mutually independent renewal processes,



and found the first two terms. Here we extend these results by treating
BMAP arrival processes and finding more terms. Here we also provide an
interpretation of the terms. For the BMAP, the key is to compute the
derivatives of the Perron-Frobenius eigenvalue d(z) of the BMAP matrix
generating function D(z) at z = 1, which we do herein 83. The analysisis
similar to the analysis in the Appendix of Neuts [30]. We develop a
recursive algorithm for computing any desired derivative of d(z) at z = 1.
The k™ derivative 3 (1) is the k™ asymptotic factorial cumulant of the
BMAP. We dso develop an agorithm for computing the first seven
coefficients in the heavy-traffic expansions for the asymptotic decay rates.

(This can be extended if desired.)

One reason we are interested in the BMAP/G/1 queue is because it can
serve as a model to aid in admission control in multi-service networks.
(For that application, the service times can often be regarded as
deterministic.) The idea is to construct ssmple admission criteria from the
asymptotic decay rates. For this purpose, it is important to be able to
guickly compute the asymptotic decay rates and understand what features
of the model they primarily depend upon. Part of the efficiency stems from
a separation of independent sources (see Theorem 3 in Section 2); the rest

stems from the heavy-traffic expansion. For additional related work on



admission control, see Chang [9], Elwalid and Mitra [14], Gibbens and
Hunt [17], Guérin, Ahmadi and Naghshineh [19], Kelly [23],
Sohraby [37,38], Whitt [43] and references therein. In this context Sohraby
[37,38] aso considers (one-term) heavy-traffic approximations for the

decay rates.

It turns out that the first term of the heavy-traffic expansion for the
asymptotic decay rates coincides with the rate of the steady-state
exponential distribution of the diffusion process (reflected Brownian
motion) in the familiar heavy-traffic limit theorem in which firstp — 1 and
thent - oo. This might be anticipated, but it is not automatic because it
involves an interchange of limits. (Here we first let t — o and then let
p - 1) The contribution of the BMAP to this first term is via
1 + 3@ (1), which corresponds to the asymptotic variance. Subsequent
terms in the asymptotic expansion offer refinements to the basic heavy-
traffic approximation. As we found for the GI/G/1 queue in [1], we find
that a second term often provides a significant improvement, but that two
terms is often a remarkably good approximation (for p not too small, e.g.,
p = 0.6). Thealgorithm here provides a means for investigating how many
terms are needed as a function of p in any BMAP/G/1 queue. As one

should anticipate, the number of required terms increases as p decreases,



see the numerical examplesin Section 6.

The asymptotic expansions only vyield approximations for the
asymptotic decay rates. This applies directly to admission control based
solely on asymptotic decay rates, e.g., on effective bandwidths
[9,14,17,19,23,37,38,43], but for approximations of the tail probabilities
themselves we also need the asymptotic constant. In [1] we suggested a
simple approximation for the asymptotic constant, in particular, the product
of the asymptotic decay rate and the mean (which becomes a relatively
simple approximation upon applying approximations for the mean). We
suggest that same approximation for the BMAP/G/1 queue as well.
Fortunately, for the higher percentiles of the distributions, the asymptotic
constant often has relatively little impact; often we can even approximate
the asymptotic constant by 1 and get good approximations for the higher
percentiles; see Example 6.2 below. However, we have found that the
asymptotic constant can be very far from 1 when the arrival process is the
superposition of a large number of independent sources[12]. In such
circumstances, we evidently need more than the asymptotic decay rate to

find good approximations for tail probabilities.



2. TheBatch Markovian Arrival Process

In this section we review the basic properties of the BMAP. For more
details, see Lucantoni [25,26]. The BMAP can be defined in terms of two
processes N(t) and J(t): N(t) counts the number of arrivals in the time
interval [0,t], while J(t) indicates the auxiliary phase state at timet. The
pair (N(t), J(t)) is a continuous-time Markov chain (CTMC) with
infinitesimal generator matrix CNQ in block partitioned form; i.e.,

D, D, Ds..
Do D; D,..

o
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where p is the overal arriva rate, Dy, k = 0, are mxm matrices, D has

negative diagona elements and nonnegative off-diagona elements, D is

nonnegative for all k> 1, and D = 3 Dy is an irreducible infinitesimal
k=0

generator matrix for an m-state CTMC.

Let 1t be the steady-state probability vector associated with D, i.e,
determined by D = O and 1te = 1, where e isa vector of ’'sand Oisa
vector of 0's (which should be clear from the context). A fundamental role

is played by the BMAP matrix generating function



D(z) = % D.z" . 2
k=0

We assume that D(z) has a radius of convergence z" with 1 < zU < .
When D = O for al k = kg, as is the case for the ordinary MAP (then
ko = 2), z" = . Having z” > 1 impliesthat D(z) can be regarded as an
analytic function of a complex variable z for [z < z". The k™ derivative

D (K (2) isthen finite and analytic for all kand (z < z".

