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In the online video game industry, a significant portion of the revenue generated is from microtransactions,

where a small amount of real-world currency is exchanged for virtual items to be used in the game. One

popular way to conduct microtransactions is via a loot box, which is a random bundle of virtual items whose

contents are not revealed until after purchase. In this work, we consider how to optimally price and design

loot boxes from the perspective of a revenue-maximizing video game company. Our paper provides the first

formal treatment of loot boxes, with the aim to provide customers, companies, and regulatory bodies with

insights into this popular selling strategy.

We consider two types of loot boxes: a traditional one where customers can receive (unwanted) duplicates,

and a unique one where customers are guaranteed to never receive duplicates. We show that as the number

of virtual items grows large, the unique loot box strategy is asymptotically optimal, while the traditional

loot box strategy only garners 36.7% of the optimal revenue. When designing traditional and unique loot

boxes, we show it is asymptotically optimal to allocate the items uniformly, even when the item valuation

distributions are highly heterogeneous. We also show that when the seller purposely lies about the allocation

probabilities, then the revenue may increase significantly and thus strict regulation is needed. Finally, we

show that even if the seller allows customers to salvage unwanted items, then the customer surplus can only

increase by at most 1.4%.
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1. Introduction

With the recent explosion of online and mobile gaming over the last decade (Perez 2018),

the video game industry standard has shifted towards the freemium model, where access

to a game is freely given to customers and in-game virtual items can be acquired via micro-
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transactions. In other words, virtual items that help players in the game are purchased

with in-game or real-world currency. In many of these games, microtransactions are con-

ducted via a randomized mechanism known in the video game industry as a loot box. A

loot box is a randomly filled bundle of virtual items, the contents of which are revealed

after the purchase is complete. While the concept of a loot box is not new, for instance a

pack of baseball cards is a form of loot box, modern versions of loot boxes like in Fig. 1

have proliferated in online video games on mobile, console, and PC platforms in the last

decade. In online games such as Dota 2, FIFA 20, PlayerUnknown’s Battlegrounds, and

many others, loot box sales are a core source of revenue. In these games, players purchase

loot boxes which contain a random subset of virtual items such as character costumes,

cosmetic upgrades, virtual cards, etc. In 2018 alone, more than $30 billion dollars in sales

were conducted via loot boxes (Wright 2018).

Figure 1 Loot Box Example.

Note. Depicted is a loot box in the popular video game Dota 2, where it is also referred to as a “treasure”. The

customer may purchase the loot box for $2.49, after which they receive one of the five items depicted on the screen.

Despite its popularity in the gaming industry, the loot box mechanism has invited con-

troversy and criticism recently (Tassi 2018), and several development platforms have now

provided specific rules in response (Apple 2018, Google 2019). For instance, there have

been issues regarding the transparency of the contents and probability outcomes of loot

boxes (Fingas 2018) which have led to regulatory investigations (Tassi 2017). Another issue

is that loot boxes have been depicted as a form of gambling, both by the media (Webb

2017) and academia (Drummond and Sauer 2018, Zendle and Cairns 2018). This has led
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the United States Congress to introduce a bill outlining new loot box regulations in May

2019 (Romm and Timberg 2019) and the Federal Trade Commission to hold a workshop

on the matter in August 2019 (Holt 2019), which shall include the presentation of this

paper.

In spite of this negative publicity, loot box selling remains as popular as ever (Batchelor

2017). In order to properly address the issues of transparency and gambling via regulation,

we believe that it is fundamental to understand the economic motivation behind loot box

selling. Why do video game companies prefer such a business strategy? How does it compare

to traditional strategies such as bundling and separate selling? What are the behavioral

considerations motivating customers to keep purchasing loot boxes? A rigorous framework

for the operations of loot boxes would provide valuable insights for customers, companies,

and regulators, which is precisely the focus of the work.

There are several salient features that distinguish the loot box mechanism and virtual

items from other traditional industries. First, the virtual items have zero marginal cost, can

be copied infinitely by the seller, and have no value outside of the game. Second, customers

engage in repeated interactions with the seller, and may potentially buy a large number

of items sequentially. Third, the sellers are fully aware of a customer’s current collection,

and have control over the price, type, and probability distribution of the next item that a

customer may acquire. These unique features render the models designed for other types

of products inappropriate and call for a novel revenue management framework to analyze

loot box strategies specifically.

