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ABSTRACT

In great generality, the basic steady-state distributions in the BMAP / G /1
queue have asymptotically exponential tails. Here we develop asymptotic
expansions for the asymptotic decay rates of these tail probabilities in powers of
one minus the traffic intensity. The first term coincides with the decay rate of the
exponential distribution arising in the standard heavy-traffic limit. The
coefficients of these heavy-traffic expansions depend on the moments of the
service-time distribution and the derivatives of the Perron-Frobenius eigenvalue
δ(z) of the BMAP matrix generating function D(z) at z = 1. We give recursive
formulas for the derivatives δ(k) ( 1 ). The asymptotic expansions provide the
basis for efficiently computing the asymptotic decay rates as functions of the
traffic intensity, i.e., the caudal characteristic curves. The asymptotic expansions
also reveal what features of the model the asymptotic decay rates primarily
depend upon. In particular, δ(z) coincides with the limiting time-average of the
factorial cumulant generating function (the logarithm of the generating function)
of the arrival counting process, and the derivatives δ(k) ( 1 ) coincide with the
asymptotic factorial cumulants of the arrival counting process. This insight is
important for admission control schemes in multi-service networks based in part
on asymptotic decay rates. The interpretation helps identify appropriate statistics
to compute from network traffic data in order to predict performance.



1. Introduction

In this paper we consider the BMAP / G /1 queue, which has a single

server, unlimited waiting room, the first-in first-out service discipline and

i.i.d. service times that are independent of a batch Markovian arrival

process (BMAP). The BMAP is an alternative representation of the versatile

Markovian point process of Neuts [28, 30] with an appealing simple

notation, which was introduced by Lucantoni [25]. The BMAP / G /1 queue

is equivalent to the N/G/1 queue considered by Ramaswami [31]. The

BMAP generalizes the MAP by allowing batch arrivals; the MAP

generalizes the Markov modulated Poisson processes (MMPP) by allowing

an arrival and a change of environment state to occur simultaneously.

MMPPs, MAPs and BMAPs are useful for studying superposition arrival

processes, e.g., arising in models of statistical multiplexing, because

superpositions of independent arrival processes of each type is again of the

same type. Indeed, MAPs are sufficiently general that they can serve as

approximations for any stationary point process (possibly at the expense of

requiring large matrices); see Asmussen and Koole [6]. For an overview of

the BMAP / G /1 queue, see Lucantoni [26].

In Abate, Choudhury and Whitt [2] we showed that in great generality

the basic steady-state distributions in the BMAP / G /1 queue have



asymptotically exponential tails. (For related work, see Asmussen [5],

Asmussen and Perry [7], Baiocchi [8], Chang [9], Elwalid and Mitra

[14,15], Glynn and Whitt [18] and van Ommeren [40].) Our purpose here

is to obtain heavy-traffic asymptotic expansions (in powers of 1 − ρ where

ρ is the traffic intensity) for the asymptotic decay rates. These asymptotic

expansions provide a convenient way to compute the asymptotic decay

rates. The asymptotic decay rates also can be computed by root finding, but

the asymptotic expansions yield the asymptotic decay rates as functions of

ρ (i.e., the caudal characteristic curves; see Neuts [29]), whereas the root

finding must be repeated for each separate value of ρ. The asymptotic

expansions also reveal what features of the model the asymptotic decay

rates primarily depend upon. In particular, the asymptotic decay rates

primarily depend on the BMAP through its lower asymptotic cumulants, the

first three of which are the arrival rate, the asymptotic variance and the

asymptotic central third moment. Although our proofs depend on the

BMAP structure, this characterization does not; it applies to arbitrary

stochastic point processes.

In Abate and Whitt [3] we showed that a heavy-traffic asymptotic

expansion is possible for multi-channel queues in which the individual

arrival and service channels are mutually independent renewal processes,



and found the first two terms. Here we extend these results by treating

BMAP arrival processes and finding more terms. Here we also provide an

interpretation of the terms. For the BMAP, the key is to compute the

derivatives of the Perron-Frobenius eigenvalue δ(z) of the BMAP matrix

generating function D(z) at z = 1, which we do here in §3. The analysis is

similar to the analysis in the Appendix of Neuts [30]. We develop a

recursive algorithm for computing any desired derivative of δ(z) at z = 1.

The k th derivative δ(k) ( 1 ) is the k th asymptotic factorial cumulant of the

BMAP. We also develop an algorithm for computing the first seven

coefficients in the heavy-traffic expansions for the asymptotic decay rates.

(This can be extended if desired.)

One reason we are interested in the BMAP / G /1 queue is because it can

serve as a model to aid in admission control in multi-service networks.

(For that application, the service times can often be regarded as

deterministic.) The idea is to construct simple admission criteria from the

asymptotic decay rates. For this purpose, it is important to be able to

quickly compute the asymptotic decay rates and understand what features

of the model they primarily depend upon. Part of the efficiency stems from

a separation of independent sources (see Theorem 3 in Section 2); the rest

stems from the heavy-traffic expansion. For additional related work on



admission control, see Chang [9], Elwalid and Mitra [14], Gibbens and

Hunt [17], Gue ́ rin, Ahmadi and Naghshineh [19], Kelly [23],

Sohraby [37,38], Whitt [43] and references therein. In this context Sohraby

[37,38] also considers (one-term) heavy-traffic approximations for the

decay rates.

It turns out that the first term of the heavy-traffic expansion for the

asymptotic decay rates coincides with the rate of the steady-state

exponential distribution of the diffusion process (reflected Brownian

motion) in the familiar heavy-traffic limit theorem in which first ρ → 1 and

then t → ∞. This might be anticipated, but it is not automatic because it

involves an interchange of limits. (Here we first let t → ∞ and then let

ρ → 1.) The contribution of the BMAP to this first term is via

1 + δ( 2 ) ( 1 ), which corresponds to the asymptotic variance. Subsequent

terms in the asymptotic expansion offer refinements to the basic heavy-

traffic approximation. As we found for the GI / G /1 queue in [1], we find

that a second term often provides a significant improvement, but that two

terms is often a remarkably good approximation (for ρ not too small, e.g.,

ρ ≥ 0. 6). The algorithm here provides a means for investigating how many

terms are needed as a function of ρ in any BMAP / G /1 queue. As one

should anticipate, the number of required terms increases as ρ decreases;



see the numerical examples in Section 6.

The asymptotic expansions only yield approximations for the

asymptotic decay rates. This applies directly to admission control based

solely on asymptotic decay rates, e.g., on effective bandwidths

[9,14,17,19,23,37,38,43], but for approximations of the tail probabilities

themselves we also need the asymptotic constant. In [1] we suggested a

simple approximation for the asymptotic constant, in particular, the product

of the asymptotic decay rate and the mean (which becomes a relatively

simple approximation upon applying approximations for the mean). We

suggest that same approximation for the BMAP / G /1 queue as well.

Fortunately, for the higher percentiles of the distributions, the asymptotic

constant often has relatively little impact; often we can even approximate

the asymptotic constant by 1 and get good approximations for the higher

percentiles; see Example 6.2 below. However, we have found that the

asymptotic constant can be very far from 1 when the arrival process is the

superposition of a large number of independent sources [12]. In such

circumstances, we evidently need more than the asymptotic decay rate to

find good approximations for tail probabilities.



2. The Batch Markovian Arrival Process

In this section we review the basic properties of the BMAP. For more

details, see Lucantoni [25,26]. The BMAP can be defined in terms of two

processes N(t) and J(t): N(t) counts the number of arrivals in the time

interval [ 0 ,t], while J(t) indicates the auxiliary phase state at time t. The

pair (N(t) , J(t) ) is a continuous-time Markov chain (CTMC) with

infinitesimal generator matrix Q̃ in block partitioned form; i.e.,

ρ
Q̃_ __ =










D 0

D 0

D 1

D 0

D 1

D 2

...

D 0 . . .

D 1 . . .

D 2 . . .

D 3 . . . 








, (1)

where ρ is the overall arrival rate, D k , k ≥ 0, are m×m matrices, D 0 has

negative diagonal elements and nonnegative off-diagonal elements, D k is

nonnegative for all k ≥ 1, and D =
k = 0
Σ
∞

D k is an irreducible infinitesimal

generator matrix for an m-state CTMC.