Specifying the overall arrival rate p separately means that

n( s kDy)e = DM (1)e = 1. 3)
k=1

As shown in [2, Section 3], D(z) has a (smple real) Perron-Frobenius
eigenvalue d(z) for all real z with 0 < z < z". In Section 3 below we
show that 5(z) has derivatives of all orders for 0 < z < z". Let u(z) and
v(z) be the associated (positive real) left and right eigenvectors normalized
o that u(z)v(z) = u(z)e = 1. By [2, Theorem7], 3(e®) is strictly

increasing and convex function of swith 8(1) = O.
L et the marginal conditional distribution of (N(t), J(t)) be given by
Pij(n,t) = P(N(t) = n, J(t) = jIN(0) =0,3(0) =i) (4

and let



PIzt) = ¥ P(n,t)2" 5)
n=0

be the associated counting process matrix generating function, which is

given explicitly by

PY(zt) = eP@! t>0. (6)

Given any initial vector Tt on the phase space, the counting process N(t)
has probability distribution

Pa(N() =n) = 3 5 P;(nt) = fP(n.be. )
i=1j=1

Combining (5) and (7), we see that N(t) starting with Tt has generating
function TiPY(z,t)e. It is convenient to focus on the logarithm of this
generating function, which is also known as the factorial cumulant
generating function; see Johnson and Kotz [21, Section 1.5], Daey and
Vere-Jones [13, Sections5.2, 5.4, 7.4, 10.4], Chang[9] and Glynn and

Whitt [18], i.e.,

c(z,t) = log ExzN® = |og(7P (z,t)e) . (8)

We now show that c(z,t)/t is bounded uniformly int for 1 < z < z".

For this purpose, we introduce the matrix norm fAQ = max{ ¥ [A;;} for
I .
j



mxn matrices, which has the property that [A1A>0< A1 [Ao0and

e e

Lemmal. For real tand zwitht > Oand1 < z < Z%,

c(1,t) < c(z,t)
t ot

0=

<P(9O< o« .

D(1)t

Proof. First, since Tie is a probability vector for each t, c(1,t) = 0O

for all t. Second, c(z,t) isincreasing in z. Third, using the matrix norm,
c(zt) < log(d e°?'0 oD = D9t
which isfinite by the assumptionon D(z). =

We now describe the asymptotic behavior of c(z,t)/tast — oo in more
detail. The following theorem is an immediate consequence of (6) and (8)
above and Seneta [34, Theorem 2.7]. It gives an alternative interpretation
of the Perron-Frobenius eigenvalue (2z).

Theorem 1. For anyreal z,0 < z < z", and any initial vector T,
fiPY(z,t)e = @Dt + O(e"@Y) ast - o, (9)
wherer(z) < 8(z), so that
c(z,t) = log(TiPP(z,t)e) = d(z)t + O(e”(®@ T a5t ., o (10)

and



t7lc(zt) =t tlog(fP (z,t)e) - d(z) ast — o . (11)

Since D(z) has been assumed to be an analytic function for [z < z%,

c(z,t) isanalytic in z for [zj< z” and al t. (Apply Lemma 1 and Daley
and Vere-Jones [13, pp. 113-114].) Hence, all derivatives with respect to z
are analytic in the same region. Moreover, the k™ derivative of c(z,t) with
respect to z evaluated at z = 1, denoted by c(t), is the k™ factorial
cumulant of N(t) (starting with 7). It is helpful to work with the cumulants
or factorial cumulants of N(t) instead of the moments or factorial moments
primarily for two reasons; First, the k™ cumulant of a sum of independent
random variables is the sum of the k™ cumulants of the random variables
being added, and similarly for the factorial cumulants. Second, as we show
below, the cumulants and factorial cumulants are asymptotically linear as

t - o, whereasthe k" moment and factorial moment are O(t¥) ast — .

The limiting time-average of the k' factorial cumulant cy(t) ast — o
is the k" asymptotic factorial cumulant. We now show that the k"
asymptotic factorial cumulant is precisely M (1), the k™™ derivative of

0(z) evaluated at z = 1.



Theorem 2. For eachk > 1,

IikaT(t) =30 () . (12)

t—>00

Proof. The limit (12) follows from the limit (11) because the termsin (12)

are just the coefficients of the power series expansions of the termsin (11),

e,
c(zt) _ = Cck(t) (z-1)K
t k§1 t k! (13)
and
00 (k) _1\k
52 =5 2 (%Z v (14)
k=1 :

for complex z with (z< zwhere 1 < z < zU. To establish (12), we first
show that (11) holds for al complex z uniformly in z for z in a
neighborhood of z = 1. For general complex z, let d(z) be the eigenvalue

5(2)t

of D(z) with maximum real part. Then e Is the maximum-modulus

eigenvalue of eP@!. Instead of (9), we have
fiPY(z,t) e = u(z)ed@ty(z) + O(e'@Y) | (15)

where u(z) and v(z) are the left and right eigenvector associated with &(z)

and r(z) isreal. Since d(z) and r(z) are continuous in zand since 6(z) isa



simple eigenvalue for z real, in a neighborhood of z = 1 (15) holds with
r(z) < Re(d(z)). Moreover, since (1) > r(1) and the continuity holds,

for al zinaneighborhood of z = 1,
fiPY(z,t) e = u(z)e®@t(z) + O(e™) (16)

withr < Re(&(z)) for aconstant r. As a consequence of (16), (11) holds
for complex z uniformly in z in a neighborhood of z = 1. Hence, we can

apply the Cauchy integral formulafor the k™ derivative, i.e.,

ck( _ d* c(zt) . _ K [ c(z,t)

17
: oK T dz (17)

2t ¢ (z-1)k*1

where C is a simple closed contour about z = 1 (which can be put inside
any neighborhood of z = 1). The uniform convergence of (11) in the
neighborhood of z = 1 implies that the integrals in (17) converge, which

egtablishes (12). m

The role of cumulants in studying stochastic point processes has a long
history, but the analysis seems somewhat obscure; we hope to pursue this
further in a subsequent paper. An aternative approach to Theorem 2 is to
apply corresponding results for stationary point processes, e.g., Daley and
Vere-Jones [3, Exercise 10.4.7], together with a coupling argument to show

that the initial nonstationarity is asymptotically negligible; see Lindvall



[24].

