Chapter 4

An Application to Simulation

4.1. Introduction

In Sections 5.9 and 10.4.4 of the book we showed how heavy-traffic
stochastic-process limits for queues can be used to help plan queueing simu-
lations. In this chapter we discuss another application of stochastic-process
limits to simulation. We draw on Glynn and Whitt (1992a). In Section 4.2
we show how stochastic-process limits and the continuous-mapping approach
can be used to determine general criteria for sequential stopping rules to be
asymptotically valid.

Yet another application of stochastic-process limits and the continuous-
mapping approach to simulation is contained in Glynn and Whitt (1992b).
Glynn and Whitt (1992b) shows how stochastic-process limits and the continuous-
mapping approach can be exploited to determine the asymptotic efficiency
of simulation estimators. These two applications can be applied to queueing
simulations, but they are not limited to queueing simulations.

4.2. Sequential Stopping Rules for Simulations

In this section, following Glynn and Whitt (1992a), we show how FCLTs
and the continuous-mapping approach can be used to establish general con-
ditions for the asymptotic validity of sequential stopping rules for stochastic
simulations. The general conditions are expressed in terms of FCLTs and
FWLLNs. The conditions allow the possibility of limit processes with dis-
continuous sample paths, but usually the limit process will be related to
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74 CHAPTER 4. AN APPLICATION TO SIMULATION

Brownian motion, and thus have continuous sample paths. We use the com-
position and inverse maps to demonstrate the asymptotic validity.

The goal is to estimate a deterministic parameter o € R¥. We start with
an RF-valued stochastic process Y = {Y'(t) : t > 0} called the estimation
process. We think of Y (¢) as being the estimate of « based on a simula-
tion with runlength t. The results also apply to statistical estimation more
generally, but we are especially concerned with simulation.

With simulation, a common problem is to estimate a steady-state mean
vector .. The simulation may be used to generate a stochastic process X =
{X(t) : t > 0}, where X (t) = X(oc0) in R* as t — co. We may then want
to estimate the steady-state mean a = EX(c0) = [EX'(0),..., EX*(c0)]
by the sample mean

Y(t)zt_l/tX(s)ds, t>0. (2.1)
0

That is a common way for the estimation process Y to arise, but not the
only way.

The simulator must select a runlength ¢. The runlength can be selected
either in advance or sequentially while the simulation is in process. The
principal disadvantage of selecting the runlength in advance is that the pos-
terior precision of the estimator may not be appropriate. Since the volume
of the confidence set (the width of a confidence interval in one dimension)
is unknown in advance, the volume may be too large to be of practical
use (meaning that the preassigned runlength was too small) or too small
(meaning that computational resources were wasted in refining the estima-
tor beyond the level of accuracy required).

We are interested in sequential procedures in which we let the simulation
run until the volume of a confidence set achieves a prescribed value. That
avoids the problems associated with preassigned runlengths, but new diffi-
culties are introduced because the runlength is now randomly determined.
The first difficulty is that we no longer have direct control of the amount of
simulation time to be generated or the amount of computer time to be ex-
pended. Consequently, the runlength may turn out to be much longer than
we want. On the other hand, it is possible that the runlength may turn
out to be inappropriately short. This creates certain statistical difficulties
that can compromise the accuracy of such procedures. For example, it is
known that in many statistical settings, the point estimator and the variance
estimator are positvely correlated. Since the volume of a confidence set is
typially determined by the variance estimator, this suggests that the confi-
dence set volume will tend to be small when the point estimator is small.
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Consequently, the resulting sequential procedure will tend to terminate early
in situations in which the point estimator is too small, leading to possibly
significant coverage problems for the confidence sets. Nevertheless, sequen-
tial stopping rules are of interest because of the possiblity of automatically
obtaining prescribed precision.

Various sequential stopping rules for simulation estimators have been
proposed and investigated empirically. Among these are sequential proce-
dures involving: batch means in Law and Carson (1979) and Law and Kelton
(1982), regenerative simulation in Fishman (1977) and Lavenberg and Sauer
(1977) and spectral methods in Heidelberger and Welch (1981a, b, 1983); see
pages 81, 92, 97 and 103 of Bratley, Fox and Schrage (1987) for an overview.
Unfortunately, however, the empirical evidence is not entirely encouraging.
Evidently, care must be taken in the design and implementation of sequen-
tial procedures to avoid inappropriate early termination. On the positive
side, the sequential procedures do tend to perform well when the run lengths
are relatively long, which is achieved in part by having a suitably small pre-
cribed volume for the confidence set. The observed good performance with
small prescribed confidence set volumes is consistent with the asymptotic
theory to be developed below. The asymptotic theory for general simu-
lation estimators below is in turn consistent with the classical asymptotic
theory associated with the sample mean of i.i.d. random variables; we cite
references below.

4.2.1. The Mathematical Framework

To start, we assume that the estimation process Y satisfies a CLT, i.e.,
dB)[Y(t)—a]=>TL in RF as t— oo, (2.2)

where I is a nonsingular & x k scaling matrix and ¢(¢) is a real-valued scaling
function with ¢(t) — oo as t — co. The common case for ¢ is 4(t) = t'/2, in
which case the limit L in (2.2) typically is N (0, I), a standard normal random
vector with the identity matrix I as its covariance matrix, but we want to
allow for other possibilities. With heavy-tailed probability distributions or
long-range dependence, we might have ¢(t) = ¢” for v < 1/2 or, more
generally, ¢ regularly varying with index y. The treatment here generalizes
Glynn and Whitt (1992a) by allowing regularly varying scaling functions
instead of simple powers.
As a consequence of (2.2),

Y(t)=>a in R¥ as t—o0. (2.3)
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The limit (2.3) says that the estimation process is weakly consistent. Of
course, weak consistency is a minimal requirement.

We assume that the confidence sets are all based on a bounded measur-
able subset A of R¥ with m(A) > 0, where m is Lebesgue measure on R¥.
To obtain approximate 100(1 — §)% confidence sets for a, we assume that

P(LeEA)=1-0 and P(L€dA)=0, (2.4)

where L is the limiting random variable in (2.2) and JA is the boundary of
the set A, i.e., 0A = A~ — A°, where A~ and A? are the closure and interior
of A. Given that we know A and T', we can let the confidence set be

Ct)=Y(t)—¢(t)TA, (2.5)
where
z+QA={z € R® : there exists y € A such that z = z + Qy}.