In this study, we provide a model to analyze the optimal price and design of loot boxes

for revenue-maximizing sellers. The model incorporates two types of commonly used loot

box strategies. A unique loot box allocates items to customers that they do not currently

own. A traditional loot box allocates items randomly to customers regardless of whether

they already own a copy, which may result in obtaining unwanted duplicates. In both

strategies, the seller may control the price, allocation probabilities, number of items, and

salvage value of the loot boxes. To understand the advantages and disadvantages of loot

box strategies, we compare to two traditional selling mechanisms: separate selling, where

every virtual item is sold separately for a known price, and grand bundle selling, where

customers pay a one-time fixed amount for access to all virtual items.

Next we provide a summary of our contributions and findings.
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1. We propose the first mathematical modeling framework for selling loot boxes. Cus-

tomers are endowed with i.i.d. private valuations of all items, and sequentially purchase

loot boxes until their expected utility becomes negative. In the most general setting,

almost no dominance relations hold between any of the four selling strategies we con-

sider except that grand bundle selling is always better than unique box selling. Of

course, the grand bundle is flawed in practice due to the large financial commitment

required by the customer.

2. Next, we study the various strategies in an important and practical regime where the

number of items offered tends to infinity. In this setting, both the grand bundle and

unique box strategies are optimal, while the traditional box strategy only provides

36.7% as much revenue. Surprisingly, even though traditional boxes result in dupli-

cates, we show that the expected number of purchases is roughly the same as the

unique box strategy even though the optimal price is significantly lower. However, the

unique box strategy provides no customer surplus in this regime, in contrast to the

traditional box strategy which leaves a positive customer surplus.

3. Next, we consider the case where the valuation distributions are no longer identical,

as items may belong to different classes which indicate their value in the game. In

the asymptotic regime where the number of items tends to infinity, we show that the

optimal allocation probabilities of a loot box is uniform at random, even if the expected

value of the items are wide-ranging. Moreover, our previous guarantees on the revenue

and customer surplus continue to hold. We also show that the seller may actually gain

significant revenue if they can successfully deceive consumers into believing a false set

of allocation probabilities, and thus regulation is needed to protect consumers from

such a practice.

4. Finally, we consider an additional design aspect where customers are allowed to sal-

vage, or return, unwanted items. We show that traditional box strategies may result

in more revenue with salvage systems and dominates separate selling, whereas unique

box strategies do not benefit and remain optimal. Remarkably, we show that introduc-

ing a salvage system in a traditional box strategy can only increase customer surplus

by at most 1.4%.
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1.1. Literature Review

While loot box selling has not been studied in the revenue management literature to the

best of our knowledge, our work is related to several areas across operations management,

computer science, and economics.

Our work connects with the dual streams of papers on opaque selling and bundle selling.

Loot boxes are an example of opaque selling, which is the practice of selling goods where

some features of the good are hidden from the customer until after purchase. Recent works

(Jiang 2007, Fay and Xie 2008, Jerath et al. 2010, Xiao and Chen 2014, Elmachtoub and

Wei 2015, Elmachtoub and Hamilton 2017) have focused on opaque selling as a tool to

increase revenue by managing imbalanced customer demand or inducing opportunities for

price discrimination. Our loot box framework differs from the standard opaque selling

models since there is no notion of inventory and customers are interested in buying multiple

items (they are not unit-demand).

Our work also resembles and references the work on bundling. We compare our loot box

selling mechanisms explicitly with the grand bundle mechanisms studied in the seminal

work of Bakos and Brynjolfsson (1999), who show that pure bundling extracts almost

all of the consumer surplus. Mixed bundle strategies, i.e., strategies that allow customers

to purchase the goods in a bundle or separately, have been considered in recent work of

Babaioff et al. (2014), Abdallah et al. (2017), Abdallah (2018). A loot box can be thought

of as bundle of possible goods, but where only a single item is allocated. Mechanisms of

this form are considered in Briest and Roglin (2010) who study so called unit-demand

bundles in a static model.

Closest to our paper, in the sense that an individual customer dynamically purchases

multiple items from the seller, is Ferreira and Goh (2018). In this paper, the authors

consider whether or not to offer the products in sequence or all at once, but do not consider

any form of randomized selling strategies such as a loot box. There has also been a line of

work where a customer makes decisions in multiple stages when faced with an assortment

from the seller, although only at most one unit is purchased (Wang and Sahin 2017, Gallego

et al. 2019, Golrezaei et al. 2018).

Finally, our work contributes to the emerging literature on operations management in

video games. Chen et al. (2017) amd Huang et al. (2018) investigate the problem of max-

imizing a player’s engagement in video games. Ryan et al. (2016) considers the problem
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of incentivizing actions in so-called freemium games. Our work however is the first to

investigate the popular practice of loot box selling.