Under appropriate regularity conditions, the statement in Theorem 2 can

be improved to

ck(t) = 3R (1)t + yy + ri(t) (18)

wherer (t) = o(1) ast - oo and sometimes even r(t) = O(e_Skt

) as
t —» o wheresy isapositive constant. In particular Smith [35,36] obtained
such results for renewal processes and cumulative processes (associated
with regenerative processes). Note that here N(t) is indeed a cumulative
process; as regeneration times we can take successive visits to any fixed
phase state after leaving. Hence, Smith's [36] result of the form (18)
applies here, except that he does not identify the asymptotic factoria
cumulants with the derivatives 3 (1). His expressions for the asymptotic
factorial cumulants give aternative expressions for &M (1). His
expressions for the second-order terms y, in (18) may be useful for
developing refined approximations. For the first two cumulants c(t),

explicit expressions are also given in Narayana and Neuts [27] and Chapter

5 of Neuts [30].

The superposition of n independent BMAPs can be represented as

another BMAP with an auxiliary phase state space equal to the product of



the n individual auxiliary phase state spaces. Let the i component BMAP
have arrival rate p; and m; xm; matrices Dk, k = 0, satisfying the earlier
assumptions. We can characterize the superposition BMAP using basic
properties of Kronecker products [1 and sums [1; See Neuts [29,30] for
background. We assume that the arrival rates of all BMAPSs are specified
separately from their D, matrices. When the arrival rates are included,
there is important additivity in the matrix generating functions and the
eigenvalue function.

Theorem 3. Consider n independent BMAPs characterized by pairs
(N; (t),Jj(t)) with arrival rates p; and m;xm; matrices Djx,k = 0,
i <i<n Then the pair (Ni(t) +...+ Nu(t), (J1(1),...,Jn(D)))

determines another BMAP with arrival rate p=p; +...+ p, and

n
associated mxm matrices Dy, wherem = 1 m;, satisfying
i=1

| =
pDy = p1Di U...0 phDk, k= 0, (29

and matrix generating function

Op, O Op,, O
D(z) = 0" D41(2) O0...0 0" D, (2) , (20)
0P O 0P O

which has PF eigenvalue function



Dplm Dan
0(2) = O —M1(2) +...+ OB (2 (21)
OP O OP O

and associated left and right eigenvectors
u(z) = u(2) O...0up(2) and v(z) = v1(2) O...0 vh(2) (22

satisfyinguv = ue = 1.

Proof. By definition, N1(t) +...+ N,(t) is the superposition arrival
counting process. Since the component BMAPs are assumed to be
independent, the pair (Nq(t) +...+ Ny(t), (J1(t),...,Jn(1))) is a
CTMC which determines a BMAP. The product structure for the auxiliary
phase state space means that the D matrices should be defined by (19);
recall that A 0 A, = (AL 01y) + (11 0A). Then (200+22) are

elementary consequences of the Kronecker structure. =

Formula (21) means that the PF eigenvalue function d(z) of the
superposition process can be determined by separately deriving the
component PF eigenvalue functions 6;(z) for 1 < i < n and then simply

adding. Thisimpliesthat the derivatives are ssmply additive too.

3. Derivatives of Eigenvalues and Eigenvectors

In this section we determine recursive formulas for the derivatives of

the Perron-Frobenius (PF) eigenvalue 6(z) of D(z) and the associated



eigenvectors u(z) and v(z) at z = 1. The proof follows the Appendix in
Neuts [30]. However, here we use a variant of the fundamental matrix of a
CTMC instead of the fundamental matrix of a discrete-time Markov chain
(DTMC). For additional discussion of fundamental matrices of CTMCs and
more references, see Whitt [42]. Since D = D(1) is an infinitessmal
generator of an irreducible CTMC, 8(1) = 0, u(1l) = mand v(1) = e

Let
Y=(en-D)tandZ =Y -em. (23)

The matrix Z in (3.1) usually is called the fundamental matrix of the CTMC
with generator D; see (13) and (55) of Whitt [42] and Neuts [30, Theorem
5.1.3]. A key fact is that the matrix et — D in (3.1) is nonsingular (when

the dimension is two or more, which we assume is always the case).

Let 35 denote the k™" derivativeof 5(z) at z = 1, i.e, 3K = 3 (1),
and similarly for other variables.