The confidence set C(t) in (2.5) clearly depends on t. When the runlength
t is specified in advance, the confidence set is asymptotically valid, in the
sense of the following proposition.

Proposition 4.2.1. If (2.2) and (2.4) hold, then
PlaeC(t) -1—-6 as t— oo

for C(t) in (2.5).

Proof. Since I' is nonsingular,
PlaeC(t)) = P(T™'p(t)(Y (1) —a) € 4)

but
I o) (Y(t)—a) =T 'TL=L as t— oo
by (2.2). Since (2.4) holds,
PIT'¢t)(Y(t) —a) € A) > P(LEA) =1—-6 as t— oo

by Theorem 11.3.4 (v) in the book. =

Of course, in applications the scaling matrix I' is typically unknown, so
that it too must be estimated. We assume that there is an estimator I'(¢)
that is weakly consistent, i.e.,

I'#)=T in R as t—o0. (2.6)
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Given an estimator I'(¢), t > 0, we can form approximate confidence sets
based on I'(t). For that purpose, let

Ct)=Y(t)— o(t)[(t)A . (2.7)
We now extend Proposition 4.2.1 to include I'(¢) instead of T'.

Proposition 4.2.2. If, in addition to the assumptions of Proposition 4.2.1
above, (2.6) holds, then

PlaeC(t) >1—-§ as t— o0

for C(t) in (2.7).

Proof. By (2.2) above and Theorem 11.4.5 in the book,
(C@), )Y (t) —a)) = (LTL) as t—o0.

Then noting that matrix inversion is continuous at all nonsingular limits, we
can deduce that I'(¢) is nonsingular, and thus invertible, for all sufficiently
large t and then apply the continuous mapping theorem to obtain

D) ') (Y(t) —a) = T7ITL as t— 0.

The rest of the proof is the same as the last part of the proof of Proposition
421. =
We now use the confidence set C(t) in (2.7) to define sequential stopping
rules. Recall that, for a generic (measurable) set B C R*, m(B) denotes
the k-dimensional volume (Lebesgue measure) of the set. Of course, when
k =1 and B is an interval, m(B) is just the length of the interval. We first
consider the case in which the procedure terminates when the k! root of
the volume of the confidence region C(t) drops below a prescribed level e.
[Tt is natural to use the k*® root, because m(cB)Y* = em(B)Y/* for a scalar
c.] We call such a procedure an absolute-precision sequential stopping rule.
For such a rule, the time T'(¢) at which the simulation terminates execution
is defined by
T(e) = inf{t > 0: m(C(t))/* < ¢} . (2.8)

Actually, this stopping rule needs to be modified, because T'(¢) in (2.8) can
terminate much too early if the estimator I'(¢) is badly behaved for small
t. To see this, suppose that P(I'(1) = 0, m(C(t)) =1,0<t<1)=1. In
this case, T'(€) = 1 for € < 1, so C(T'(¢)) = Y(1) for e < 1. Hence, in this
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example, P(a € C(T'(€))) = P(a = Y (1)) for € < 1. Hence convergence of
the coverage probability of the region C(T'(¢)) to the nominal level 1 — ¢
does not occur when we let € | 0.

In order for the asymptotic theory to be relevant to the sequential stop-
ping problem, it is necessary that T'(e¢) — oo as € | 0. In other words,
small values of the precision constant ¢ need to correspond to large val-
ues of simulation time. We can force the termination time to behave in
this way if we inflate the volume m(C(t)) slightly. Let a(t) be a strictly
positive function that decreases monotonically to 0 as ¢ — oo and satisfies
a(t) = o(¢(t)) as t — oo, where ¢ is the scaling function in the CLT
(2.2). Then set

Ti(€) = inf{t > 0: m(Ct)"* +a(t) < €}. (2.9)
Note that
Ti(e) >t1(e) =inf{t >0:a(t) <e} 00 as €elO0. (2.10)

Thus the early termination associated with T(e) in (2.8) is prevented by
incorporating the deterministic function a(t) in 77 (¢) in (2.9). For practical
purposes, it remains to determine appropriate functions a(t), though.

An alternative to the absolute-precision sequential stopping rule in (2.9)
is a relative-precision sequential stopping rule. The basic idea here is that
the simulation should terminate when the k' root of the volume of the
confidence region is less than an €' fraction of the norm of the parameter
a, denoted by |||, under the additional condition that ||| > 0. Since Y (¢)
is an estimator for «, this suggests replacing T} (€) with

To(e) = inf{t > 0: m(C(1)* + a(t) < Y (?)||} - (2.11)

The question now is: When are these sequentially stopping rules asymp-
totically valid? That is, when can we conclude that

PlaeC(T(e))) »>1—-6 as €lO (2.12)

for T'(€) being T (e€) in (2.9) or T5(e) in (2.11)7

It turns out that, unlike in Propositions 4.2.1 and 4.2.2, the assumed
convergence in (2.2) and (2.6) is not enough to achieve asymptotic validility
for the sequential stopping rules. That is for the same reason that CLTs
involving random time change require extra conditions. However, we do
obtain asymptotic validity if we replace the ordinary CLT in (2.2) by a
FCLT and if we replace the ordinary WLLN in (2.6) by a SLLN or FWLLN.
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(Recall that the SLLN implies a FSLLN by Corollary 3.2.1 in Chapter 3
here, which in turn implies a FWLLN, so that the SLLN is the stronger
condition.)

For that purpose, we form scaled processes indexed by € in the function
space D((0,00),RF). We work with time domain (0, o) instead of [0, c0) in
order to avoid having to deal with possible singularities in the estimation
process Y at the origin ¢t = 0. For example, such singularities occur in the
special case in (2.1). Recall that z,, — z in D((0, 00), R?) if the restrictions
converge in D([ty,11],R?) for all ty,t; with 0 <ty < t; < co.