2. Model and Preliminaries

We consider a revenue-maximizing monopolist selling a catalog of N distinct, non-

perishable, virtual items. A random customer’s valuation for the items are described by

non-negative i.i.d. random variables {Vi}Ni=1, where each Vi is drawn from a distribution

F . The mean and variance of Vi are denoted by µ and σ2, respectively. The assumption

of i.i.d. valuations is reasonable when the items are cosmetic (such as character skins and

customizations) and do not affect the balance of the game or when items are of similar

importance, both of which are common in many games that deploy loot boxes. In Sec-

tion 4.2, we extend our model to address the case where items are vertically differentiated

and can naturally be categorized into multiple classes based on their values or rarities.

We suppose that each customer is aware of all available items in the seller’s catalog as well

as their own private valuations for the items Vi for i∈ [N ], where [N ] is used to represent

the index set {1, . . . ,N}. No customer values having duplicates of an item, meaning a

customer’s valuation for a second unit of each item i is 0. This assumption is natural in

the context of virtual items. For example, a second identical skin for the same character

offers no additional value to the customer. In some games, the seller provides a salvage

mechanism through which the customer can obtain value from duplicate items by trading

them in for (in-game or real-world) currency. We discuss this extension in Section 4.4.

A loot box can be formally defined as a random allocation of a single item to the

customer, chosen according to a probability distribution over all N items. We note that the

probability distribution is decided by the seller, and may or may not depend the customer’s

current inventory. There are also cases where multiple items are allocated in one loot box,

which is an extension we consider in Section 4.1. Moreover, we assume that the customer

always knows the actual allocation probability. This is consistent with industry practice,

as sellers are often forced to announce the allocation probabilities, either by government

issued customer protection regulations (Tassi 2017) or by edict of the games distributor

(Apple 2018, Google 2019). In Section 4.3, we consider extensions where the seller lies

about the allocation probabilities or does not know the customer risk preferences.

We now describe the sequence of events in our loot box model, which capture a single

customer repeatedly interacting with the seller. Before the arrival of the customer, the
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seller announces the price and allocation probabilities (that is, the probabilities of receiving

each item) of the loot box. In each period t, we let St ⊂ [N ] denote the set of unique

items that the customer owns before opening the loot box in period t. Thus, S1 = ∅.

Based on the price, allocation probabilities, and the private valuations for items in [N ]\St,

the customer decides whether or not to purchase the loot box. We assume customers are

utility-maximizing and will purchase if their expected utility is non-negative, otherwise the

customer will not purchase and permanently leaves the system. We discuss the customer

behavior in more detail in Section 2.1.

We now formally describe two forms of loot box selling that we focus on as well as two

benchmark strategies known as grand bundle selling and separate selling.

1) Unique Box (UB): In the unique box strategy, the monopolist offers a loot box in

each period for a fixed price p, with the guarantee that each purchase of a unique box yields

a new item that the customer does not yet own. Formally, the probability of receiving an

item is 0 if i ∈ St, and 1
|[N ]\St| for i ∈ [N ]\St, i.e., uniform over all the items not currently

owned by the customer. Fig. 2a shows an example of a unique box in practice. We let

RUB(p) be the normalized revenue of a unique box strategy that uses price p, i.e.,

RUB(p) :=
p×E[# of Unique Box Purchases]

N

and let RUB := maxpRUB(p).

2) Traditional Box (TB): In the traditional box strategy, the monopolist offers a loot

box for a fixed price p in each period, with the guarantee that each purchase yields an

item selected uniformly at random from [N ], regardless of what the customer owns in St.

Traditional boxes lead to the possibility of duplicate items during a customer’s purchasing

process. Fig. 2b shows an example of a traditional box in practice. We let RTB(p) be the

normalized revenue of a traditional box strategy that uses a fixed price p, i.e.

RTB(p) :=
p×E[# of Traditional Box Purchases]

N

and let RTB := maxpRTB(p).

We emphasize that, at first glance, it is not clear which loot box strategy generates more

revenue. Intuitively, customers may have higher valuations for unique boxes, which allows

sellers to charge higher prices. On the other hand, although the seller may have to charge



8 Chen, Elmachtoub, Hamilton, and Lei: Loot Box Pricing and Design

Figure 2 Loot Boxes in Online Games.