Theorem 4. Thederivatives of d(z), u(z) andv(z) at z = 1 aregiven by

3 =mpWe =1, (24)
u® = d® -sM Y =Mz, (25)
v = y(D® -5 ye=zDWe, (26)

52

mD@ e+ 2nmDW zpD e,



u@ =mp®@z + 2nD@ zDM 7 - 2D (D) 72
=mD@z + 20 (DD -z,
v = 7D@ e+ 272DM DM e
-222DWe - 2(mDM 22D M g) e
=z2D@e+2z(DW - 1)y - 2y @)

53 =mD® e+ 3mDWzDP e + 3nDP zDW e
+6mDM zDW zpW e - 6D M z2pD ¢
=mD® e+ 3uM D@ e+ 3nDA v
+euD (D@ - yy@ |

and, forn = 2,

-1
M = DM e + s O p® — 5K |yy(-K
5 ™ e + ng‘Sn(D 5 1)y ,

u(m

n
3 Eh(aj(n—k)(mk) _ 5001y,
k=1

(n) (n) - [h (k) — 5Kk (n-k)
\Y; env +Y§D<B(D o\ 1)v ,

where

-1
(N = _ s QK -k
”“ gl[k%‘ v '

(27)

(28)

(29)

(30)

Proof. Follow the proof of Theorem A.2.1 of Neuts [30, p. 482]. Start by

differentiating n times in the eigenvalue equation D(z) v(z) = &(z) v(z) to

obtain



¢ M _ 5K 1yy(-k) =
go D(B(D 5K 1)y =0. (31)

Premultiplying by 1tin (31), we obtain (24) and (27). From (31), we aso

obtain the singular system of linear equations

>

—py(M = S EEB(D(I() - 5(k)|)v(n—k) _ (32)
k=1

Adding ertv(™ to both sidesin (32), we obtain

n
(em-D)v(M = erv(M + 5 D‘B(D(k) - 30 vin-k - (33)
o1 K

Using (23) and Ye = e, we obtain (26) and (29) from (33). Differentiating
n times in the relation ue = 1 and uv = 1, we obtain u(™ e = 0 for Al
n>1 v = —uMe = 0 and (30). To obtain the second formula in
(26), note that
YOD -3M e =v(DD -mdDele
=(Y-em)DWe=2zDWe . (34)
By similar reasoning, we obtain (25) and (28). The anadog of erv(™ is

uMerm Sinceu™e = 0forn = 1, thisterm dropsout. =

We present oneillustrative example.



Example 3.1. Suppose that the BMAP is a two-phase Erlang (E») renewal
process with rate 1, as in Lucantoni [25, pp. 32,36]. Then the phase-type

(PH) and BMAP representationsare (a, T) witha = (1,0) and

L 0 0
Do =T=10 2 ZD, D, = -Tea = g OD (35)
00 —-2g Og

andDy = Ofork = 2. Thenmt = (1/2, 1/2), 31 = 1,

O O/g  —1/80
y=- /8 887 ,_ U8 -1/87 (36)
/8 587 T-1/8  1/8g

u® = (s, -1/8), v = (-1/4,1/49)', &3 =-1/2 and
3®3) = 3/4. The associated first three asymptotic cumulants of the BMAP
aecy =1,¢, =3@ +¢; = 1/2andcg = 34 + 3¢, - 2¢1 = 1/4
see [13, p. 114]. These agree with the known formulas for renewal arriva
processes based on first three moments m; = 1, my, = 3/2and mg = 3;
see Riordan [32, p. 37] and Whitt [41, (2.7)]. Thiscan be determined solely
from relations between moments and cumulants, starting with the formula
mi = k!'m§ for the k™ moment of an exponential (M) random variable.
An E, random variable with mean 1 is the sum of two independent M
random variables. The first three moments of each M variable are
(1/2, 1/2, 3/4), so that the first three cumulants are (1/2, 1/4, 1/4). The

cumulants add, so that the cumulants of the E, variable are (1, 1/2, 1/2).



Thus the moments of the E, variable are (1, 3/2, 3). Then, by [41, (2.7)],

the asymptotic cumulantsare (1, 1/2, 1/4).

4. Asymptotic Expansionsfor the Asymptotic Decay Rates

We now consider the BMAP/G/1 queue, which has i.i.d. service times
that are independent of the batch Markovian arrival process (BMAP). Let V
be a generic service time. We assume that ¢(s) = Ee% < « for some
s > Oandthat EV = 1. Weassumethat p < 1, sothat the model is stable.
Let ny = sup{s: @(s) < o}; ny = oo for some distributions; ny < oo

for other distributions.

Let Q and L be the steady-state queue length (number in system) and
workload (virtual waiting time) at an arbitrary time, which we assume are
well defined. See Ramaswami [31], Neuts [30], Lucantoni [25,26] and
Abate, Choudhury and Whitt [2] for the transforms of the distributions of Q
and L. We areinterested in the asymptotic behavior of the tail probabilities.

In great generality,
0 *P(Q>k) -~ Bask —» o (37)
and

enXP(L>X) - 0 as X —» oo, (38)



where o,B,n and a are positive constants with a = B; see Abate,

Choudhury and Whitt [2] and references there.

Since here we are interested only in the asymptotic decay rates o and n,

we can also focus on the weaker limits

k" logP(Q > k) - logo as k - o
and

X 1logP(L >X) - -n asx - ®,

where log is the natural logarithm, see Chang [9] and Glynn and Whitt [18].

The pair of asymptotic decay rates (o1

, N) are characterized in [2] as
the (necessarily unique) solutionwith1 < 071 < z8and0 < n < ny to

the two equations

5(1/c) = % and @(n) = Ee"V =g (39)

By [1, Theorem 11], 0 < n < ny. We remark that multiple solutions
to (39) can hold above )y, when Ee® isnot interpreted as + o for s > ny;
I.e., there can be problems if we simply substitute — s into an expression for

the Laplace transform Ee™%V.