Given the estimation process Y, the associated scaled estimation pro-
cesses are

Y (t) = d(e H[Y(t)e) —a], t>0. (2.13)

For the results below we need to assume that the scaling function ¢ in (2.13)
is regularly varying with index 7, denoted by ¢ € R(7); see Appendix A in
the book. We also assume that ¢ is a homeomorphism of RT, which implies
that ¢(0) = 0 and ¢ is strictly increasing.

4.2.2. The Absolute-Precision Sequential Estimator

We first state a result for the absolute-precision sequential estimator
Ti(€) in (2.9).

Theorem 4.2.1. Let D = D((0,00),R*) be endowed with the W My or any
other Skorohod topology. Suppose that

Y.=TZ in D as €l0, (2.14)

for Y in (2.13), where (2.4) holds with L = Z(1), P(t € Disc(Z)) = 0
for all t, ¢ is a homeomorphism of Ry, ¢ € R(y) for v > 0, and T is
nonsingular. If, in addition,

T'(t) T wpl in R as t— oo, (2.15)
then ast — oo or as el 0
(a) $)[m(C(1)'/* + a(t)] = m(T AV wp.1,
(b) €d(Ti(e)) — m(LA)/* w.p.1,
(¢) e'm(C(Ti(e))* =1 wp.1,

(d) € Y (Ti(e)) — a] = m(TA)"Y*TZ(1) in RF,
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(e) Plaw € C(T1(€))) = 1 — & (asymptotic validity).

In our proof of Theorem 4.2.1, we use the following lemma, which shows
the scaling implications for the limit process Z from having the FCLT in
(2.14) hold with the regularly varying scaling function ¢ in (2.13). The
result is a consequence of Theorem 5.2.1 in the book, but we give a direct
proof here.

Lemma 4.2.1. If the FCLT (2.14) holds with ¢ € R(y), v > 0, for ¢ in
(2.13), then

{Z(ct) : t >0} L {cZ(t) : ¢ > 0} (2.16)

for any ¢ > 0.

Proof. Note that Y.oce = Z oce as ¢ | 0. On the other hand,

-1
Y.oce= %Ye/cic_7z as €l0, (2.17)

using the regular variation to get ¢(e=1)/p(c/e™t) — ¢ as € | 0 for every
¢ > 0; see Appendix A in the book. =

Proof of Theorem 4.2.1. (a) Let
V(t) =m(C@E)* +a(t), t>0. (2.18)

By the spatial invariance and scaling properties of Lebesgue measure m on
RF,
m(CH)* = m(Y(t) - ¢(t)"'T(t)A)/*
= m(—¢(t) 'T@)A)* = ¢(t) 'm(T(t)A)/F . (2.19)

Since A is a bounded set, I'(¢) A is contained in a bounded set for all suffi-
ciently large ¢t w.p.1. Thus, we can apply the bounded convergence theorem
to deduce that

m(D(t)A)* —» m(TA)Y* wplas t—oo. (2.20)

Since T is nonsingular, m(A) > 0 and a(t) = o(¢(t)"!) as t — oo, (2.18)
and (2.20) imply that

)V (t) » mTA)Y* >0 wplas t— oo. (2.21)
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(b) By the definition of T1(e) in (2.9), V(T1(e) — 1) > € and there exists a

random variable Z(e) with 0 < Z(e) < 1 such that V(Ti(e) + Z(e€)) < e.

(Note that V(¢) is not necessarily monotone.) By (2.21) and the fact that

Ti(e) = oo w.p.l as el 0,

lim sup e(T} (€)) < limsup ¢(T1(e))V (T1(e) — 1) = m(TA)V*  w.p.1
€l0 €l0

(2.22)

and

lini inf (T3 (€)) > nm¢ inf $(T3(e))(V (T3 (€)) + Z(e)) = m(TA)Y*F  wp.l.

(2.23)

(c) Note that

m(C(T1(e))/* = ¢(T1(€)) "' m(T (T1(€))4) "/ (2.24)

and recall that m(T'(¢)A) — m(T'A) w.p.1 as t — oo, so that m(['(T1(€)) —
m(TA) w.p.1 as € | 0. By (b), e 1¢(Ti(€)) — m(T'A) /%, Hence

e'm(C(T1())* = ¢ P(Ti(e) T m(T(T1(e)A)"
— m(TA) YemT A, =1 wpl as el (2-25)

(d) From the assumed FCLT (2.14), Z, = I'Z in D((0,00), M>) as € | 0,
where

Z(t) =Yy p-1-)(t) =€ F(Y (¢ (€ D) —a), t>0. (2.26)
Now form the deterministic function
)
— . 2.2
volt) = Gy >0 (227)

Since ¢ is a homeomorphism of R, , the inverse ¢! exists and is itself
an homeomorphism of R, . Moreover, since ¢ € R(7), ¢~' € R(y~!) by
Theorem 1.5.12 of Bingham, Goldie and Tengels (1989). Hence

P, e/’ in D as €l0. (2.28)

We can apply the continuous-mapping theorem with the composition map
taking D x D into D with (2.26)—(2.28), using Theorem 13.2.3 in the book,
to conclude that

Z!. =>TZoe'/ in (D,My) as el 0, (2.29)
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where
ZL(t) = (Zeotp)(t) = 'Y (¢ e ) — ), t>0. (2.30)
Finally, we can apply the continuous-mapping theorem with the composition
map taking D((0,00),R¥) x R into R*¥ with (2.30), invoking Proposition
13.2.1 in the book and part (b) here, to obtain
-1 —a)=17 1/ 1/ky k
e Y(Ti(e)—a) = Z/(ep(T1(e)) = I'(Zoe ) (m(T'A)/*) in R", (2.31)
where
(Z o /7 (m(TA)/*¥) = Z(m(T A)/*) L m(T A)~V*Z(1) (2.32)

by Lemma 4.2.1.
(e) Note that

P(a

m

C(T1(e) = P(Y (Ti(e) — o € §(T1(€)) "' T(T1(c))A)
= P(D(T1(e)) ™' ¢(T1(e))[Y1(T1(€)) — o] € A, det(T(Ti(e)) # 0)
P(Y(T1(€)) — e € ¢(T1(€)) "' T(T1(€)) A; det(T(Ti(e)) = 0§2.33)