Let π be the steady-state probability vector associated with D, i.e.,

determined by πD = 0 and πe = 1, where e is a vector of 1’s and 0 is a

vector of 0’s (which should be clear from the context). A fundamental role

is played by the BMAP matrix generating function



D(z) ≡
k = 0
Σ
∞

D k z k . (2)

We assume that D(z) has a radius of convergence z ∗ with 1 < z ∗ ≤ ∞.

When D k = 0 for all k ≥ k 0 , as is the case for the ordinary MAP (then

k 0 = 2), z ∗ = ∞. Having z ∗ > 1 implies that D(z) can be regarded as an

analytic function of a complex variable z for z < z ∗ . The k th derivative

D (k) (z) is then finite and analytic for all k and z < z ∗ .

Specifying the overall arrival rate ρ separately means that

π(
k = 1
Σ
∞

kD k ) e = πD ( 1 ) ( 1 ) e = 1 . (3)

As shown in [2, Section 3], D(z) has a (simple real) Perron-Frobenius

eigenvalue δ(z) for all real z with 0 ≤ z < z ∗ . In Section 3 below we

show that δ(z) has derivatives of all orders for 0 < z < z ∗ . Let u(z) and

v(z) be the associated (positive real) left and right eigenvectors normalized

so that u(z) v(z) = u(z) e = 1. By [2, Theorem 7], δ(e s ) is strictly

increasing and convex function of s with δ( 1 ) = 0.

Let the marginal conditional distribution of (N(t) , J(t) ) be given by

P i j (n ,t) = P(N(t) = n , J(t) = jN( 0 ) = 0 , J( 0 ) = i) (4)

and let



P ∗ (z ,t) =
n = 0
Σ
∞

P(n ,t) z n (5)

be the associated counting process matrix generating function, which is

given explicitly by

P ∗ (z ,t) = e D(z) t , t ≥ 0 . (6)

Given any initial vector π̃ on the phase space, the counting process N(t)

has probability distribution

P π̃ (N(t) = n) =
i = 1
Σ
m

j = 1
Σ
m

π̃ i P i j (n ,t) = π̃P(n ,t) e . (7)

Combining (5) and (7), we see that N(t) starting with π̃ has generating

function π̃P ∗ (z ,t) e. It is convenient to focus on the logarithm of this

generating function, which is also known as the factorial cumulant

generating function; see Johnson and Kotz [21, Section 1.5], Daley and

Vere-Jones [13, Sections 5.2, 5.4, 7.4, 10.4], Chang [9] and Glynn and

Whitt [18], i.e.,

c(z ,t) ≡ log E π̃ z N(t) = log (π̃P ∗ (z ,t) e) . (8)

We now show that c(z ,t)/ t is bounded uniformly in t for 1 ≤ z < z ∗ .

For this purpose, we introduce the matrix norm A =
i

max {
j
Σ A i j} for



m×n matrices, which has the property that A 1 A 2 ≤ A 1 . A 2 and

e A ≤ e A.

Lemma 1. For real t and z with t > 0 and 1 ≤ z < z ∗ ,

0 =
t

c( 1 ,t)_ _____ ≤
t

c(z ,t)_ _____ ≤ D(z) < ∞ .

Proof. First, since π̃e D( 1 ) t is a probability vector for each t, c( 1 ,t) = 0

for all t. Second, c(z ,t) is increasing in z. Third, using the matrix norm,

c(z ,t) ≤ log (π̃ . e D(z) t . e) = D(z)t ,

which is finite by the assumption on D(z).

We now describe the asymptotic behavior of c(z ,t)/ t as t → ∞ in more

detail. The following theorem is an immediate consequence of (6) and (8)

above and Seneta [34, Theorem 2.7]. It gives an alternative interpretation

of the Perron-Frobenius eigenvalue δ(z).

Theorem 1. For any real z, 0 < z < z ∗ , and any initial vector π̃,

π̃P ∗ (z ,t) e = e δ(z) t + O(e r(z) t ) as t → ∞ , (9)

where r(z) < δ(z), so that

c(z ,t) ≡ log (π̃P ∗ (z ,t) e) = δ(z) t + O(e − (δ(z) − r(z) ) t ) as t → ∞ (10)

and



t − 1 c(z ,t) ≡ t − 1 log (π̃P ∗ (z ,t) e) → δ(z) as t → ∞ . (11)

Since D(z) has been assumed to be an analytic function for z < z ∗ ,

c(z ,t) is analytic in z for z < z ∗ and all t. (Apply Lemma 1 and Daley

and Vere-Jones [13, pp. 113-114].) Hence, all derivatives with respect to z

are analytic in the same region. Moreover, the k th derivative of c(z ,t) with

respect to z evaluated at z = 1, denoted by c k (t), is the k th factorial

cumulant of N(t) (starting with π̃). It is helpful to work with the cumulants

or factorial cumulants of N(t) instead of the moments or factorial moments

primarily for two reasons: First, the k th cumulant of a sum of independent

random variables is the sum of the k th cumulants of the random variables

being added, and similarly for the factorial cumulants. Second, as we show

below, the cumulants and factorial cumulants are asymptotically linear as

t → ∞, whereas the k th moment and factorial moment are O(t k ) as t → ∞.

The limiting time-average of the k th factorial cumulant c k (t) as t → ∞

is the k th asymptotic factorial cumulant. We now show that the k th

asymptotic factorial cumulant is precisely δ(k) ( 1 ), the k th derivative of

δ(z) evaluated at z = 1.



Theorem 2. For each k ≥ 1,

t→ ∞
lim

t

c k (t)_ ____ = δ(k) ( 1 ) . (12)

Proof. The limit (12) follows from the limit (11) because the terms in (12)

are just the coefficients of the power series expansions of the terms in (11),

i.e.,

t
c(z ,t)_ _____ =

k = 1
Σ
∞

t

c k (t)_ ____
k!

(z − 1 ) k
_______ (13)

and

δ(z) =
k = 1
Σ
∞

k!
δ(k) ( 1 ) (z − 1 ) k
_ _____________ . (14)

for complex z with z < z
_

where 1 < z
_

< z ∗ . To establish (12), we first

show that (11) holds for all complex z uniformly in z for z in a

neighborhood of z = 1. For general complex z, let δ(z) be the eigenvalue

of D(z) with maximum real part. Then e δ(z) t is the maximum-modulus

eigenvalue of e D(z) t . Instead of (9), we have

π̃P ∗ (z ,t) e = u(z) e δ(z) tv(z) + O(e r(z) t ) , (15)

where u(z) and v(z) are the left and right eigenvector associated with δ(z)

and r(z) is real. Since δ(z) and r(z) are continuous in z and since δ(z) is a



simple eigenvalue for z real, in a neighborhood of z = 1 (15) holds with

r(z) < Re (δ(z) ). Moreover, since δ( 1 ) > r( 1 ) and the continuity holds,

for all z in a neighborhood of z = 1,

π̃P ∗ (z ,t) e = u(z) e δ(z) tv(z) + O(e rt ) (16)

with r < Re (δ(z) ) for a constant r. As a consequence of (16), (11) holds

for complex z uniformly in z in a neighborhood of z = 1. Hence, we can

apply the Cauchy integral formula for the k th derivative, i.e.,

t

c k (t)_ ____ =
dz k

d k
_ ___

t
c(z ,t)_ _____ z = 1 =

2tπi
k!_ ____

C
∫

(z − 1 ) k + 1
c(z ,t)_ _________ dz , (17)

where C is a simple closed contour about z = 1 (which can be put inside

any neighborhood of z = 1). The uniform convergence of (11) in the

neighborhood of z = 1 implies that the integrals in (17) converge, which

establishes (12).

The role of cumulants in studying stochastic point processes has a long

history, but the analysis seems somewhat obscure; we hope to pursue this

further in a subsequent paper. An alternative approach to Theorem 2 is to

apply corresponding results for stationary point processes, e.g., Daley and

Vere-Jones [3, Exercise 10.4.7], together with a coupling argument to show

that the initial nonstationarity is asymptotically negligible; see Lindvall



[24].