We assume that there is indeed a solution (6~ 1,n) to (39), which we



have noted is unique, and we develop algorithms to find o and n as
functions of p. First, a relatively simple approach is direct root finding.
We can start with a candidate x for n with 0 < x < ny, and calculate
PO(P(x)). If pd(@(x)) > X, then wedecrease x; if pd(P(x)) < X, thenwe
increase. In particular, if ny < oo, thenitisapossibleinitial x. Otherwise,
start with 1. Go from x to 2x if x is the largest value considered so far and
we should increase; otherwise use bisection. Given an x and a y such that

Pd(P(x)) < xand pd(e(y)) = y,weknowthatx < n <.

Second, we express n and (o~1-1) as asymptotic expansions in
powers of (1-p). When we use many terms, thisis a numerical algorithm
for finding the exact solution; when we use relatively few terms, this can be
regarded as a ssmple approximation. A combination of the two approaches
yields an efficient algorithm for computing o and n as functions of p. We
use the asymptotic expansion for p in the interval [pg, 1] and root finding
below pgy. We use the root finding to identify po and confirm the accuracy

above pg.

Asin [3], we develop approximations for 61 and n by expanding 3(2)
and @(s) = Ee% in Taylor seriesabout z = 1and s = 0, respectively. We

have



(z-1* |
B

5(z) = 8(1) + 3V (1)(z-1) + ...+ 30 (1)

= (z-1) +5(2)¢ .+ 5(k)ﬂ +... (40)

k!

and

2 k
o) = 9(0) + 9V (0)s + ¢ (0) - +..+ ¢ (0) 3 +...

2 k

=1+s+mzs7 +...+ mkf'(_I +..., (41)

where 3 = 3K (1) and my = EVK = ¢*(0). We obtain 3 from the
algorithm in Section 3. Given an explicit expression for the transform
@(s) = Ee%V, we can calculate any desired number of moments my via the

algorithm in Choudhury and Lucantoni [10].

Given either o or n (or approximations) and the derivatives, we can

obtain an approximation for the other from (39)—<41), i.e.,

% = 50" Bo™l-1) + ...+ 6(")@_1—:1)'( (@

and

2 k
mgn
+...+ T+... (43)

m
61 = g(n) B1 +n + 2]

We first develop an asymptotic expansion in powers of 1 — p for n by

considering the composite function &(¢@(n)). We then use the (43) to



develop an asymptotic expansion for o~ in powers of 1-p.

By (39), 8(@(n)) = n/p. Consequently,

_ 8(e(n) _, - 1-p
w(n) = 2212 5

€. (44)

We apply (40) and (41) to determine the coefficients in a Taylor series

expansion of (44), i.e.

2 axn®
Y(n) = ain +a2r]T +...+T+... (45)

Then we use reversion of series, see 3.6.25 of Abramowitz and Stegun [4,

p. 16] and Riordan [32, Section 2.8], to obtain

2 k

N = f(e) sbls+bz€7 o+ bki_l . (46)

from (45). Theideaisthatn = f(Y(n)), so that the coefficients by in (46)
can be obtained from the coefficients ay in (45) using the formula for the
derivatives of a composite function. (In this step, and others to follow, we

could also use a symbolic language such as MAPLE.)

First, Table 1 gives the first seven coefficients ay in (45) in terms of the
derivatives 3K = 5 (1) and my = EVX = ¢ (0). These are obtained
from the composite function d(¢@(n)) plus (44). In Section 2.8 and

Problem 32 on p.47 of Riordan [29] and Riordan [33], a recursive



algorithm is given for the derivatives. This can be used to calculate a for
arbitrary k. Second, Table 2 gives the first seven coefficients by in (46) in
terms of the coefficients ay in (45). Again the algorithm in Riordan [32]

enables usto calculate by for arbitrary k.

Note that these formulas simplify in special cases. For example, if the
service-time distribution is deterministic (D), thenm, = 1foral k = 1. If
the service-time distribution is exponential (M), then m, = k! If the
arrival process is Poisson, then 8(z) = D(z) = z-1, so that 3% = 0 for

al k = 2. For aPoisson arrival process, (n + 1)a, = muy+q foralin= 1

Next, let g(x) = x/(1-x) and note that g(1-p) = (1-p)/p = €.
Hence, we can express the asymptotic decay rate n in an asymptotic

expansion in powersof (1-p), i.e,

—n\K
N = h(1-p) = 1(g(1-p)) = ca(1-p) + ..+ o P+ a7)

Once again, we use the formula for the derivatives of a composite function

to obtain the coefficients cy in (47) from the coefficients by in (46).

Since

90) = = 5K, 489



we have gt (0) = k! Table 3 below gives the first seven coefficients cy
in (47) in terms of the coefficients by in (46). Once again, the algorithm in

Riordan [32, Section 2.8] can be used to calculate ¢ for arbitrary k.

Finally, we can combine the previous results to express the coefficients
Ck in (47) first in terms of the coefficients ay in (45) and then in terms of
the derivatives 8 and my. The first four coefficients ¢, are displayed in

Table4. For thefirst two, we give expressions in terms of 3 and m,.

From the analysis so far, we see that the coefficient ¢y in (47) depends
on the first (k +1) derivatives 8 and m;. (The first derivatives are fixed;
by convention 3% = m; = 1) Note that c, is decreasing in m, and
5. More generaly, cy is decreasing in my.; and 3K+ (Smaller n

means more congestion.)

It is well known that in the M/M/1 queue, n = 1-p and o = p.
hence, for the M/M/1 queue, ¢4 = 1andc, = Ofor k > 2. Itiseasy to
see that Table 4 is consistent with this, because then 6(z) = z—1 and

my = k!, sothat ay = k!