+

Since Ti(e) — oo w.p.l and I'(t{) — T w.p.l, where I' is nonsingular,
P(det(T'(T1(€))) = 0) — 0 as € } 0, so that the second term on the right in
(2.33) is negligible. On the other hand, for the first term,

L(T1(e)) "' p(T1(e))[Y (T1(€)) — @] = T(T1(e)) " eh(Ti(e))e [V (T1(e) — o]
= I 'm(CA) Y m(CA)~VFTZ(1) = Z(1) (2.34)
by parts (b) and (d). Hence, combining (2.33) and (2.34), we get
Pla e C(Ti(e))) = P(Z(1) e A)=1—-9, (2.35)

because (2.4) holds with L = Z(1). =

4.2.3. The Relative-Precision Sequential Estimator

We now state the analogous result for the relative-precision sequen-
tial estimator T5(e) in (2.11). Note that T5(e) behaves asymptotically like
Ti(||||e), as one would expect. In addition to the conditions in Theorem
4.2.2, we require that Y () — a w.p.1 as ¢ — oco. This is a reasonable
condition, but it does not follow form the FCLT (2.14).
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Theorem 4.2.2. In addition to the conditions of Theorem 4.2.1, suppose
that
Y(t) > a wpl in R as t— o0,

where ||a|| > 0. Then ast — oo and € = 0
(a) $)[m(C())'/* +a®)/IY @)l = el m(TA)/* w.p.1,
(0) e¢(Ta(e)) = llalltm(T A" wp.1,
(¢) e 'm(C(Ta(e)* — |laf| wp.1,
(d) Y (T5(9) — o] = [lalm(TA)~/FTZ(1) in RE
(e) Pla € C(Ta(€))) = 1 — 46 (asymptotic validity).

Since the proof of Theorem 4.2.2 closely parallels the proof of Theorem
4.2.1, we omit the proof of Theorem 4.2.2.

4.2.4. Analogs Based on a FWLLN

There are analogs of Theorems 4.2.1 and 4.2.2, where the SLLN for I'(¢)
in (2.15) is replaced by the weaker condition of a FWLLN. The w.p.1 limits
in parts (a)—(c) of Theorems 4.2.1 and 4.2.2 are then replaced by FWLLNs
and the CLT in (d) becomes a FCLT. Since the two results are similar, we
only state the analog of Theorem 4.2.1.

Now we also generalize the framework by allowing a family of estimation
processes indexed by e. We start with processes {Y¢(t) : ¢ > 0} and {T'c(¢) :
t > 0} for each € > 0. Then instead of (2.7), (2.9) and (2.13), let

Ce(t) = Y;(t) - ¢(t)re(t)A7
Tie = inf{t>0:m(C.(t)* +a(t) <e},
Y (1) = ¢le H[Ye(t/e) —a], t>0. (2.36)

Then the limit will be for the following processes: For that purpose, we
define the following random elements of D:

L(t) = T(t/e), t>0,

UL(t) = o )m(Celt/e))'V*,

UL(t) = eTic(1/tg(e™)),

Ul(t) = ¢ 'm(Ce(Tie(e/t)'V*,

Z(1) € [Ye(T1e(e/t) — a]. (2.37)
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Theorem 4.2.3. Let the topology on D be one of W My, SMy, WM, SM1,
W Ji or SJi throughout. Suppose that the assumptions of Theorem 4.2.1
hold, except that (2.13) is replaced by (2.36) and condition (2.15) is replaced

by
I.=T1 in D¥ as €0, (2.38)

for T¢ in (2.37) and 1(t) = (1,...,1) for all t > 0. Then
(r,ul,u3,ud z,)= (I, ut, U2, U3 2") in D™ as ¢lO,

(2.39)
for (UL, U2, U2, Z,) in (2.37), where
U'(t) = t7'm(TA)YE, U%t) = t1/7(TA)/*
Us(t) = t' and Z'(t) = m(@A)VFTZ@E/) . (2.40)
Moreowver,
P(a € C(Tie(e))) = 1 — 0 (asymptotic validity) . (2.41)

In preparation for the proof of Theorem 4.2.3, we prove a lemma.

Lemma 4.2.2. If z; € D([a,b],R) for i = 1,2, where z1(t), z2(t) > ¢ >0
for all t, then
ly1 — yoll < ¢ lan — 2o

for yi(t) = 1/zi(t), a <t <b.

Proof. Note that

_ @) —m @] 2y .
= @ Jwa()] = 720 -

Corollary 4.2.1. If z; € D([a,b],R), z;i(t) > ¢ > 0, and y;(t) = 1/z;(t),
a<t<b,i=1,2 then

d(y1,y2) < (¢ V 1)d(z1,z2)

where d is one of the Ji, M1 or My metrics.

ly1(t) — ya(?)]

Proof. To illustrate, we do the J; case:
—  inf _ _
d(y1,y2) fof{llyr —y2 o Al VIIA —ell}

. f -2 o .
inf {2z — 22 0 A V A = ell}

IN

IN

(c2v1)d(zy,z3) . =
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Proof of Theorem 4.2.3. First since the limit I'1 in (2.38) is determin-
istic, the two limits in (2.38) and (2.14) hold jointly (where Y, is defined
by (2.36) instead of (2.13)), by virtue of Theorem 11.4.5 in the book. Given
those limits, we can apply the Skorohod representation theorem, as e¢ | 0
through an arbitrary sequence, to replace the convergence in distribution by
special versions converging w.p.1. Let the special versions be represented by
the same notation. Since 1 € C, the convergence I'c — I'1 in D((0, 00), Rdz)
is equivalent to uniform convergence over bounded intervals. Then, as in
the proof of Theorem 4.2.1 (a), apply the bounded convergence theorem to
get m(T(t/€)A)Y* — m(TA)/* w.p.1 uniformly for t € [to,t1] for any #o, 1
with 0 < tp < #1 < oo. This yields w.p.1 convergence in D((0,00),R) for the
special versions. Since ¢(t/€) a (t/e) — 0 as € | 0 uniformly in ¢ for ¢ > ¢,
we obtain