Under appropriate regularity conditions, the statement in Theorem 2 can

be improved to

c k (t) = δ(k) ( 1 ) t + γ k + r k (t) (18)

where r k (t) = o( 1 ) as t → ∞ and sometimes even r k (t) = O(e − s k t ) as

t → ∞ where s k is a positive constant. In particular Smith [35,36] obtained

such results for renewal processes and cumulative processes (associated

with regenerative processes). Note that here N(t) is indeed a cumulative

process; as regeneration times we can take successive visits to any fixed

phase state after leaving. Hence, Smith’s [36] result of the form (18)

applies here, except that he does not identify the asymptotic factorial

cumulants with the derivatives δ(k) ( 1 ). His expressions for the asymptotic

factorial cumulants give alternative expressions for δ(k) ( 1 ). His

expressions for the second-order terms γ k in (18) may be useful for

developing refined approximations. For the first two cumulants c k (t),

explicit expressions are also given in Narayana and Neuts [27] and Chapter

5 of Neuts [30].

The superposition of n independent BMAPs can be represented as

another BMAP with an auxiliary phase state space equal to the product of



the n individual auxiliary phase state spaces. Let the i th component BMAP

have arrival rate ρ i and m i ×m i matrices D ik , k ≥ 0, satisfying the earlier

assumptions. We can characterize the superposition BMAP using basic

properties of Kronecker products ⊗ and sums ⊕; See Neuts [29,30] for

background. We assume that the arrival rates of all BMAPs are specified

separately from their D k matrices. When the arrival rates are included,

there is important additivity in the matrix generating functions and the

eigenvalue function.

Theorem 3. Consider n independent BMAPs characterized by pairs

(N i (t) ,J i (t) ) with arrival rates ρ i and m i ×m i matrices D ik ,k ≥ 0,

i ≤ i ≤ n. Then the pair (N 1 (t) + . . . + N n (t), (J 1 (t) , . . . , J n (t) ) )

determines another BMAP with arrival rate ρ ≡ ρ 1 + . . . + ρ n and

associated m×m matrices D k, where m =
i = 1
Π
n

m i , satisfying

ρD k = ρ 1 D 1k ⊕ . . .⊕ ρ n D nk , k ≥ 0 , (19)

and matrix generating function

D(z) =


 ρ

ρ 1_ __




D 1 (z) ⊕ . . .⊕


 ρ

ρ n_ __




D n (z) , (20)

which has PF eigenvalue function



δ(z) =


 ρ

ρ 1_ __




δ 1 (z) + . . . +


 ρ

ρ n_ __




δ n (z) (21)

and associated left and right eigenvectors

u(z) = u 1 (z) ⊗ . . .⊗ u n (z) and v(z) = v 1 (z) ⊗ . . .⊗ v n (z) (22)

satisfying uv = ue = 1.

Proof. By definition, N 1 (t) + . . . + N n (t) is the superposition arrival

counting process. Since the component BMAPs are assumed to be

independent, the pair (N 1 (t) + . . . + N n (t), (J 1 (t) , . . . , J n (t) ) ) is a

CTMC which determines a BMAP. The product structure for the auxiliary

phase state space means that the D k matrices should be defined by (19);

recall that A 1 ⊕ A 2 = (A 1 ⊗ I 2 ) + (I 1 ⊗ A 2 ). Then (20)–(22) are

elementary consequences of the Kronecker structure.

Formula (21) means that the PF eigenvalue function δ(z) of the

superposition process can be determined by separately deriving the

component PF eigenvalue functions δ i (z) for 1 ≤ i ≤ n and then simply

adding. This implies that the derivatives are simply additive too.

3. Derivatives of Eigenvalues and Eigenvectors

In this section we determine recursive formulas for the derivatives of

the Perron-Frobenius (PF) eigenvalue δ(z) of D(z) and the associated



eigenvectors u(z) and v(z) at z = 1. The proof follows the Appendix in

Neuts [30]. However, here we use a variant of the fundamental matrix of a

CTMC instead of the fundamental matrix of a discrete-time Markov chain

(DTMC). For additional discussion of fundamental matrices of CTMCs and

more references, see Whitt [42]. Since D ≡ D( 1 ) is an infinitesimal

generator of an irreducible CTMC, δ( 1 ) = 0, u( 1 ) = π and v( 1 ) = e.

Let

Y = (eπ − D) − 1 and Z = Y − eπ . (23)

The matrix Z in (3.1) usually is called the fundamental matrix of the CTMC

with generator D; see (13) and (55) of Whitt [42] and Neuts [30, Theorem

5.1.3]. A key fact is that the matrix eπ − D in (3.1) is nonsingular (when

the dimension is two or more, which we assume is always the case).

Let δ(k) denote the k th derivative of δ(z) at z = 1, i.e., δ(k) ≡ δ(k) ( 1 ),

and similarly for other variables.

Theorem 4. The derivatives of δ(z), u(z) and v(z) at z = 1 are given by

δ( 1 ) = πD ( 1 ) e = 1 , (24)

u ( 1 ) = π(D ( 1 ) − δ( 1 ) I) Y = πD ( 1 ) Z , (25)

v ( 1 ) = Y(D ( 1 ) − δ( 1 ) I) e = ZD ( 1 ) e , (26)

δ( 2 ) = πD ( 2 ) e + 2πD ( 1 ) ZD ( 1 ) e ,



u ( 2 ) = πD ( 2 ) Z + 2πD ( 1 ) ZD ( 1 ) Z − 2πD ( 1 ) Z 2

= πD ( 2 ) Z + 2u ( 1 ) (D ( 1 ) − I) Z ,

v ( 2 ) = ZD ( 2 ) e + 2ZD ( 1 ) ZD ( 1 ) e

− 2Z 2 D ( 1 ) e − 2 (πD ( 1 ) Z 2 D ( 1 ) e) e

= ZD ( 2 ) e + 2Z(D ( 1 ) − I) v ( 1 ) − 2u ( 1 ) v ( 1 ) ,

δ( 3 ) = πD ( 3 ) e + 3πD ( 1 ) ZD ( 2 ) e + 3πD ( 2 ) ZD ( 1 ) e

+ 6πD ( 1 ) ZD ( 1 ) ZD ( 1 ) e − 6πD ( 1 ) Z 2 D ( 1 ) e

= πD ( 3 ) e + 3u ( 1 ) D ( 2 ) e + 3πD ( 2 ) v ( 1 )

+ 6u ( 1 ) (D ( 1 ) − I) v ( 1 ) ,

and, for n ≥ 2,

δ(n) = πD (n) e +
k = 1
Σ

n − 1 
k
n
π(D (k) − δ(k) I) v (n − k) , (27)

u (n) =
k = 1
Σ
n 

k
n
u (n − k) (D (k) − δ(k) I) Y , (28)

v (n) = eπv (n) + Y
k = 1
Σ
n 

k
n
(D (k) − δ(k) I) v (n − k) , (29)

where

πv (n) = −
k = 1
Σ

n − 1 
k
n
u (k) v (n − k) . (30)

Proof. Follow the proof of Theorem A.2.1 of Neuts [30, p. 482]. Start by

differentiating n times in the eigenvalue equation D(z) v(z) = δ(z) v(z) to

obtain



k = 0
Σ
n 

k
n
(D (k) − δ(k) I) v (n − k) = 0 . (31)

Premultiplying by π in (31), we obtain (24) and (27). From (31), we also

obtain the singular system of linear equations

− Dv (n) =
k = 1
Σ
n 

k
n
(D (k) − δ(k) I) v (n − k) . (32)

Adding eπv (n) to both sides in (32), we obtain

(eπ − D) v (n) = eπv (n) +
k = 1
Σ
n 

k
n
(D (k) − δ(k) I) v (n − k) . (33)

Using (23) and Ye = e, we obtain (26) and (29) from (33). Differentiating

n times in the relation ue = 1 and uv = 1, we obtain u (n) e = 0 for all

n ≥ 1, πv ( 1 ) = − u ( 1 ) e = 0 and (30). To obtain the second formula in

(26), note that

Y(D ( 1 ) − δ( 1 ) I) e = Y(D ( 1 ) − πD ( 1 ) eI) e

= (Y − eπ) D ( 1 ) e = ZD ( 1 ) e . (34)

By similar reasoning, we obtain (25) and (28). The analog of eπv (n) is

u (n) eπ. Since u (n) e = 0 for n ≥ 1, this term drops out.

We present one illustrative example.