(a) Unique Box (b) Traditional Box

Note. The left panel shows an implementation of a unique loot box in the popular online game Dota 2. The red

square highlights that it is a unique box as the loot box always allocates a unique item. The right panel shows an

implementation of a traditional loot box in the online game PlayerUnknown’s Battlegrounds.

lower prices for traditional boxes, the selling volume may end up being higher because

customers need to make more purchases in order to obtain new items. Indeed, for finite

N , we provide instances where either strategy may dominate the other in Table 1.

We shall compare and contrast these loot box models against two classic selling models:

grand bundle selling and separate selling.

3) Grand Bundle (GB): In the grand bundle strategy, the monopolist offers a single

bundle containing all N items for price Np. Customers no longer make dynamic decisions

when a grand bundle is offered, but rather just make a single decision to purchase or not.

The normalized revenue of a grand bundle strategy with price Np is

RGB(p) :=
NpP

(∑N
i=1 Vi ≥Np

)
N

,

and the optimal normalized revenue is denoted by RGB := maxpRGB(p). Fig. 3a shows an

example of a grand bundle in practice.

4) Separate Selling (SS): In the separate selling strategy, the monopolist sells all items

individually at the same price p. Since we assume the valuations Vi are i.i.d, the normalized

revenue of an separate selling strategy with price p is then

RSS(p) :=
NpP (V ≥ p)

N
,

and the optimal normalized revenue is denoted by RSS := maxpRSS(p). Fig. 3b shows an

example of separate selling with uniform prices in practice.
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Figure 3 Traditional Selling Strategies in Online Games.

(a) Grand Bundle (b) Separate Selling

Note. The left panel shows an implementation of grand bundle selling in the online game Brawlhalla. All items can

be unlocked for a one-time payment of $19.99 via the All Legends Pack. The right panel shows an implementation of

separate selling in the online game Arena of Valor. In this game each item (character) can be individually unlocked

with uniform prices.

While there are of course more strategies to sell virtual items, we restrict our atten-

tion to these four as we believe they capture the spirit of almost all strategies observed

in practice. Among them, the grand bundle and separate selling strategies provide two

important benchmarks. Separate selling is the most common and natural selling strategy

in e-commerce. Grand bundle selling is also common for digital goods such as music and

television, and has been shown to be able to fully extract the maximum possible revenue

when N tends to infinity (Bakos and Brynjolfsson 1999). However, unlike the other three

strategies, under the grand bundle strategy a customer must commit to purchasing all of

the items or none of the items. In practice, requiring such a commitment may impair the

grand bundle’s performance due to the large upfront financial commitment required. In

contrast, separate selling and loot box strategies are more friendly to customers that prefer

smaller purchases or have a smaller budgets. Although the grand bundle selling may be

prohibitive in practice, it serves as a useful theoretical benchmark since it is asymptotically

revenue-optimal.

2.1. Customer Behavior

We next describe how customers value loot boxes and make purchase decisions. We assume

that customers are risk-neutral, and their valuation of a loot box is simply the expectation,

over the allocation probabilities, of the valuation of the random item they will receive.
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Let Ut be the expected utility of opening a loot box in period t for a price p. Since the

allocation probabilities are uniform, Ut has the following form:

(Unique Box) Ut =

∑
i∈[N ]\St Vi

N − |St|
− p, (Traditional Box) Ut =

∑
i∈[N ]\St Vi

N
− p.

Naturally, to maximize the expected utility, customers would purchase the t-th loot box

if Ut ≥ 0. However, it is sometimes rational for a customer to purchase even if Ut < 0,

in expectation for higher utilities in future periods. The following example demonstrates

that myopic behavior (purchasing if and only if Ut ≥ 0) is not necessarily optimal for the

customer.

Example 1. Let N = 2 and consider the unique box strategy. Let the price of each loot

box be p= 1.6. Consider a customer whose valuations of the two products are (V1, V2) =

(1,2). If the customer is myopic, then they will not buy a single unique box since the

expected utility of the first loot box is 1+2
2
− 1.6< 0. However, it can be shown that the

following purchasing strategy is optimal: always buy a loot box in the first period. If the

obtained item is product 2 where V2 = 2, then stop purchasing. Otherwise purchase a

second loot box, which is guaranteed to contain product 2. The expected net utility of this

strategy is 1
2
(2− 1.6) + 1

2
(1 + 2− 1.6× 2) = 0.1> 0. Thus, behaving myopically is strictly

worse than the optimal strategy. �

Technically, in each period t, a perfectly rational customer needs to solve a high-

dimensional and complex optimal stopping problem to decide whether or not to pur-

chase. However, this is impractical and unrealistic for general customers as the state space

increases combinatorially in the number of items. Instead, we make the natural modeling

assumption that customers are myopic, i.e., they purchase if and only if their expected

net utility for the next loot box Ut is non-negative. The optimal decision and the myopic

decision can be different in general, however Theorem 1 shows that the myopic behavior

is asymptotically optimal for a customer facing unique box selling as the catalog of items

grows large. Moreover, we show in Theorem 1 that myopic behavior is always optimal for

a customer facing traditional boxes.