P(t/e)Ve(t/e) » m(TA)Y* as €l0 (2.42)

uniformly in [tg,#;] for the special versions. Since a(t/e) = o(¢p(t/e)71),
(2.42) implies that
B(t/)m(Ce(t/e)/* — m(TA)YE as €—0 (2.43)
uniformly in [ty,;]. However, since ¢ € R(7), ¢(e~1)/p(t/e) =t~ as e 0
uniformly on [tg,¢1], by Theorem A.5 in Appendix A of the book. Thus,
(e )Ve(t/e) = t™Tm(TA)/* (2.44)
and
(e Hm(Ce(t/e))Y* -t ImT AV, as €0 (2.45)

uniformly in [to,¢1], again for the special versions, which implies the FCLT
conclusion for Ul in D((0,00),R). Turning to U2, we will show for the
special versions that

eTic(1/tp(e™h)) = inf{s >0: (e )Vi(s/e) <t '}
= inf{s>0:¢(e )V (s/e)"! >t}
inf{s > 0: s"m(CA)~Y* > ¢}
= tYTm(TA)V* (2.46)

1

uniformly in [tg,?1]. In the first line of (2.46), without loss of generality,
we can replace ¢(e~1)Vc(s/e) by max{¢(e~1)V(s/e), (2t1)~'}. Then we can
invoke Corollary 4.2.1 above to show that the third line follows from (2.44).
For U2, apply the continuous-mapping theorem with the composition map,
using Theorem 13.2.3 in the book and (2.43) and (2.46) here, to get

</f>((-:_1)m(C’€(T1€(1/1&(1)(6_1))))1/’c -t as €e—0 (2.47)
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uniformly in [tg, 1] or, equivalently,
e m(Ce(Tre(e/)))F 5171 as e—0 (2.48)

uniformly in [¢p,1]. Next, for Z., apply the composition map again with
the FCLT in (2.14) and the limit for U? in (2.48) and part (b) to get

Zye1)-1 = Z in D((0,00),RF) as €0 (2.49)

where
Z'(t) = TZ(tY/Ym(TCA)Y %) L (T A) VT Z )

and the topology is the same as for (2.14). Clearly, Z, — Z' in D((0, 00), R¥)
as well. Finally, for (2.41), apply the projection map for ¢ = 1 with the result
Z. — Z' just established. Then use the argument for Theorem 4.2.1 (e). =

4.2.5. Examples

We conclude this section by giving several examples. We illustrate how
the theorems can be applied by discussing a few specific estimation settings.
These examples show that FCLT requirement for the estimation process
Y in (2.14) is a mild hypothesis that is satisfied in virtually all practical
contexts. However, some work may be required to establish the SLLN or
FWLLN for the estimators I'(¢) of the scaling matrix I'. Our last example
shows that we cannot instead use weak consistency of I'(¢).

Example 4.2.1. (Sample mean of IID random variables). Suppose that «
can be represented as &« = EX for some real-valued r.v. X. For example,
a might correspond to the expected number of customers served in a queue
over the time interval [0,7]. Then « can be estimated by generating i.i.d.

replicates X1, Xo,... of the r.v. X; the resulting estimator for « is then
the sample mean X,, = n~! 1 Xi. The corresponding estimation process

is Y(t) = X|;), where [t] is the greatest integer less than ¢ and Xy = 0.
If EX? < oo, then Donsker’s theorem, Theorem 4.3.2 in the book, asserts
that the FCLT in (2.14) holds with ¢(e~') = ¢~ /? in (2.13), T’ = o, where
0% = var X, and Z(t) = B(t)/t, where B is Brownian motion. Note that
Z(1) =4 N(0,1). The typical choice for the set A in this setting is the interval
[—2(6), z(8)], where z(6) is chosen to satisfy P(N(0,1) < z(§)} = 1—4d/2.
Of course, it is well known that

1 _
r, = Z(XZ - X,)? — 0o w.p.las n— 0. (2.50)
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Suppose that 02 > 0. Setting I'(t) = T'|4), we have the strong consistency re-
quired by Theorems 4.2.1 and 4.2.2. Hence both the absolute-precision and
relative-precision stopping rules T} (e) and T»(e€) are asymptotically valid for
this example when the precision-constant € shrinks to 0. In this setting, The-
orems 4.2.1 and 4.2.2 reproduce the classical results of Chow and Robbins
(1965), Starr (1966) and Nadas (1969); see Chapter 7 of Siegmund (1985)
and Section 8.8 of Wetherill and Glazebrook (1986). (See Anscombe (1952,
1953) for related earlier work.) Implementation considerations are discussed
in Law, Kelton and Koenig (1981).

Example 4.2.2. (The sample mean of IID random vectors). Now we con-
sider the case in which a can be represented as a« = EX, where X is
RF-valued. Assume that E|X||> < co. As in Example 4.2.1, we can es-
timate o via the sample mean X, = n™1Y " | X;, where X,’s are i.i.d.
copies of X. Setting Y(t) = X|;, we obtain the FCLT (2.14) from the
k-dimensional version of Donsker’s theorem, Theorem 4.3.5 in the book,
where now Z(t) = B(t)/t, B is k-dimensional standard Brownian motion
(composed of k independent one-dimensional standard Brownian motions)
and I'T? is the covariance matrix C' of X. We assume that C is positive
definite. Note that Z(1) = B(1) =4 N(0,1I), where I is the identity ma-
trix. In this k-dimensional setting, we can assume that A is the k-sphere
{z: ||z|]| < w(d)}, where w(d) is chosen so that

P{IN(0,D)|I* < w?(9)} = P{X; <w?(8)} =110, (2.51)
with X,? being a chi-squared r.v. with k degrees of freedom. Let
1 n
Cn =~ > XX} - X, X, (2.52)
i=1

(writing all k-vectors as column vectors). Then C, — C a.s. as n — 0.
Let T',, be obtained by taking the Cholesky factorization of C,, so that
[, is a lower triangular matrix such that C,, = T',[',; see pages 164 and
165 of Bratley, Fox and Schrage (1987). It follows that I';, — I" w.p.1 as
n — 00, since Cholesky factors are continuous at positive definite matrices.
Setting I'(t) = I'|¢|, we again have the strong consistency required by Tho-
erems 4.2.1 and 4.2.2. Thus we have proved that the absolute-precision and
relative-precision stopping rules T} (e) and T»(e€) are asymptotically valid for
sequential stopping of multiple performance measure stochastic simulations.
In this setting, Theorems 4.2.1 and 4.2.2 reproduce results by Gleser (1965),
Albert (1966) and Srivastava (1967); see Section 5.5 of Govindarajulu (1987).
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Example 4.2.3. (Functions of sample means). Let X be an RF-valued
random vector and let 4 = EX. Suppose that a can be represented as
a = g(p) for some (known) real-valued function g : R¥* — R. An example
of this occurs in the ratio estimation setting, in which k£ = 2 and g(z,y) =
z/y. Because the steady state of a regenerative stochastic process can be
expressed as a ratio of two means, this estimation setting subsumes that
of regenerative steady-state simulation. Of course, this observation lies at
the heart of the regenerative method of steady-state simulation; see, for
example, Crane and Lemoine (1977).