Example 3.1. Suppose that the BMAP is a two-phase Erlang (E 2 ) renewal

process with rate 1, as in Lucantoni [25, pp. 32,36]. Then the phase-type

(PH) and BMAP representations are (α ,T) with α = ( 1 , 0 ) and

D 0 = T =


 0

− 2

− 2

2



, D 1 = − Teα =


2

0

0

0



(35)

and D k = 0 for k ≥ 2. Then π = ( 1/2 , 1/2 ), δ( 1 ) = 1,

Y =


3/8

5/8

5/8

3/8



, Z =


 − 1/8

1/8

1/8

− 1/8



(36)

u ( 1 ) = ( 1/8 , − 1/8 ), v ( 1 ) = ( − 1/4 , 1/4 ) t , δ( 2 ) = − 1/2 and

δ( 3 ) = 3/4. The associated first three asymptotic cumulants of the BMAP

are c 1 = 1, c 2 = δ( 2 ) + c 1 = 1/2 and c 3 = δ( 3 ) + 3c 2 − 2c 1 = 1/4;

see [13, p. 114]. These agree with the known formulas for renewal arrival

processes based on first three moments m 1 = 1, m 2 = 3/2 and m 3 = 3;

see Riordan [32, p. 37] and Whitt [41, (2.7)]. This can be determined solely

from relations between moments and cumulants, starting with the formula

m k = k!m1
k for the k th moment of an exponential (M) random variable.

An E 2 random variable with mean 1 is the sum of two independent M

random variables. The first three moments of each M variable are

( 1/2 , 1/2 , 3/4 ), so that the first three cumulants are ( 1/2 , 1/4 , 1/4 ). The

cumulants add, so that the cumulants of the E 2 variable are ( 1 , 1/2 , 1/2 ).



Thus the moments of the E 2 variable are ( 1 , 3/2 , 3 ). Then, by [41, (2.7)],

the asymptotic cumulants are ( 1 , 1/2 , 1/4 ).

4. Asymptotic Expansions for the Asymptotic Decay Rates

We now consider the BMAP / G /1 queue, which has i.i.d. service times

that are independent of the batch Markovian arrival process (BMAP). Let V

be a generic service time. We assume that φ(s) ≡ Ee sV < ∞ for some

s > 0 and that EV = 1. We assume that ρ < 1, so that the model is stable.

Let η V = sup {s : φ(s) < ∞}; η V = ∞ for some distributions; η V < ∞

for other distributions.

Let Q and L be the steady-state queue length (number in system) and

workload (virtual waiting time) at an arbitrary time, which we assume are

well defined. See Ramaswami [31], Neuts [30], Lucantoni [25,26] and

Abate, Choudhury and Whitt [2] for the transforms of the distributions of Q

and L. We are interested in the asymptotic behavior of the tail probabilities.

In great generality,

σ − kP(Q > k) → β as k → ∞ (37)

and

e ηxP(L > x) → α as x → ∞ , (38)



where σ,β ,η and α are positive constants with α = β; see Abate,

Choudhury and Whitt [2] and references there.

Since here we are interested only in the asymptotic decay rates σ and η,

we can also focus on the weaker limits

k − 1 log P(Q > k) → log σ as k → ∞

and

x − 1 log P(L > x) → − η as x → ∞ ,

where log is the natural logarithm, see Chang [9] and Glynn and Whitt [18].

The pair of asymptotic decay rates (σ − 1 , η) are characterized in [2] as

the (necessarily unique) solution with 1 < σ − 1 < z ∗ and 0 < η < η V to

the two equations

δ( 1/σ) =
ρ
η_ _ and φ(η) ≡ Ee ηV = σ − 1 . (39)

By [1, Theorem 11], 0 < η < η V . We remark that multiple solutions

to (39) can hold above η V when Ee sV is not interpreted as + ∞ for s > η V;

i.e., there can be problems if we simply substitute − s into an expression for

the Laplace transform Ee − sV .

We assume that there is indeed a solution (σ − 1 ,η) to (39), which we



have noted is unique, and we develop algorithms to find σ and η as

functions of ρ. First, a relatively simple approach is direct root finding.

We can start with a candidate x for η with 0 < x < η V , and calculate

ρ δ(φ(x) ). If ρ δ(φ(x) ) > x, then we decrease x; if ρ δ(φ(x) ) < x, then we

increase. In particular, if η V < ∞, then it is a possible initial x. Otherwise,

start with 1. Go from x to 2x if x is the largest value considered so far and

we should increase; otherwise use bisection. Given an x and a y such that

ρ δ(φ(x) ) ≤ x and ρ δ(φ(y) ) ≥ y, we know that x ≤ η ≤ y.

Second, we express η and (σ − 1 − 1 ) as asymptotic expansions in

powers of ( 1 − ρ). When we use many terms, this is a numerical algorithm

for finding the exact solution; when we use relatively few terms, this can be

regarded as a simple approximation. A combination of the two approaches

yields an efficient algorithm for computing σ and η as functions of ρ. We

use the asymptotic expansion for ρ in the interval [ρ 0 , 1 ] and root finding

below ρ 0 . We use the root finding to identify ρ 0 and confirm the accuracy

above ρ 0 .

As in [3], we develop approximations for σ − 1 and η by expanding δ(z)

and φ(s) ≡ Ee sV in Taylor series about z = 1 and s = 0, respectively. We

have



δ(z) = δ( 1 ) + δ( 1 ) ( 1 ) (z − 1 ) + . . . + δ(k) ( 1 )
k!

(z − 1 ) k
_______ + . . .

= (z − 1 ) + δ( 2 )

2
(z − 1 )2
_______ + . . . + δ(k)

k!
(z − 1 ) k
_______ + . . . (40)

and

φ(s) = φ( 0 ) + φ( 1 ) ( 0 ) s + φ( 2 ) ( 0 )
2
s 2
_ __ + . . . + φ(k) ( 0 )

k!
s k
_ __ + . . .

= 1 + s + m 2 2
s 2
_ __ + . . . + m k k!

s k
_ __ + . . . , (41)

where δ(k) ≡ δ(k) ( 1 ) and m k = EV k = φk ( 0 ). We obtain δ(k) from the

algorithm in Section 3. Given an explicit expression for the transform

φ(s) ≡ Ee sV , we can calculate any desired number of moments m k via the

algorithm in Choudhury and Lucantoni [10].

Given either σ or η (or approximations) and the derivatives, we can

obtain an approximation for the other from (39)–(41), i.e.,

ρ
η_ _ = δ(σ − 1 ) ∼∼ (σ − 1 − 1 ) + . . . + δ(k)

k!
(σ − 1 − 1 ) k
_ _________ + . . . (42)

and

σ − 1 = φ(η) ∼∼ 1 + η +
2

m 2 η2
_ _____ + . . . +

k!

m k ηk
_ _____ + . . . (43)

We first develop an asymptotic expansion in powers of 1 − ρ for η by

considering the composite function δ(φ(η) ). We then use the (43) to



develop an asymptotic expansion for σ − 1 in powers of 1 − ρ.

By (39), δ(φ(η) ) = η/ρ. Consequently,

ψ(η) ≡
η

δ(φ(η) )_ _______ − 1 =
ρ

1 − ρ_ ____ ≡ ε . (44)

We apply (40) and (41) to determine the coefficients in a Taylor series

expansion of (44), i.e.

ψ(η) = a 1 η + a 2 2
η2
_ __ + . . . +

k!

a k ηk
_____ + . . . (45)

Then we use reversion of series, see 3.6.25 of Abramowitz and Stegun [4,

p. 16] and Riordan [32, Section 2.8], to obtain

η = f (ε) ≡ b 1 ε + b 2 2
ε2
_ __ + . . . + b k k!

εk
_ __ + . . . (46)

from (45). The idea is that η = f (ψ(η) ), so that the coefficients b k in (46)

can be obtained from the coefficients a k in (45) using the formula for the

derivatives of a composite function. (In this step, and others to follow, we

could also use a symbolic language such as MAPLE.)