Theorem 1 (Myopic Purchasing Behavior is Asymptotically Optimal).

a) For unique box selling, the average net utility under the myopic strategy converges to

the average net utility of the optimal strategy as N →∞.
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b) For traditional box selling, the myopic purchasing strategy is optimal for all customers.

Due to the complexity and impracticality of computing the customer’s optimal purchas-

ing policy and the fact that a myopic purchasing rule is near-optimal, we believe restricting

to myopic purchasing behaviour does not degrade the power of our models. Further, we

note that in cases where the optimal purchasing strategy differs from the myopic strategy,

the customer purchases strictly more loot boxes under the optimal behavior. Thus the

revenue of a loot box strategy under the assumption of myopic behavior is a lower bound

on the revenue when customers purchase optimally. For the remainder of this paper, we

shall assume customer behavior is myopic.

2.2. Comparing the Strategies for Finite N

In this section we aim to understand which of the four strategies is best, in particular when

N is finite. Specifically we would like to establish relations between the optimal revenues

of (UB), (TB), (SS), and (GB). In Proposition 1, we show that the normalized revenue

is always at most µ, and that the unique box strategy can never exceed the revenue of a

grand bundle strategy.

Proposition 1. For any N and valuation distribution F , the following statements hold:

(a) µ≥max{RGB,RSS,RUB,RTB}, i.e., µ is a global upper bound on normalized revenue.

(b) RGB ≥RUB, i.e., grand bundle selling weakly dominates unique box selling.

Proof. (a) For any strategy, the customer only makes a purchase when their expected

utility is non-negative. Thus, the expected customer surplus is always non-negative. On the

other hand, the total normalized expected welfare is always at most E[
∑

i∈[N ] Vi]/N = µ.

Together, these facts imply that the normalized revenue for any strategy is at most µ.

(b) Let p∗ be the optimal price of the unique box strategy. For a customer to purchase

the very first unique box, we must have that
∑
i Vi
N
≥ p∗. In this case, an upper bound on

the revenue is at most Np∗. Under the same condition, the customer would buy the grand

bundle at price Np∗ since
∑

i Vi ≥ Np∗. Therefore, the revenue from an optimal grand

bundle strategy is at least as much as the optimal unique box strategy. �

Unfortunately, outside of Proposition 1, there does not exist any other dominance rela-

tionships among the four selling strategies. In particular, the same argument in Propo-

sition 1 does not extend to the comparison of grand bundle selling and traditional box

selling. Although the condition for purchasing the first traditional box remains the same,
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a customer may end up buying strictly more than N boxes overall due to the possibility

of duplicates. In fact, Table 1 illustrates simple examples in which all of the 11 remaining

possible relationships between the four selling strategies occur.

Table 1 Possible Relations Between (UB), (TB), (GB) and (SS).

Relations N Valuation

GB >UB,GB >TB,GB >SS 3 P(Vi = 0.98) = 1/2,P(Vi = 2.02) = 1/6,P(Vi = 3.01) = 1/3

UB >SS,UB >TB,SS > TB 10 P(Vi = 1) = P(Vi = 2.75) = 1/2

TB >UB,TB >SS 3 P(Vi = 1.01) = 1/2,P(Vi = 1.98) = 1/6,P(Vi = 3.03) = 1/3

SS >GB,TB >GB 2 P(Vi = 1) = P(Vi = 100) = 1/2

SS >UB 4 P(Vi = 1) = 3/10, P(Vi = 10) = 7/10

From Table 1, it is virtually impossible to compare the selling strategies when N is

small without imposing significant assumptions. Therefore, in the rest of the paper we

focus on an asymptotic analysis where the number of items N tends to infinity. This is

well-motivated in the gaming industry where N , the number of items sold in a video game,

is often in the hundreds or thousands. For example, in the popular online games Dota

2 and Overwatch, the number of cosmetic items sold through loot boxes exceeds 3500.

As we shall see, dominance relations among the four strategies naturally emerge in this

asymptotic regime.