In this nonlinear setting, we estimate o via Y (t) = g(X ;) ), where X;; are
i.i.d. random vectors as in Example 4.2.2. Suppose that E||X||?> < oo and
that g is continuously differentiable in a neighborhood of y. In addition, we
require that Vg(u) # 0 and that the covariance matrix C' of X is positive
definite. Then Theorem 3 of Glynn and Whitt (1992b) implies that the
FCLT in (2.14) holds with ¢(e~!) = ¢71/2) Z(t) = B(t)/t and T = ¢ as in
Example 4.2.1, but with

o = (Vg(u)'CVyg(u)'/* .
Let C), be defined as in Example 4.2.2 and note that
[Vg(Y (t))'Cyy V(Y (t)]Y/? - o wp.last — co.

Hence we have the strong consistency required for the application of Tho-
erems 4.2.1 and 4.2.2. As a consequence, we are assured that the stopping
rules 7T (e) and T»(e) are again asymptotically valid in this estimation set-
ting. In particular, in the regenerative simulation setting, we recover the
asymptotic theory developed by Lavenberg and Sauer (1977).

Example 4.2.4. (The jackknife). Consider the estimation problem of Ex-
ample 4.2.3 in which our goal is to estimate @ = g(u), where u can be
expressed as ¢ = EX and g is real-valued. One practical difficulty with
the estimator suggested in Example 4.2.3 is that it tends to be significantly
affected by bias problems induced by the presence of the nonlinearity in g.
One way to address the small-sample bias problem that this nonlinearity

creates is to jackknife the estimator. Specifically, let a(n) = g(X,,) and, for
1<i<n,let

_ 1 & _
Xin = ZXj, ai(n) = g(Xin) ,
Jj=1

n—14%
J#i
a&i(n) = na(n)—(n—1)ai(n) . (2.53)
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Then the estimator Y,, = n=! 3" | &(n) is the jackknife estimator of c.
Let Y(t) = Y|;. It is shown in Glynn and Heidelberger (1989) that if
E| X|® < oo and g is twice continuously differentiable in a neighborhood
of u, then the FCLT in (2.14) holds where o and Z(t) are as in Example
4.2.3. Since the form of the FCLT is the same as for Example 4.2.3, the
jackknife has the same asymptotic efficiency as the estimator of Example
4.2.3. However, as argued in Miller (1964, 1974), the jackknife estimator
typically possesses superior small-sample bias properties.

Two estimators for the scaling constant o = [Vg(r)!CVg(u)]'/? are pos-
sible. One approach is to use the estimator o (t) = [Vg(Y (£))*C|y Vg (Y (t))]'/?
suggested in Example 4.2.3. Theorem 4(i) of Glynn and Heidelberger (1989)
shows that Y (f) — a w.p.1 as ¢ — oo, under the conditions stated here.
Since C,, — C w.p.1, it follows that o(t) — o w.p.1 as ¢t — oo. Hence
sequential stopping procedures based on the jackknife point estimator and
the “variance” estimator o?(t) are asymptotically valid by Theorems 4.2.1
and 4.2.2, provided that o2 > 0.

An alternative estimator for the scaling constant ¢ is given by the jack-
knife variance estimator o;(%):

. 1/2

o;(t) = 0] Y@l -y @) : (2.54)
i=1

Although it is known that 0%(t) = 02 as t — oo under suitable regularity
conditions, we need convergence w.p.1 in order to satisfy the hypothesis of
Theorems 4.2.1 and 4.2.3. However, Theorem 4 of Glynn and Whitt (1992a)
establishes the following result.

Theorem 4.2.4. If g is continuously differentiable in a neighborhood of u
and E|X|? < oo, then

o2(t) = 0? = Vg(u)'C Vg(p) w.p.1 ast — oo (2.55)

for 0%(t) in (2.54). Thus the sequential stopping rules T (e) and Ty(€) may
be applied to jackknife point estimators in conjunction with the jackknifed
variance estimator o4(t).

Example 4.2.5. (A steady-state mean). Suppose that our goal is to es-
timate the steady-state mean vector o of an RF-valued stochastic process
X ={X(t) : t > 0}. We assume that X satisfies an FCLT, namely,

X.=TB in D((0,00),R¥) as €l0 (2.56)
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where

t/e

0

X (t)y=et ( X (s)ds — ta) , t>0. (2.57)

and B is a standard R¥-valued Brownian motion. It is easily shown that
(2.56) implies that

Y(t)=t1 /OtX(s)ds =a as t—oo. (2.58)

Hence (2.56) implies that the centering vector o appearing there is indeed
the steady-state mean of X. Another easy consequence of (2.56) is that the
FCLT (2.14) holds with ¢(e~!) = ¢~/2 and Z(t) = B(t)/t.

It turns out that (2.56) is typically satisfied for most “real-world” steady-
state simulations. In particular, a great variety of different assumptions on
the structure of the process X give rise to FCLTs of the form (2.56); see
Section 4.4 in the book and Section 2.3 here.

The primary difficulty in applying Theorems 4.2.1-4.2.3 arises in the
construction of a process I'(t) such that I'(t) — T w.p.1 as ¢ — oo or
T'e = T'l in D(0,00) as € | 0. Since I'T? is the covariance matrix of the
limiting Brownian motion, this is equivalent to the construction of a strongly
consistent estimator C(t) for the time-average covariance matriz C = TT?
of X. In general, this is known to be a challenging problem.