The simple heavy-traffic approximation is thefirst term, i.e.,

oy = 2(1-p)
n ECl(:l- p) - m . (49)



Note that cz = 1 + 3(? is the asymptotic variance of the arrival process,
whilec2 = m, - 1 isthe squared coefficient of variation (variance divided
by the square of the mean) of the service time. Hence, (49) agrees with the

familiar heavy-traffic formula; e.g., see[16].

Paralleling [3], the two-term refined approximation hereis

nBei(l-p) +c

(1-p)* _ 2(1-p)
272 m, + 6@

. 2(3m5 +3(5(2)2 -2m3 -25(3)

3(m; + 53 a-p7

For the M/G/1 queue, (50) here agrees with (14) of [3]; then 3% = 0
for k = 2. Higher-order refined approximations follow from Tables 1-4 and
the associated recursive agorithm for the derivatives of composite

functions. For the M/G/1 queue, ax = my4+1/(k+1) so that

nBci(1-p)+ca(l-p)2+c3(1-p)3+ca(1-p)?, (51)

where



o 2 . 6m3 —4m;
1= — 2 - ——————
m; 3m3

36m4 —48msm3 +32m3 - 12m,my

Ca =

3 3am3

c4 = [2400m,m3smy —288m3ms — 3200m3 +5760m3m3
—2160m3m, — 4320mgm3 + 2160m83]/45m} . (52)

Inthe M/M/1 case, m = k! andn = 1-p. Formula(52) is consistent
with thisresult. It isinteresting that the individual terms cancel in this case.

This suggests that we might rewrite (52) as

_ 2(3m3-2mg)
3am3
12m, (3m3 —my) - 16m3(3m3 -2m3)
Cz = = (53)
3m2
C4 = [240(3m3-2m3)(4m3-3m,my) — 320mg(4mg—3m,my) +

144m3(15m3 —2ms) — 1440m3m3(3m3 —2m3)]/45mj .

In other words, we evaluate ms in relation to m, via the term (3m3 —2ms3)
and we evaluate m, relative to m, via the term (3m3 -my). In the fourth
term we also evaluate m, relative to m, and mg via (4m3 -3m,m,) and
ms relative to m, via (15m3 -2ms). These individual terms are all O for

the exponential distribution.

Now we consider the other asymptotic decay rate c. We can combine

(43), (47) and Riordan [32, p. 49] to obtain an asymptotic expansion in



1

powersof (1-p)foro™ -, i.e,

00 _ k
o7t -1=gh(i-p)-90) = 3 d P (59
k=1 )

The first seven coefficients dy in (54) are expressed in terms of the

coefficientscy in (47) in Table 5.

As a consequence, the simple heavy-traffic approximation is the first

term, i.e,,
-1 _ _yy = 2(1-p)
o 1Hcy(1-p) FC (55)
so that
_~ - 2(1-p) IRV
1-0 W + O((1-p)°) . (56)

The two-term refined approximation is

07 - 18es(1-p)+(c+myc) LR = 217p)

m26(2)
H2(3m3 +3(5(2)2 - 2m5 - 25()) om, -
+ + {1-p)%. (67)
C 3(my +5)° (m +57)7



5. Non-BMAP Arrival Processes

We have seen that the asymptotic decay rates in a BMAP/G/1 gqueue
depend on the BMAP through the Perron-Frobenius eigenvalue &(z) of the
BMAP matrix generating function D(z) in (2). Moreover, for z near 1, 8(2)
is primarily determined by its derivatives 8 =5 (1) a z = 1.
Furthermore, we have characterized 5(z) and 3 in terms of the limiting
time-average of the factorial cumulant generating function in (8) and (6),
and its derivatives, the factorial cumulants ¢ (t). It is significant that these

last characterizations extend beyond BMAPSs.

When the arrival counting process N(t) is a general stochastic point

process, we define 8(z) by

N(t)
5(z) = |im'°9#, (58)

t—>00

assuming that the limit exists; see Chang[9], Glynn and Whitt [18] and

Whitt [43]. Moreover, we define 3 as

Cr(t
509 = fim Sk

t- oo

, (59)

again assuming that the limit exists.

Given (58) and (59), we can treat single-server queues with non-BMAP



arrival processes if we can obtain convenient expressions for the generating
function EzN(M and/or the factorial cumulants. For example, we can treat
renewal processes and superpositions of independent renewal processes by
applying expressions for the asymptotic cumulants obtained by Smith [35].
Toillustrate, Table 6 gives expressions for the first four asymptotic factorial
cumulants of a rate-one renewal process in terms of the first four moments
of the inter-renewal times. (Since the renewal process has rate 1, the first
moment of the inter-renewal time is 1.) A specific numerical example is

given below in Example 6.3.

Smith [35] gives formulas for the first eight asymptotic cumulants, the
first four of which are given in [41, (2.7)]. The asymptotic factorial
cumulants are related to the asymptotic cumulants the same way that
factorial moments are related to moments. Smith [36] also gives
expressions for asymptotic cumulants of a cumulative process associated
with a regenerative process. Since the BMAP is a special case, this gives
alternative expressions for the asymptotic factorial cumulants for a BMAP.

It also gives formulas for alarge class of non-BMAP arrival processes.

By invoking the additivity discussed in Section 2, we can treat arriva
processes that are independent superpositions of BMAPS, non-BMAP

renewal processes and other non-BMAP non-renewal cumulative processes.