3. Asymptotic Analysis of Loot Box Strategies

In this section, we study the revenue of optimally priced loot box strategies as the number

of items N in the catalog tends to infinity. Given the incomparablility of the various selling

strategies shown in Section 2.2 and the fact that N is often quite large in practice, this

asymptotic analysis is quite natural. In this asymptotic regime, we shall show that an

optimal unique box strategy earns a normalized revenue of µ per item (c.f. Theorem 2),

whereas the optimal traditional box strategy earns a normalized revenue of only µ
e
≈

0.367µ (c.f. Theorem 3). Since the expected normalized revenue of any selling strategy

cannot exceed the mean valuation µ by Proposition 1, this result proves that unique box

and traditional box strategies are asymptotically optimal and sub-optimal, respectively.

Additionally, we can directly compare the performance of these two loot box strategies
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with grand bundle selling and separate selling in this regime. Using the strong law of large

numbers, it is well known that the grand bundle also obtains a normalized revenue of µ (see

Bakos and Brynjolfsson (1999) for a detailed discussion). On the other hand, the revenue

of separate selling strategies depends explicitly on the distribution of customer valuations,

and can earn anywhere between 0% and 100% of the normalized revenue.

Theorem 2 (Asymptotic Revenue and Convergence Rate of UB). The unique

box strategy is guaranteed to earn

RUB ≥ µ(1−N−1/5)

(
1− (1 +

2σ2

µ2
)N−1/5− σ

2

µ2
N−3/5− σ

4

µ4
N−4/5− (

σ2

µ2
+
σ4

µ4
)N−6/5

)
.

Moreover,

lim
N→∞

RUB = µ.

Theorem 3 (Asymptotic Revenue and Convergence Rate of TB). The tradi-

tional box strategy is guaranteed to earn

µ

e
log

 1

1
e

+
1+σ2

µ2

N

≤RTB ≤
µ

e1−ζN (1−N− 1
3 )

+
(1−N− 1

3 )σ2 logN

µN
1
3

,

where ζN =
∑N

i=1
1
i
− log (N)− γ, and γ is the Euler-Mascheroni constant. Moreover,

lim
N→∞

RTB =
µ

e
.

The proofs of Theorem 2 and Theorem 3 rely on modeling the customer behavior dynam-

ically using two different random walks. Moreover, we explicitly construct a sequence of

prices that lead to the lower and upper bounds. For Theorem 2, we consider a random

walk that captures the total utility of a customer collected in each period. Unfortunately,

the time a customer stops purchasing is not a stopping time since it depends on all their

valuations, which is not known to the seller. However, we approximate the time that the

customer stops purchasing by a true stopping time of the random walk, and then leverage

standard machinery to bound the total number of purchases. Finally, we show that setting

a price of p= µ(1− 1
N1/5 ) leads to the desired result.

For Theorem 3, we consider a ‘backwards’ random walk that is the total valuation

collected by a customer, starting from the very last item they would collect. Moreover,
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this walk may collect more than N items, including virtual items we model. We show

that in our constructed random walk, the number of unique items collected corresponds

to a stopping time, and then leverage standard machinery to bound the stopping time.

Since duplicates are allowed, we must also account for the number of purchases required

to a collect a unique item, which depends on the number collected so far. Finally, we use

prices p= µ
e

and p= µ/exp(1 + log(1−N− 1
3 )− ζN) to generate lower and upper bounds,

respectively.

Theorems 2 and 3 highlight an important design aspect of loot boxes: the ability to

monitor a customer’s current inventory and appropriately control the allocations. With

full information of a customer’s inventory, a seller can implement unique boxes which

are asymptotically revenue-optimal. Without this information, the seller is restricted to

traditional loot boxes which garner only 1
e

fraction of the optimal revenue. Note that this

is not a lower bound, but rather an exact asymptotic limit of traditional loot box selling

revenue. Moreover, both of these results hold for any underlying valuation distribution.

Next, we present further insights into unique and traditional box strategies in Theorem

4 that explain the limiting optimal price, sales volume, and customer surplus. Theorem 4

yields several counterintuitive insights on the tradeoff between unique and traditional box

strategies. One would expect that since unique boxes always provide a customer with

some value, that customers would prefer such a strategy. In addition, one may also expect

that since traditional boxes yield duplicates, customers may tend to buy more of them

than unique boxes. Surprisingly, when optimally priced both of these conjectures are false

according to Theorem 4.

Theorem 4 (Insights into Loot Box Strategies).