First, Table 1 gives the first seven coefficients a k in (45) in terms of the

derivatives δ(k) ≡ δ(k) ( 1 ) and m k = EV k = φ(k) ( 0 ). These are obtained

from the composite function δ(φ(η) ) plus (44). In Section 2.8 and

Problem 32 on p. 47 of Riordan [29] and Riordan [33], a recursive



algorithm is given for the derivatives. This can be used to calculate a k for

arbitrary k. Second, Table 2 gives the first seven coefficients b k in (46) in

terms of the coefficients a k in (45). Again the algorithm in Riordan [32]

enables us to calculate b k for arbitrary k.

Note that these formulas simplify in special cases. For example, if the

service-time distribution is deterministic (D), then m k = 1 for all k ≥ 1. If

the service-time distribution is exponential (M), then m k = k! If the

arrival process is Poisson, then δ(z) = D(z) = z − 1, so that δ(k) = 0 for

all k ≥ 2. For a Poisson arrival process, (n + 1 ) a n = m n + 1 for all n ≥ 1.

Next, let g(x) = x /( 1 − x) and note that g( 1 − ρ) = ( 1 − ρ)/ρ = ε.

Hence, we can express the asymptotic decay rate η in an asymptotic

expansion in powers of ( 1 − ρ), i.e.,

η = h( 1 − ρ) ≡ f (g( 1 − ρ) ) = c 1 ( 1 − ρ) + . . . + c k k!
( 1 − ρ) k
_ _______ + . . . (47)

Once again, we use the formula for the derivatives of a composite function

to obtain the coefficients c k in (47) from the coefficients b k in (46).

Since

g(x) =
1 − x

x_ ____ =
k = 1
Σ
∞

x k , (48)



we have g (k) ( 0 ) = k! Table 3 below gives the first seven coefficients c k

in (47) in terms of the coefficients b k in (46). Once again, the algorithm in

Riordan [32, Section 2.8] can be used to calculate c k for arbitrary k.

Finally, we can combine the previous results to express the coefficients

c k in (47) first in terms of the coefficients a k in (45) and then in terms of

the derivatives δ(k) and m k. The first four coefficients c k are displayed in

Table 4. For the first two, we give expressions in terms of δ(k) and m k.

From the analysis so far, we see that the coefficient c k in (47) depends

on the first (k + 1 ) derivatives δ( j) and m j . (The first derivatives are fixed;

by convention δ( 1 ) = m 1 = 1.) Note that c 2 is decreasing in m 2 and

δ( 2 ) . More generally, c k is decreasing in m k + 1 and δ(k + 1 ) . (Smaller η

means more congestion.)

It is well known that in the M/M/1 queue, η = 1 − ρ and σ = ρ.

hence, for the M/M/1 queue, c 1 = 1 and c k = 0 for k ≥ 2. It is easy to

see that Table 4 is consistent with this, because then δ(z) = z − 1 and

m k = k!, so that a k = k!

The simple heavy-traffic approximation is the first term, i.e.,

η ∼∼ c 1 ( 1 − ρ) =
m 2 + δ( 2 )
2 ( 1 − ρ)_ _________ . (49)



Note that cA
2 ≡ 1 + δ( 2 ) is the asymptotic variance of the arrival process,

while cs
2 ≡ m 2 − 1 is the squared coefficient of variation (variance divided

by the square of the mean) of the service time. Hence, (49) agrees with the

familiar heavy-traffic formula; e.g., see [16].

Paralleling [3], the two-term refined approximation here is

η ∼∼ c 1 ( 1 − ρ) + c 2 2
( 1 − ρ)2
_ _______ =

m 2 + δ( 2 )
2 ( 1 − ρ)_ ________

+
3 (m 2 + δ( 2 ) )3

2 ( 3m2
2 + 3 (δ( 2 ) )2 − 2m 3 − 2δ( 3 ) )_ ___________________________ ( 1 − ρ)2 (50)

For the M / G /1 queue, (50) here agrees with (14) of [3]; then δ(k) = 0

for k ≥ 2. Higher-order refined approximations follow from Tables 1-4 and

the associated recursive algorithm for the derivatives of composite

functions. For the M / G /1 queue, a k = m k + 1 /(k + 1 ) so that

η ∼∼ c 1 ( 1 − ρ) + c 2 ( 1 − ρ)2 + c 3 ( 1 − ρ)3 + c 4 ( 1 − ρ)4 , (51)

where



c 1 =
m 2

2_ ___ , c 2 =
3m2

3

6m2
2 − 4m 3_ _________

c 3 =
3m2

5

36m2
4 − 48m 3 m2

2 + 32m3
2 − 12m 2 m 4_ ______________________________

c 4 = [ 2400m 2 m 3 m 4 − 288m2
2 m 5 − 3200m3

3 + 5760m3
2 m2

2

− 2160m2
3 m 4 − 4320m 3 m2

4 + 2160m2
6 ]/45m2

7 . (52)

In the M/M/1 case, m k = k! and η = 1 − ρ. Formula (52) is consistent

with this result. It is interesting that the individual terms cancel in this case.

This suggests that we might rewrite (52) as

c 2 =
3m2

3

2 ( 3m2
3 − 2m 3 )_ ____________

c 3 =
3m2

5

12m 2 ( 3m2
3 − m 4 ) − 16m 3 ( 3m2

2 − 2m 3 )_ ________________________________ (53)

c 4 = [ 240 ( 3m2
2 − 2m 3 ) ( 4m3

2 − 3m 2 m 4 ) − 320m 3 ( 4m3
2 − 3m 2 m 4 ) +

144m2
2 ( 15m2

4 − 2m 5 ) − 1440m2
2 m 3 ( 3m2

2 − 2m 3 ) ]/45m2
7 .

In other words, we evaluate m 3 in relation to m 2 via the term ( 3m2
2 − 2m 3 )

and we evaluate m 4 relative to m 2 via the term ( 3m2
3 − m 4 ). In the fourth

term we also evaluate m 4 relative to m 2 and m 3 via ( 4m3
2 − 3m 2 m 4 ) and

m 5 relative to m 2 via ( 15m2
4 − 2m 5 ). These individual terms are all 0 for

the exponential distribution.

Now we consider the other asymptotic decay rate σ. We can combine

(43), (47) and Riordan [32, p. 49] to obtain an asymptotic expansion in



powers of ( 1 − ρ) for σ − 1 , i.e.,

σ − 1 − 1 = φ(h( 1 − ρ) ) − φ( 0 ) =
k = 1
Σ
∞

d k k!
( 1 − ρ) k
_ _______ . (54)

The first seven coefficients d k in (54) are expressed in terms of the

coefficients c k in (47) in Table 5.

As a consequence, the simple heavy-traffic approximation is the first

term, i.e.,

σ − 1 − 1 ∼∼ c 1 ( 1 − ρ) =
m 2 + δ( 2 )
2 ( 1 − ρ)_ ________ , (55)

so that

1 − σ =
m 2 + δ( 2 )
2 ( 1 − ρ)_ ________ + O( ( 1 − ρ)2 ) . (56)

The two-term refined approximation is

σ − 1 − 1 ∼∼ c 1 ( 1 − ρ) + (c 2 + m 2 c1
2 )

2
( 1 − ρ)2
_ _______ =

m 2 δ( 2 )
2 ( 1 − ρ)_ _______

+





3 (m 2 + δ( 2 ) )3

2 ( 3m2
2 + 3 (δ( 2 ) )2 − 2m 3 − 2δ( 3 ) )_ ___________________________ +

(m 2 + δ( 2 ) )2

2m 2_ __________




( 1 − ρ)2 . (57)



5. Non-BMAP Arrival Processes

We have seen that the asymptotic decay rates in a BMAP / G /1 queue

depend on the BMAP through the Perron-Frobenius eigenvalue δ(z) of the

BMAP matrix generating function D(z) in (2). Moreover, for z near 1, δ(z)

is primarily determined by its derivatives δ(k) ≡ δ(k) ( 1 ) at z = 1.

Furthermore, we have characterized δ(z) and δ(k) in terms of the limiting

time-average of the factorial cumulant generating function in (8) and (6),

and its derivatives, the factorial cumulants c k (t). It is significant that these

last characterizations extend beyond BMAPs.

When the arrival counting process N(t) is a general stochastic point

process, we define δ(z) by

δ(z) =
t→ ∞
lim

t
log Ez N(t)
_ _________ , (58)

assuming that the limit exists; see Chang [9], Glynn and Whitt [18] and

Whitt [43]. Moreover, we define δ(k) as

δ(k) =
t→ ∞
lim

t

c k (t)_ ____ , (59)

again assuming that the limit exists.