Suppose that X is regenerative, with regeneration times 0 = 79 < 7 <
T9 < ---. Suppose that E(fTI2 | X (s) — a(ds)? < oo and that E(ro —71) < 00.

T

Let N(t) = max{n > 0: 7, <t}. Then it is easily proved that

N
o =1 2_; / )~ Y @)X () - Y (e)ds (2.59)

is strongly consistent for C, where C = I'T? and T is the scaling matrix
appearing in (2.56). Thus when X is regenerative, the sequential stopping
rules 77 (€) and T5(e€) are asymptotically valid. Of course, when X is scalar,
we already established this result in Example 4.2.3.

For nonregenerative processes, less is known about the strong consistency
of estimators C(t) for the steady-state covariance matrix. However, Glynn
and Iglehart (1988) and Damerdji (1991, 1994) have recently used strong
approximation techniques to establish strong consistency for a broad class of
estimators for C. Thus Theorems 4.2.1 and 4.2.2 prove that these estimators
do indeed lead to asymptotically valid sequential procedures.
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Our theory for this example provides theoretical support complementing
previous work by Fishman (1977), Law and Carson (1979) and Law and
Kelton (1982). They develop specific empirically based sequential stopping
rules for steady-state simulations.

Example 4.2.6. (Kiefer- Wolfowitz stochastic approzimation). This exam-
ple is interesting, in part, because it illustrates that the FCLT (2.14) can
hold for the estimator with a subcanonical convergence rate; in particular,
here ¢(e~') = ¢~'/3. For other examples of noncanonical estimator conver-
gence rates, see Fox and Glynn (1989) and Sections 5 and 6 of Glynn and
Whitt (1992b). Suppose that we are given a real-valued smooth function
B3(0), which can be represented as §(0) = EZ(#). Assume that our goal is
to compute the parameter a = §* minimizing 8. If 8 is scalar, we can apply
the following Kiefer-Wolfowitz stochastic approximation algorithm:

Ot = On — cnXnit s (2.60)
where {c, : n > 0} is a sequence of (deterministic) nonnegative constants,

P(XTH—I € A|001 Xo, - - 79n7Xn) =
P([Z(00 + hnt1) — Z(00 — hnt1]/2hnia € A),  (2.61)

Z(0p+ hpt1) and Z(6p — hp41) are generated independently of one another
and {h, : n > 1} is another sequence of deterministic constants. Suppose
that ¢, = en ' and h, = hn"'/3, ¢, b > 0. Let Y(t) = 0|y)- For this
problem, Ruppert (1982) showed that under suitable regularity conditions,
the FCLT in (2.14) holds for Y in (2.13) with (e ™) = e /3, T = &, Z(t) =
t~"B(t?>"t1), B is a standard Brownian motion, b = ¢f"(6*), n = b — 5/6,
k? = c20%/(2n + 1)(4h?) and o? = 2var Z(9*).

The construction of a strongly consistent estimator for I' = k involves
more work. For some directions on how to obtain such an estimator, see
page 189 of Venter (1967).

Example 4.2.7. (Robbins-Monro stochastic approzimation). As in Exam-
ple 4.2.6, suppose that our goal is to estimate the minimizer 6* of a smooth
function 8: R — R. However, we assume here that we can represent the
derivative ' as an expectation; that is, there exists a process Z(0) such
that §'(6) = EZ(). [In Example 4.2.6 we assumed only that the function
values (@) could be represented as expectations.] To calculate 6* in this
setting, we can use the Robbins-Monro stochastic approximation algorithm,



92 CHAPTER 4. AN APPLICATION TO SIMULATION

which is based on (2.60), where {c, : n > 0} is sequence of (deterministic)
nonnegative constants and

P(Xns1 € Alfo, Xo, - .-, 00, Xn) = P(Z(6,) € A). (2.62)

Suppose that our estimator is Y () = 0|;) and ¢, = en~t with ¢ > 0.
Then Ruppert (1982) showed that under suitable regularity hypotheses, the
FCLT in (2.14) holds for Y, in (2.13) with ¢(e™!) = ¢ V2, T = &, Z(t) =
t~(DEOB2P+) D = ¢8'(0*) — 1, k% = 20%(2D + 1)1, 02 = var Z(6*)
and B is a standard Brownian motion.

Construction of a strongly consistent estimator for I' = x follows from
results established by Venter (1967). When this estimator is used, the se-
quential stopping rule T (€) reduces to one studied by McLeish (1976).

Example 4.2.8. (The Hill estimator). The framework of Theorems 4.2.1-
4.2.3 has been made quite general, so that there can be many applications.
One intended application is to estimation problems associated with heavy-
tailed probability distributions and long-range dependence. If we use the
direct (naive) estimators, e.g., the time average for the steady-state mean,
then we anticipate that the FCLT in (2.14) will typically hold with ¢ in
(2.13) satisfying ¢(e 1)/e /2 — 0 as € | 0. A common case would by
d(e™l) =€V or p € R(7y) for 0 < v < 1/2. A major new difficulty, however,
is that now the scaling exponent -y is typically unknown.

Thus, attention naturally shifts to estimating the scaling parameter +.
Estimating the parameter v is challenging even from observations of i.i.d.
random variables. One approach is via the Hill estimator. Recent results of
Resnick and Starica (1997) show that Theorems 4.2.1-4.2.3 can be applied.

The setting is a sequence {X,, : n > 1} of i.i.d. positive random variables
hoaving cdf F, where F¢ =1 — F € R(—a) for a > 0, i.e.