6. Numerical Examples

In this section we look at some numerical examples. Our first two
examples are MMPP/T" /1 queues, with a gamma service-time distribution
having shape parameter y and a Markov modulated Poisson process
(MMPP) as an arrival process, which isa MAP. As before, we assume that
the mean service time is 1, so that y is the sole service parameter. The
parameter y allows us to consider a range of variability; i.e. the SCV is
cZ = 1/y. Inparticular, y = 1 is exponentia (M) , y = k is Erlang (Ey)
which approaches D ask — o, andy < 1 corresponds to distributions that
are more variable than exponential.

Example 6.1. We start by considering a two-phase MMPP (MMPP5,). The
MMPP, has four parameters (the arrival rate and mean holding time in
each phase), one of which we determine by letting the overal arrival rate be
p. We fix one parameter by assuming that the long-run arrival rate in each
phase is p/2; we fix another parameter by assuming that the expected
number of arrivals during each visit to each phaseis 5. Our final parameter
istheratio r of the arrival rates in the two phases. We see what happens as

we vary the three parametersy, r and p.

First, to obtain a concrete model with p the only free parameter, we let

r = 4andy = 0.5. This gamma service-time distribution does not have a



rational Laplace transform so it is not PH. Since it has c§ = 2.0, it is
moderately highly variable. This service-time distribution was used

previously in Example 1 of [1].

For this case, we now give the approximating caudal characteristic
curve (n as a function of p) based on the seven-term heavy-traffic
expansion. Let ni(p) be the k-term approximation for n as a function of p.
Then

n=n(p) Bns(p) = 0.41667(1-p) - 0.07668(1-p)?

+ 0.00116(1-p)3 + 0.05428(1-p)*0.07884(1-p)°>

+ 0.07243(1-p)® + 0.04636(1-p)’ . (60)
From (60), it is evident that when p is close to 1 n(p) should be a good
approximation for small k and improve dramaticaly as k increases.
However, we cannot expect the quality of the approximation to be good for

very small p. (There we should rely on the root finding.)

The exact values of the asymptotic decay rates p and o were found for
12 values of p by root finding and are displayed in Table 7. Also displayed
in Table 7 are the values ny of the k-term expansions for n for each Kk,
l1<k<7(.e,n7isgivenin (60)) and the approximationco; = 1/¢@(n7)
for 0. (We do not display the alternative approximation for o based on its

asymptotic expansion in (54).)



From Table 7, we see that the approximations N, and o essentially
coincide with the exact values provided that p is not too small, say for
p = 0.3. Novalueof o7 isgivenfor p = 0.05 becausen; > ny = 0.5

in that case.

Note that the heavy-traffic approximation n; is remarkably good for
p = 0.2. Indeed, n; is actualy better than n, for p < 0.4. However, we
suggest considering n  truly agood approximation only if n; remains good
forall j = k. (It seems evident that nothing strange will happen with n for
k > 7, but we have not verified it.) In this sense, n; and n, might be
judged very good only for p = 0.9 and p = 0.6, respectively. Thisis based
on a criterion of two percent relative error: The percent relative error of n
andn,ap = 0.95, 0.90, 0.80, 0.70, 0.60 and 0.50 are, respectively, 0.9%,
1.9%, 3.7%, 5.2%, 6.1%, 5.9% and 0.0%, 0.0%, 0.1%, 0.6%, 1.7% and
3.9%. As in [1], we conclude that for engineering purposes n, does
remarkably well for p not too small. However, for smal p, eg. p < 0.5,
the convergence of the asymptotic expansion is quite slow (which should be
no surprise). For example, at p = 0.2, ni is better than n; for the first

timeatk = 6.

We next consider what happens as we vary each of the parametersr and

y. Table 8 displaysn and ng, 1 < k< 7, for 4 values of r withy = 0.5



and p = 0.5 and 0.8, while Table9 displays n and ny, 1 < k< 7, for
6vaues of y with r = 4.0 and p = 0.5 and 0.8. The case y =

corresponds to a deterministic service-time distribution.

As anticipated, fewer terms suffice with higher p in al these cases. At
p = 0.8, we might consider the heavy-traffic approximation n, good
enough and we would certainly consider n, good enough. At p = 0.5,
neither n 1 nor n» is consistently good (especialy by our criterion that n;

remain good for al j > k).

Table 9 shows that for p = 0.5 the quality of the approximations
degrade as y increases. The deterministic service-time distribution is the
most difficult case we considered. Indeed, for p = 0.5, n7 still has 1.1%
and 1.6% error for a = 4.0 and a = . The relatively big change from
Ne to N7 inthat case shows that convergence has not yet occurred.
Example 6.2. To begin learning about the impact of multiple sources, we
now compare one MMPP source with the superposition of two independent
MMPP sources. We consider the MMPP/T" /1 model in Example 6.1 with
Yy =05 r =40 and two values of p: p =05 and p = 0.8 The
component MMPPs in the superposition are the same as the single-source
MMPP except time has been scaled by a factor of 2; i.e., the component

process parameters are obtained by taking the single-source MMPP and



changing its free parameters from (p, r) to (p/2, r). (We have chosen the

parameters so that time scaling corresponds simply to changing p).