Given (58) and (59), we can treat single-server queues with non-BMAP



arrival processes if we can obtain convenient expressions for the generating

function Ez N(t) and/or the factorial cumulants. For example, we can treat

renewal processes and superpositions of independent renewal processes by

applying expressions for the asymptotic cumulants obtained by Smith [35].

To illustrate, Table 6 gives expressions for the first four asymptotic factorial

cumulants of a rate-one renewal process in terms of the first four moments

of the inter-renewal times. (Since the renewal process has rate 1, the first

moment of the inter-renewal time is 1.) A specific numerical example is

given below in Example 6.3.

Smith [35] gives formulas for the first eight asymptotic cumulants, the

first four of which are given in [41, (2.7)]. The asymptotic factorial

cumulants are related to the asymptotic cumulants the same way that

factorial moments are related to moments. Smith [36] also gives

expressions for asymptotic cumulants of a cumulative process associated

with a regenerative process. Since the BMAP is a special case, this gives

alternative expressions for the asymptotic factorial cumulants for a BMAP.

It also gives formulas for a large class of non-BMAP arrival processes.

By invoking the additivity discussed in Section 2, we can treat arrival

processes that are independent superpositions of BMAPs, non-BMAP

renewal processes and other non-BMAP non-renewal cumulative processes.



6. Numerical Examples

In this section we look at some numerical examples. Our first two

examples are MMPP/Γ γ/1 queues, with a gamma service-time distribution

having shape parameter γ and a Markov modulated Poisson process

(MMPP) as an arrival process, which is a MAP. As before, we assume that

the mean service time is 1, so that γ is the sole service parameter. The

parameter γ allows us to consider a range of variability; i.e. the SCV is

cs
2 = 1/γ. In particular, γ = 1 is exponential (M) , γ = k is Erlang (E k )

which approaches D as k → ∞, and γ < 1 corresponds to distributions that

are more variable than exponential.

Example 6.1. We start by considering a two-phase MMPP (MMPP 2). The

MMPP 2 has four parameters (the arrival rate and mean holding time in

each phase), one of which we determine by letting the overall arrival rate be

ρ. We fix one parameter by assuming that the long-run arrival rate in each

phase is ρ/2; we fix another parameter by assuming that the expected

number of arrivals during each visit to each phase is 5. Our final parameter

is the ratio r of the arrival rates in the two phases. We see what happens as

we vary the three parameters γ, r and ρ.

First, to obtain a concrete model with ρ the only free parameter, we let

r = 4 and γ = 0. 5. This gamma service-time distribution does not have a



rational Laplace transform so it is not PH. Since it has cs
2 = 2. 0, it is

moderately highly variable. This service-time distribution was used

previously in Example 1 of [1].

For this case, we now give the approximating caudal characteristic

curve (η as a function of ρ) based on the seven-term heavy-traffic

expansion. Let η k (ρ) be the k-term approximation for η as a function of ρ.

Then

η ≡ η(ρ) ∼∼ η 7 (ρ) = 0. 41667 ( 1 − ρ) − 0. 07668 ( 1 − ρ)2

+ 0. 00116 ( 1 − ρ)3 + 0. 05428 ( 1 − ρ)40. 07884 ( 1 − ρ)5

+ 0. 07243 ( 1 − ρ)6 + 0. 04636 ( 1 − ρ)7 . (60)

From (60), it is evident that when ρ is close to 1 η k (ρ) should be a good

approximation for small k and improve dramatically as k increases.

However, we cannot expect the quality of the approximation to be good for

very small ρ. (There we should rely on the root finding.)

The exact values of the asymptotic decay rates η and σ were found for

12 values of ρ by root finding and are displayed in Table 7. Also displayed

in Table 7 are the values η k of the k-term expansions for η for each k,

1 ≤ k ≤ 7, (i.e., η 7 is given in (60)) and the approximation σ 7 = 1/φ(η 7 )

for σ. (We do not display the alternative approximation for σ based on its

asymptotic expansion in (54).)



From Table 7, we see that the approximations η 7 and σ 7 essentially

coincide with the exact values provided that ρ is not too small, say for

ρ ≥ 0. 3. No value of σ 7 is given for ρ = 0. 05 because η 7 > η V = 0. 5

in that case.

Note that the heavy-traffic approximation η 1 is remarkably good for

ρ ≥ 0. 2. Indeed, η 1 is actually better than η 2 for ρ ≤ 0. 4. However, we

suggest considering η k truly a good approximation only if η j remains good

for all j ≥ k. (It seems evident that nothing strange will happen with η k for

k > 7, but we have not verified it.) In this sense, η 1 and η 2 might be

judged very good only for ρ ≥ 0. 9 and ρ ≥ 0. 6, respectively. This is based

on a criterion of two percent relative error: The percent relative error of η 1

and η 2 at ρ = 0. 95, 0.90, 0.80, 0.70, 0.60 and 0.50 are, respectively, 0.9%,

1.9%, 3.7%, 5.2%, 6.1%, 5.9% and 0.0%, 0.0%, 0.1%, 0.6%, 1.7% and

3.9%. As in [1], we conclude that for engineering purposes η 2 does

remarkably well for ρ not too small. However, for small ρ, e.g. ρ ≤ 0. 5,

the convergence of the asymptotic expansion is quite slow (which should be

no surprise). For example, at ρ = 0. 2, η k is better than η 1 for the first

time at k = 6.

We next consider what happens as we vary each of the parameters r and

γ. Table 8 displays η and η k, 1 ≤ k ≤ 7, for 4 values of r with γ = 0. 5



and ρ = 0. 5 and 0.8, while Table 9 displays η and η k, 1 ≤ k ≤ 7, for

6 values of γ with r = 4. 0 and ρ = 0. 5 and 0.8. The case γ = ∞

corresponds to a deterministic service-time distribution.

As anticipated, fewer terms suffice with higher ρ in all these cases. At

ρ = 0. 8, we might consider the heavy-traffic approximation η 1 good

enough and we would certainly consider η 2 good enough. At ρ = 0. 5,

neither η 1 nor η 2 is consistently good (especially by our criterion that η j

remain good for all j ≥ k).

Table 9 shows that for ρ = 0. 5 the quality of the approximations

degrade as γ increases. The deterministic service-time distribution is the

most difficult case we considered. Indeed, for ρ = 0. 5, η 7 still has 1.1%

and 1.6% error for α = 4. 0 and α = ∞. The relatively big change from

η 6 to η 7 in that case shows that convergence has not yet occurred.

Example 6.2. To begin learning about the impact of multiple sources, we

now compare one MMPP source with the superposition of two independent

MMPP sources. We consider the MMPP /Γ γ /1 model in Example 6.1 with

γ = 0. 5, r = 4. 0 and two values of ρ: ρ = 0. 5 and ρ = 0. 8. The

component MMPPs in the superposition are the same as the single-source

MMPP except time has been scaled by a factor of 2; i.e., the component

process parameters are obtained by taking the single-source MMPP and



changing its free parameters from (ρ , r) to (ρ/2 , r). (We have chosen the

parameters so that time scaling corresponds simply to changing ρ).

We compare approximations with exact values for the percentiles of the

steady-state waiting time when there are one and two component streams.

The exact percentile values are computed using the program in [11].

(Bisection search is used to find the percentiles with the algorithm for the

tail probabilities.) For the approximations, we always use the exact value

of the asymptotic decay rate η (which does not change as the number of

component streams changes). We consider three exponential

approximations. The first is the asymptotic exponential approximation

αe − ηx with the exact asymptotic constant α (computed using [10]); the

second has α approximated by ηEW, as suggested in [1]; and the third has

α approximated crudely by 1.0.

Tables 10 and 11 display the results for ρ = 0. 5 and ρ = 0. 8,

respectively. Consistent with the theoretical results in [2], the exact

asymptotic formula becomes a very good approximation as the percentile

increases. Indeed, for very high percentiles all the approximations are

pretty good, which helps justify our having focused on the asymptotic

decay rate η in this paper. From Tables 10 and 11, we see that the quality

of the approximations degrades as (1) the number of streams increases, (2)



the percentile required decreases, and (3) the traffic intensity decreases.