(a) For the unique box strategy, as N →∞, the optimal price converges to µ. Further, the

expected fraction of unique items collected by the customer converges to 1, the expected

normalized number of loot boxes purchased converges to 1, and the expected normalized

customer surplus converges to 0.

(b) For the traditional box strategy, as N →∞, the optimal price converges to µ
e
. Fur-

ther, the expected fraction of unique items collected converges to 1− 1
e
, the expected

normalized number loot boxes purchased converges to 1, and the expected normalized

customer surplus converges to (1− 2
e
)µ.
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Theorem 4(a) says that the optimal price for unique boxes as N tends to infinity is

approximately µ, and that customers purchase approximately the entire catalog. Since

their average valuation is µ, this leaves them with no consumer surplus. On the other

hand, Theorem 4(b) says that the optimal price for unique boxes as N tends to infinity

is approximately µ
e
, and that customers purchase approximately N items resulting in col-

lecting 1− 1
e

fraction of the catalog of items. Although the consumers do not acquire the

entire catalog, they are left with a positive normalized consumer surplus of approximately

(1− 2
e
)µ. To summarize, under both strategies the customer purchases approximately N

loot boxes. However, the price is lower for traditional boxes, resulting in less revenue for

the seller and more surplus for the consumer. Surprisingly, consumers are therefore better

off with traditional boxes where duplicates are allowed, since unique boxes lead to higher

prices and minimal customer surplus.

In light of Theorem 3, it is worthwhile to discuss why traditional boxes are popular

among sellers, given their substantially lower expected revenue in our model. We posit

three possible explanations. First, traditional boxes have existed well before the digital

age, for example as Gachapon or packs of Pokemon cards, and may continue as a hold over

from those times. Second, there is long-term value in making sure consumers have some

surplus, which our model does not capture. Third, the presence of a salvage system (resale

market) may increase the revenue of a traditional box strategy since loot boxes can be sold

at a higher price. We study this idea in detail in Section 4.4.

4. Loot Box Design

In this section, we extend the results of the previous section to handle various practical

extensions and design questions beyond the choice of unique versus traditional boxes. Recall

that our loot box framework assumes that each loot box allocates one random item, that

the valuations for all items are i.i.d., that the allocation distribution is uniformly random,

and that customers obtain no value from duplicate items. In practice, these assumptions

may sometimes be violated and thus we address them here. In Section 4.1, we discuss an

extension where each loot box allocates multiple items. In Section 4.2, we discuss the case

where there are multiple classes of items, and characterize the optimal allocation probabil-

ities under this heterogeneous item setting. In Section 4.3, we consider what happens when

the seller deviates from the announced allocation probabilities. Finally, in Section 4.4, we

consider a scenario where the seller offers a salvage system (resale market), in which case

unwanted items can be salvaged by the customer for some return value.
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4.1. Multi-item Loot Boxes

Although many games allocate one item at a time in loot boxes, it is also common practice

to allocate multiple items in one loot box such as in Fig. 4. A classic example of loot

boxes containing multiple items are baseball or Pokemon cards, which are sold in packs.

In practice, sellers may use a size-j box when the mean valuation of an item µ is very low

(e.g., less than $0.10). In this case, selling multiple items in one box allows the seller to set

a larger price, which helps reduce the number of transactions for the customer and allows

prices to conform to market norms (e.g., the phenomenon of pricing at $0.99).

Figure 4 Multi-item Loot Boxes in Online Games.

Note. Depicted is a multi-item loot box in the mobile game Rise of the King. Each box contains 4 items.

In this section, we show that Theorems 2 and 3 extend to the case where loot boxes

are of fixed size j > 1. We use Rj
UB and Rj

TB to denote the revenue of the optimal size-j

unique box and traditional box strategies, respectively. Proposition 2 shows that unique

box strategy is still optimal, and the traditional box strategy still only earns 36.7% as

much when N tends to infinity.

Proposition 2 (Multi-Item Loot Boxes). For size-j loot boxes,

lim
N→∞

Rj
UB = µ and lim

N→∞
Rj
TB =

µ

e
.

The proof works by using a coupling argument that implies a size-j box is always purchased

the last time a size-1 box would be purchased. In the case of the traditional box strategy,

one must also be careful and slightly decrease the price of the traditional size-j box as its

value is now lower on average than a size-1 box, due to the possibility of more duplicates

in a single box.
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4.2. Optimizing Allocation Probabilities for Multiple Classes of Items

In the previous sections, we assumed that valuations for all items are i.i.d., and that each

item (unowned item in the case of unique boxes) was equally likely to be allocated by the

loot box. In practice, these assumptions may not always hold. Often in online games, the

items are explicitly grouped based on rarity or effectiveness. For instance, in the popular

online game PlayerUnknown’s Battlegrounds, customers may receive Mythic, Legendary,

Epic, or Rare items from a loot box (see Fig. 5).