We compare approximations with exact values for the percentiles of the
steady-state waiting time when there are one and two component streams.
The exact percentile values are computed using the program in [11].
(Bisection search is used to find the percentiles with the algorithm for the
tail probabilities.) For the approximations, we always use the exact value
of the asymptotic decay rate n (which does not change as the number of
component streams changes). We consider three exponentia
approximations. The first is the asymptotic exponential approximation
ae” "1 with the exact asymptotic constant o (computed using [10]); the
second has a approximated by nEW, as suggested in [1]; and the third has

o approximated crudely by 1.0.

Tables 10 and 11 display the results for p = 0.5 and p = 0.8,
respectively. Consistent with the theoretical results in [2], the exact
asymptotic formula becomes a very good approximation as the percentile
increases. Indeed, for very high percentiles all the approximations are
pretty good, which helps justify our having focused on the asymptotic
decay rate n in this paper. From Tables 10 and 11, we see that the quality

of the approximations degrades as (1) the number of streams increases, (2)



the percentile required decreases, and (3) the traffic intensity decreases.

Focusing on the number of streams, we see from Tables 10 and 11 that
for any given p and any given required percentile, the quality of the
asymptotic exponential approximation degrades as we increase the number
of streams from 1 to 2. In [12] we investigate this issue further. There we
show that the percentile where the asymptotic exponential approximation is
judged good typically increases as the number of streams increases. This
phenomenon occurs because the asymptotic constants a and 3 in (37) and
(38) themselves are exponentia in the number of sources when the sources

are scaled to keep the total arrival rate fixed.

Hence, when the arrival process is a superposition of alarge number of
Independent processes, the asymptotic decay rate alone often does not yield
good approximations for tail probabilities. Asin previous work on steady-
state means [16,20,39], more intricate approximations are evidently needed.
Example 6.3 To illustrate how the results extend beyond BMAP arrival
processes, we consider the ' g 5/IN /1 queue, which has ', = E, service
times independent of a ' 1;» renewal arrival process. Since the I q)»
distribution does not have a rational Laplace transform, it is not phase-type

and not a BMAP.



The moments of al”, random variable with meany are I (y + r)/T (y),

where I (x) is the gamma function; see (9) on p. 168 of Johnson and Kotz

[22]. Hence, the k™ moment of a Iy, distribution with mean 1 is

(2k-1)1/2=1(k-1)1. The first four moments of the mean-1 Iy,

distribution are 1, 3, 15 and 105. By Table 6, The first four asymptotic

factorial cumulantsare 1, 1, 0 and 0. Interestingly, the first four coefficients

Ck in the expansion for n in (47) are al positive. (When thisis true for al

k, the approximations improve monotonicaly with k for al p.) Table 12

displays the first four approximations ny and the exact values for four

values of p. Aswith the BMAP/G/1 queues, there is good accuracy.
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Tablel. Thefirst seven coefficients ay of y(n) = > a,Nk/k! in (44) in terms of the
K=1
derivatives 3 = 3 (1) and the moments m, = EVX = ¢®(0), where
31 = m; = 1, obtained from the Bell polynomials in Table 3 of Riordan
[32, p. 49].
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Table 2. The first seven coefficients by of f(g) = 5 b,e“/k! in (46) in
k=1
teems of the coefficients a, of € = w(n) = S an*/k!

k=1
obtained by reversion of series; see 3.6.25 of Abramowitz and
Stegun [4, p. 16] or Riordan [32, Section 2.8].
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Table 3. The first seven derivatives ¢, = h(®(0) of h(1-p) in (47) in
terms of derivatives b, = f ) (0) where h(1-p) = f(g(1-p))
and € =g(1-p) = (1-p)/p, based on Riordan [32, Section
2.38].
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Table4. The first four coefficients cy in the heavy-traffic expansion (47)
expressed in terms of the coefficients a, and, for the first two,
the basic derivatives 3 and my.
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Table 5. The first seven coefficients d, in the asymptotic expansion for
o~ - 1in (54) in terms of the coefficients c, of the asymptotic
expansion for n.
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Table 6. The first four asymptotic factorial cumulants 3 of a rate-1
renewal process in terms of the moments v, of the inter-renewal
time(v, = 1).
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The heavy-traffic asymptotic expansion for the asymptotic decay rate n as a

function of the MMPP parameters r and p in Example 6.1. The other
parameter isfixedaty = 0.5.
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Table 9. The heavy-traffic asymptotic expansion for the asymptotic decay rate n as a
function of the MMPP parameters y and p in Example 6.1. The other
parameter isfixedatr = 4.



onestream,p = 0.5,n = 0.19677

0
O

E percentile value g
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= = 0
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0 99 []19.9087 B 19.9036 B 20.2020 523.4041 O
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Cpercentile Bapprox.,exacta Bapprox.,a Hmean M Bapprox. 0
Orequired [ exact - o =037188 - « B0.47361 Ha 510 O
B 0 U
0 80 0 4.2672 g 3.1523 g 4.3811 g 8.1794 [
g % g 74446 0 66749 [ 7.9038 0117021 g
0 9 18.3770 B 18.3770 B 19.6059 523.4041 0
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Table 10. A comparison of approximations with exact values of percentiles of the
steady-state waiting time in the MMPP/T 1,,/1 queue with p = 0.5 and one
or two arrival streamsin Example 6.2.
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Table 11. A comparison of approximations with exact values of percentiles of the
steady-state waiting time in the MMPP/T 1,,/1 queue with p = 0.8 and one
or two arrival streamsin Example 6.2.
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Table 12. A comparison with approximations for the asymptotic decay rate n with
exact valuesfor thel 1,5/T »/1 queue in Example 6.3.