Focusing on the number of streams, we see from Tables 10 and 11 that

for any given ρ and any given required percentile, the quality of the

asymptotic exponential approximation degrades as we increase the number

of streams from 1 to 2. In [12] we investigate this issue further. There we

show that the percentile where the asymptotic exponential approximation is

judged good typically increases as the number of streams increases. This

phenomenon occurs because the asymptotic constants α and β in (37) and

(38) themselves are exponential in the number of sources when the sources

are scaled to keep the total arrival rate fixed.

Hence, when the arrival process is a superposition of a large number of

independent processes, the asymptotic decay rate alone often does not yield

good approximations for tail probabilities. As in previous work on steady-

state means [16,20,39], more intricate approximations are evidently needed.

Example 6.3 To illustrate how the results extend beyond BMAP arrival

processes, we consider the Γ 0. 5 /Γ 2 /1 queue, which has Γ 2 ≡ E 2 service

times independent of a Γ 1/2 renewal arrival process. Since the Γ 1/2

distribution does not have a rational Laplace transform, it is not phase-type

and not a BMAP.



The moments of a Γ γ random variable with mean γ are Γ(γ + r)/Γ(γ),

where Γ(x) is the gamma function; see (9) on p. 168 of Johnson and Kotz

[22]. Hence, the k th moment of a Γ 1/2 distribution with mean 1 is

( 2k − 1 ) !/2(k − 1 ) (k − 1 ) !. The first four moments of the mean-1 Γ 1/2

distribution are 1, 3, 15 and 105. By Table 6, The first four asymptotic

factorial cumulants are 1, 1, 0 and 0. Interestingly, the first four coefficients

c k in the expansion for η in (47) are all positive. (When this is true for all

k, the approximations improve monotonically with k for all ρ.) Table 12

displays the first four approximations η k and the exact values for four

values of ρ. As with the BMAP / G /1 queues, there is good accuracy.
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_ _____________________________________________________________________
k (k + 1 ) a k_ _____________________________________________________________________

1 2a 1 = m 2 + δ( 2 )

2 3a 2 = m 3 + δ( 2 ) ( 3m 2 ) + δ3

3 4a 3 = m 4 + δ( 2 ) ( 4m 3 + 3m2
2 ) + δ( 3 ) ( 6m 2 ) + δ( 4 )

4 5a 4 = m 5 + δ( 2 ) ( 5m 4 + 10m 3 m 2 ) + δ( 3 ) ( 10m 3 + 15m2
2 ) + δ( 4 ) ( 10m 2 ) + δ( 5 )

5 6a 5 = m 6 + δ( 2 ) ( 6m 5 + 15m 4 m 2 + 10m3
2 ) + δ( 3 ) ( 15m 4 + 60m 3 m 2 + 15m2

3 )
+ δ( 4 ) ( 20m 3 + 45m2

2 ) + δ( 5 ) ( 15m 2 ) + δ( 6 )

6 7a 6 = m 7 + δ( 2 ) ( 7m 6 + 21m 5 m 2 + 35m 4 m 3 )
+ δ( 3 ) ( 21m 5 + 105m 4 m 2 + 70m3

2 + 105m 3 m2
2 )

+ δ( 4 ) ( 35m 4 + 210m 3 m 2 + 105m2
3 )

+ δ( 5 ) ( 35m 3 + 105m2
2 ) + δ( 6 ) ( 21m 2 ) + δ( 7 )

7 8a 7 = m 8 + δ( 2 ) ( 8m 7 + 28m 6 m 2 + 56m 5 m 3 + 35m4
2 )

+ δ( 3 ) ( 28m 6 + 168m 5 m 2 + 280m 4 m 3 + 210m 4 m2
2 + 280m3

2 m 2 )
+ δ( 4 ) ( 56m 5 + 420m 4 m 2 + 280m3

2 + 840m 3 m2
2 + 105m2

4 )
+ δ( 5 ) ( 70m 4 + 560m 3 m 2 + 420m2

3 ) + δ( 6 ) ( 56m 3 + 210m2
2 )

+ δ( 7 ) ( 28m 2 ) + δ( 8 )
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Table 1. The first seven coefficients a k of ψ(η) =
k = 1
Σ
∞

a k ηk / k! in (44) in terms of the

derivatives δ(k) ≡ δ(k) ( 1 ) and the moments m k = EV k = φ(k) ( 0 ), where
δ( 1 ) = m 1 = 1, obtained from the Bell polynomials in Table 3 of Riordan
[32, p. 49].



_ ____________________________________________________

k a1
2k − 1 b k_ ____________________________________________________

1 a 1 b 1 = 1

2 a1
3 b 2 = − a 2

3 a1
5 b 3 = 3a2

2 − a 1 a 3

4 a1
7 b 4 = 10a 1 a 2 a 3 − a1

2 a 4 − 15a2
3

5 a1
9 b 5 = 15a1

2 a 2 a 4 + 10a1
2 a3

2 + 105a2
4 − a1

3 a 5 − 105a 1 a2
2 a 3

6 a1
11 b 6 = 21a1

3 a 2 a 5 + 35a1
3 a 3 a 4 + 1260a 1 a2

3 a 3

− a1
4 a 6 − 280a1

2 a 2 a3
2 − 945a2

5 − 210a1
2 a2

2 a 4

7 a1
13 b 7 = 28a1

4 a 2 a 6 + 56a1
4 a 3 a 5 + 35a1

4 a4
2 + 3150a1

2 a2
3 a 4

+ 6300a1
2 a2

2 a3
2 + 10395a2

6 − a1
5 a 7 − 378a1

3 a2
2 a 5

− 1260a1
3 a 2 a 3 a 4 − 280a1

3 a3
3 − 17325a 1 a2
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























































Table 2. The first seven coefficients b k of f (ε) =
k = 1
Σ
∞

b k εk / k! in (46) in

terms of the coefficients a k of ε = ψ(η) =
k = 1
Σ
∞

a k ηk / k!

obtained by reversion of series; see 3.6.25 of Abramowitz and
Stegun [4, p. 16] or Riordan [32, Section 2.8].



_ _____________________________________________________
k k! c k_ _____________________________________________________
1 1 b 1

2 2 2b 1 + b 2

3 6 6b 1 + 6b 2 + b 3

4 24 24b 1 + 36b 2 + 12b 3 + b 4

5 120 120b 1 + 240b 2 + 120b 3 + 20b 4 + b 5

6 720 720b 1 + 1800b 2 + 1200b 3 + 300b 4 + 30b 5 + b 6

7 5040 5040b 1 + 15120b 2 + 12600b 3 + 4200b 4 + 630b 5

+ 42b 6 + b 7_ _____________________________________________________ 




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Table 3. The first seven derivatives c k ≡ h (k) ( 0 ) of h( 1 − ρ) in (47) in
terms of derivatives b k ≡ f (k) ( 0 ) where h( 1 − ρ) = f (g( 1 − ρ) )
and ε ≡ g( 1 − ρ) = ( 1 − ρ) /ρ, based on Riordan [32, Section
2.8].

_ ______________________________________________________
k c k_ ______________________________________________________

1
a 1

1_ __ =
m 2 + δ( 2 )

2_ ________

_ ______________________________________________________

2
a1

3

2a1
2 − a 2_ _______ =

3 (m 2 + δ( 2 ) )3

4 ( 3m2
2 + 3 (δ( 2 ) )2 − 2m 3 − 2δ( 3 ) )_ ___________________________

_ ______________________________________________________

3
a1

5

6a1
4 − 6a 2 a1

2 + 3a2
2 − a 1 a 3_ ______________________

_ ______________________________________________________

4
a1

7

10a 1 a 2 a 3 − a1
2 a 4 − 15a2

3 + 36a2
2 a1

2 − 12a1
3 a 3 − 36a 2 a1

4 + 24a1
6
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Table 4. The first four coefficients c k in the heavy-traffic expansion (47)
expressed in terms of the coefficients a k and, for the first two,
the basic derivatives δ(k) and m k .