Fe(tz)JF(t) = 27° as t— . (2.63)

The goal is to estimate the tail index a. For n given, let X(;) be the ith
largest among the first n. The Hill estimator based on the k upper order
statistics is
- X()
Hppn=k"1) log (72) . (2.64)
Zz_; X(k+1)
The Hill estimator is known to be consistent if & = k(n) satisfies k(n) — oo

and k(n)/n — 0 as n — oo. Given a specific function k(n), the Hill estimator
is a single sequence of random variables {Hy(,), : n > 1}. Resnick and
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Starica (1997) show that the Hill estimator also satisfies a FCLT. To state
it, let
Yn(t) = H|—knﬂ Y t> 0 ) (265)

where [z] is the least integer greater than or equal to z. The FCLT states
that, under regularity conditions, including k(n) — oo and k(n)/n — 0,

Em)[Ypo—a '1]=>a'Z in D as n— oo, (2.66)

with Z(t) = t"'B(t), where B is standard Brownian motion. Notice that
here we use the more general framework in (2.36) in which there is a family
of estimation processes indexed by € > 0. (Here we have used n — oo
instead of € | 0.)

Also notice that in this special case the scaling matrix ' in (2.14) is
just @~ !. So, with Y,, in (2.65), we estimate o and I' simultaneously. As a
consequence of the FCLT in (2.66), we have the associated FWLLN

Y,=a !l in D as n— o0 (2.67)

needed in Theorem 4.2.3. Tt is also known that Y,,(¢) = o~ ! w.p.l asn — oo
under regularity conditions.

Given the FCLT in (2.66) and the FWLLN in (2.67), the conditions of
Theorem 4.2.3 are satisfied. Hence sequential stopping rules are asymptoti-
cally valid for the Hill estimator too.

Example 4.2.9. (Sample mean with infinite variance). One can also es-
timate a mean by the sample mean of i.i.d. random variables when the
random variables X; have finite mean but infinite variance. As in Example
4.2.1, the estimation process can be Y (t) = XLtJ’ where X, = 0, although it
is often better to use alternative robust estimators such as trimmed means
or to estimate other quantities such as the median. Under regularity con-
ditions, FCLT (2.14) is valid with ¢ € R(1 — a~!) for some o, 1 < a < 2,
where ¢ is the scaling function in (2.13). The topology on D can be the J;
topology. The limit process Z(t) is then t~1S,(t), where {S,(t) : t > 0} is
a stable process of index «, which depends on two parameters in addition
to a: a scale parameter ¢ and a skewness parameter 4, —1 < 8 < 1. Un-
fortunately, in order to form confidence sets we need to estimate the scaling
function ¢ and the parameters o and g.

Suppose that we consider the special case in which X; is nonnegative
and is assumed to have an asymptotic power tail, i.e.

Ft) = P(X > 1) ~ At™® as t— o0 (2.68)
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for positive constants A and «, 1 < @ < 2. Under condition (2.68), the

FCLT (2.14) holds with ¢(e™!) = ¢~(1=> ") and limit process I'Z(¢) where

Z(t) is a stable process with index «, scale 0 = 1 and skewness 1. Hence,

in this special case it suffices to estimate only the two parameters « and I'.
Suppose that ¢, is an estimate of a with the property that

(d;l — oz_l) log(e_l) —0 wpl as €l0. (2.69)

Given (2.69),

$le M) /ple V) = (18 e (ma) (2.70)

and
log[p(e ) /p(e )] = (@t —a ) log(e ™)) -0 w.pl as €l0, (2.71)

so that
deH/plet) =1 as €l0 (2.72)

and the FCLT (2.14) holds with the estimator (e !) = ¢~(18") used in
place of the scaling function ¢(e!) = e~(1=@"). Hence it only remains to
estimate the scale parameter I'. Given that (2.68) holds, the scale parameter
is

L= (A/Ay)"™ (2.73)
for A in (2.68) and

1«

Ag = ( /0 e sinwd:z:) T T alcoslral) (2.74)

Hence it suffices to estimate the asymptotic constant A in (2.68). We can
estimate in various ways if we estimate the cdf in (2.68) by the empirical
cdf.

Hence, under regularity conditions, the sequential stopping rules will
again be asymptotically valid. However, in this situation it is often much
better to use different (robust) estimators for the mean or to estimate dif-
ferent quantities, such as the median or other percentiles.

Example 4.2.10. (A counterezample for weak consistency). Since the SLLN
or FWLLN for I'(¢) is relatively difficult to establish, it is natural to ask if
the weak consistency I'(t) = I" as ¢ — oo in (2.6) might not be enough to
ensure asymptotic validity of the sequential stopping rules.

Unfortunately, however, weak consistency of I'(¢) is not enough. The
difficulty is in establishing the in-probability analog of Theorem 4.2.1 (b).
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We now give a direct counterexample. Consider Example 4.2.1 and the
process I'(t) defined there. Let N be a unit rate Poisson process independent
of {X; : 4 > 1} and let T1,T,... be the jump times of the process N.
Suppose that

. L'(t), t¢ U, [Tn, T, +1/n),
Ty = (2.75)
0, t e Up [Tn, Tn + 1/n).

Then
P(T(t) #T(t)) = P (te [TN() Ty + l(t)D
< P(t—Tnwy <e) +P( (t) < ) (2.76)

for e arbitrary. Letting ¢ — oo, we find that limsup, . P(I'(t) < I'(t)) =
1 —exp(—e) (recall that the equilibrium age distribution of N is exponential
with mean 1). Since e was arbitrary, it follows that P(T(t) # T(t)) = 0 as
t — 0o. Then it is evident that T'(t) = o as t — oo, since T'(t) = ¢ w.p.1
as t — oo.

Now, in the setting of Example 4.2.1 using I'(¢),

Ti(e) = inf{t >0: 2(6) (i\/? + a(t)) < e} : (2.77)

Put a(t) = 1/t. Then clearly z(é )( (8)/v/s +1/s) > 2(6)/t and s < ¢, so
T1(z(6)/t) > t. On the other hand, I‘(TN( )+1) = 0, s0 T1(2(8)/t) < TN(t)+1-
By the SLLN, t'Ty()11 — 1 w.p.l as t — oo. Hence Ti(2(8)/t) ~ t
w.p.1 as t — oo. Thus the stopping rule is asymptotically independent of
the scaling constant I'. As a consequence, formation of asymptotically valid
confidence intervals is impossible. In fact, even the asymptotic scaling of
the rule is incorrect. It is well known that for estimation problems of the
type described in Example 4.2.1, the amount of simulation time required to
obtain an absolute precision of order € is of order e~2, whereas the stopping
rule T} (¢) based on I'(t) in (2.75) yields a termination time of order e~'.
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