_ ______________________________________________________________
k d k_ ______________________________________________________________
1 c 1

2 c 2 + m 2 c1
2

3 c 3 + m 2 ( 3c 2 c 1 ) + m 3 c1
3

4 c 4 + m 2 ( 4c 3 c 1 + 3c2
2 ) + m 3 ( 10c 2 c1

2 ) + m 4 c1
4

5 c 5 + m 2 ( 5c 4 c 1 + 10c 3 c 2 ) + m 3 ( 10c 3 c1
2 + 15c2

2 c 1 ) + m 4 ( 10c 2 c1
3 ) + m 1 c1

5

6 c 6 + m 2 ( 6c 5 c 1 + 15c 4 c 2 + 10c3
2 ) + m 3 ( 15c 4 c1

2 + 60c 3 c 2 c 1 + 15c2
3 )

+ m 4 ( 20c 3 c1
3 + 45c2

2 c1
2 ) + m 5 ( 15c 2 c1

4 ) + m 6 c1
6

7 c 7 + m 2 ( 7c 6 c 1 + 21c 5 c 2 + 35c 4 c 3 )
+ m 3 ( 21c 5 c1

2 + 105c 4 c 2 c 1 + 70c3
2 c 1 + 105c 3 c2

2 )
+ m 4 ( 35c 4 c1

3 + 210c 3 c 2 c1
2 + 105c2

3 c 1 )
+ m 5 ( 35c 3 c1

4 + 105c2
2 c1

3 ) + m 6 ( 21c 2 c1
5 ) + m 7 c1

7
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Table 5. The first seven coefficients d k in the asymptotic expansion for
σ − 1 − 1 in (54) in terms of the coefficients c k of the asymptotic
expansion for η.

_ _________________________________
k asymptotic factorial cumulant δ(k)

_ _________________________________
1 1

2 ν 2 − 2

3 − ν 3 + 3ν2
2 − 6ν 2 + 6

4 ν 4 − 10ν 3 ν 2 + 15ν2
3 + 12ν 3

− 36ν2
2 + 36ν 2 − 24_ _________________________________ 
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Table 6. The first four asymptotic factorial cumulants δ(k) of a rate-1
renewal process in terms of the moments ν k of the inter-renewal
time (ν 1 = 1 ).





_ ____________________________________________________________________________
r ρ η 1 η 2 η 3 η 4 η 5 η 6 η 7 η_ ____________________________________________________________________________
1 0.5 .33333 .31481 .31070 .30956 .30920 .30908 .30904 .30902

0.8 .13333 .13037 .13011 .13008 .13007 .13007 .13007 .13007_ ____________________________________________________________________________
2 0.5 .28125 .26669 .26550 .26646 .26734 .26779 .26794 .26786

0.8 .11250 .11017 .11009 .11019 .11013 .11013 .11013 .11013_ ____________________________________________________________________________
4 0.5 .20833 .18916 .18931 .19270 .19516 .19630 .19666 .19677

0.8 .08333 .08027 .08028 .08036 .08039 .08039 .08039 .08039_ ____________________________________________________________________________
8 0.5 .16598 .14278 .14186 .14447 .14611 .14670 .14687 .14708

0.8 .06639 .06268 .06262 .06269 .06271 .06271 .06271 .06271
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Table 8. The heavy-traffic asymptotic expansion for the asymptotic decay rate η as a
function of the MMPP parameters r and ρ in Example 6.1. The other
parameter is fixed at γ = 0. 5.

_ _______________________________________________________________________________
γ ρ η 1 η 2 η 3 η 4 η 5 η 6 η 7 η_ _______________________________________________________________________________
∞ 0.5 .35714 .29094 .32075 .35609 .36482 .36772 .37367 .37961

0.8 .14286 .13226 .13417 .13508 .13517 .13518 .13519 .13519_ _______________________________________________________________________________
4 0.5 .32787 .27628 .29414 .32031 .32983 .33188 .33451 .33838

0.8 .13115 .12289 .12404 .12471 .12480 .12481 .12482 .12482_ _______________________________________________________________________________
2 0.5 .30303 .26143 .27243 .29159 .30030 .30237 .30358 .30594

0.8 .12121 .11456 .11526 .11575 .11584 .11585 .11585 .11585_ _______________________________________________________________________________
1 0.5 .26315 .23363 .23793 .24832 .25436 .25636 .25688 .25765

0.8 .10526 .10054 .10081 .10108 .10114 .10115 .10115 .10115_ _______________________________________________________________________________
0.5 0.5 .20833 .18916 .18931 .19270 .19516 .19630 .19666 .19677

0.8 .08333 .08027 .08028 .08036 .08039 .08039 .08039 .08039_ _______________________________________________________________________________
0.25 0.5 .14706 .13396 .13259 .13296 .13339 .13365 .13377 .13381

0.8 .05882 .05673 .05664 .05665 .05665 .05665 .05665 .05665
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Table 9. The heavy-traffic asymptotic expansion for the asymptotic decay rate η as a
function of the MMPP parameters γ and ρ in Example 6.1. The other
parameter is fixed at r = 4.



_ _________________________________________________________________
one stream, ρ = 0. 5, η = 0. 19677_ _________________________________________________________________

percentile value_____________________________________________________
percentile approx., exact α approx., α ∼∼ mean ∗ η approx.
required exact α = 0. 50219 α ∼∼ 0. 53255 α ∼∼ 1. 0_ _________________________________________________________________

80 4.8558 4.6789 4.9773 8.1794

90 8.2781 8.2016 8.4999 11.7021

99 19.9087 19.9036 20.2020 23.4041

99.9 31.6060 31.6057 31.9041 35.1062

99.99 












43.3078 










43.3078 










43.6061 










46.8082_ _________________________________________________________________
two streams_ _________________________________________________________________

percentile value_____________________________________________________
percentile approx., exact α approx., α ∼∼ mean ∗ η approx.
required exact α = 0. 37188 α ∼∼ 0. 47361 α ∼∼ 1. 0_ _________________________________________________________________

80 4.2672 3.1523 4.3811 8.1794

90 7.4446 6.6749 7.9038 11.7021

99 18.3770 18.3770 19.6059 23.4041

99.9 30.0791 30.0791 31.3079 35.1062

99.99 41.8015 41.7811 43.0100 46.8082_ _________________________________________________________________ 










































































































Table 10. A comparison of approximations with exact values of percentiles of the
steady-state waiting time in the MMPP/Γ 1/2/1 queue with ρ = 0. 5 and one
or two arrival streams in Example 6.2.



_ ___________________________________________________________________
one stream, ρ = 0. 8, η = 0. 08039_ ___________________________________________________________________

percentile value_______________________________________________________
percentile approx., exact α approx., α ∼∼ mean ∗ η approx.
required exact α = 0. 80368 α ∼∼ 0. 80957 α ∼∼ 1. 0_ ___________________________________________________________________

80 17.3032 17.3012 17.3920 20.0197

90 25.9233 25.9232 26.0140 28.6417

99 54.5649 54.5649 54.6557 57.2834

99.9 83.2065 83.2065 83.2973 85.9250

99.99 












111.8482 










111.8482 










111.9391 










114.5668_ ___________________________________________________________________
two streams_ ___________________________________________________________________

percentile value_______________________________________________________
percentile approx., exact α approx., α ∼∼ mean ∗ η approx.
required exact α = 0. 76992 α ∼∼ 0. 78538 α ∼∼ 1. 0_ ___________________________________________________________________

80 16.8030 16.7673 17.0146 20.0197

90 25.3978 25.3893 25.6366 28.6417

99 54.0311 54.0310 54.2783 57.2834

99.9 82.6727 82.6727 82.9200 85.9251

99.99 111.3144 111.3144 111.5617 114.5667_ ___________________________________________________________________ 










































































































Table 11. A comparison of approximations with exact values of percentiles of the
steady-state waiting time in the MMPP/Γ 1/2/1 queue with ρ = 0. 8 and one
or two arrival streams in Example 6.2.
_ ___________________________________________________

traffic exact
intensity η 1 η 2 η 3 η 4 η_ ___________________________________________________

0.6 .32000 .34560 .35174 .35342 .35414

0.7 .24000 .25440 .25699 .25752 .25767

0.8 .16000 .16650 .16717 .16727 .16729

0.9 .08000 .08160 .08170 .08170 .08170_ ___________________________________________________ 












































































Table 12. A comparison with approximations for the asymptotic decay rate η with
exact values for the Γ 1/2 /Γ 2/1 queue in Example 6.3.