Figure 5 Loot Box with Multiple Classes.

Note. In the game PlayerUnknown’s Battlegrounds, the traditional box contains four classes of items: Mythic, Leg-

endary, Epic, and Rare. The allocation probability varies across classes, however items within the same class have

the same probability.

To model this phenomenon, we suppose there are M different classes of items, and that

each item i ∈ [N ] belongs to a specific class m ∈ [M ]. Denote Gm ⊂ [N ] as the set of

items in class m and denote βm as the proportion of the items belonging to class m, i.e.,

βm := |Gm|/N and
∑

m∈[M ] βm = 1. For each class of items m, the valuations for the items

in that class are sampled i.i.d. from distribution Fm. We denote the mean and standard

deviation of the valuations for items in class m by µm and σm. Let µ :=
∑M

m=1 βmµm be the

expected valuation of a random item. For different classes, the distribution Fm may vary

wildly.

For asymptotic results, we shall suppose the number of items in each class grows pro-

portionally with N , i.e., there are βmN items belonging to class m as N increases. The

introduction of multiple item classes allows for some items to be significantly more valu-

able than others, and thus it is reasonable to consider non-uniform allocation probabilities
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of the items. A loot box strategy is now characterized by a price p and the allocation

probabilities of each item, which may depend on its class. Our goal is to characterize

the revenue-optimal combination of price and allocation probabilities for loot boxes over

multiple classes of items.

For unique box strategies, the optimal allocation probabilities are non-uniform, dynamic,

and depend on the current set of items owned by the customer. It is difficult to explain such

policies to customers, let alone characterize the optimal allocation probabilities. Thank-

fully, for unique boxes there is a simple allocation and pricing strategy that is asymp-

totically optimal for the seller. Proposition 3 shows that a unique box strategy that sim-

ply allocates all unowned items uniformly at random, completely ignoring the class, is

asymptotically optimal. Thus, for the tth unique box, each unowned item is allocated with

probability 1
N−(t−1)

.

Proposition 3 ((UB) with Uniform Allocation is Asymptotically Optimal).

Suppose unique boxes allocate items uniformly at random, independent of class. Then we

have that

lim
N→∞

RUB = µ.

Surprisingly, the proof of Proposition 3 is almost identical to that of Theorem 2. Although

the distribution of the unowned items is no longer i.i.d., Wald’s identity and Chebshev’s

inequality continue to hold where appropriate.

Next, we shift focus to the allocation problem for the traditional box strategy. Once

again, we shall show that a simple allocation policy is asymptotically optimal (Theorem 5).

Specifically, we show that it is optimal to allocate each item uniformly at random (w.p.

1
N

), independent of the class. To simplify the problem, we restrict our attention to class

level allocation probabilities, i.e., allocation rules where all items in the same class have the

same allocation probabilities. We emphasize that class level allocation rules are common

in practice (e.g., Fig. 5). For a class level allocation rule, we let dm be the probability

of drawing an item in class m, and d = (d1, . . . , dM) be a probability vector. Thus, the

probability of getting an item in class m is then dm
βmN

. A uniform allocation rule corresponds

to the case where d=β.

Further, let QN(p,d) be the normalized number of loot boxes purchased by a customer

(i.e. E[# Purchases]
N

) and let RTB(p,d) be the normalized expected revenue, which are both
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a function of the price p and class allocation probabilities d. Next, in Proposition 4, we

show that for a carefully constructed price as a function of d, the limit of QN(p,d) can be

characterized simply.

Proposition 4. Suppose a traditional box strategy follows a multi-class allocation rule

d and price p=
∑M

m=1 dmµme
− dm
βm

k for some 0<k < 1. Then

lim
N→∞

E
[
QN(p,d)

]
= k.

For example, when dm = βm for all m, and k= 0, the induced price in Proposition 4 is p=

µ. Proposition 4 implies that the limiting normalized selling volume for this price with the

uniform allocation strategy is 0. This agrees with our intuition, as the customer valuation

drops below µ after opening εN boxes for any fixed ε > 0. Armed with Proposition 4, we

find in Theorem 5 that as N tends to infinity, the simple strategy of setting the price to be

µ̄
e

and the allocation probability vector to be simply β results in asymptotically optimal

normalized revenue of µ̄
e
.

Theorem 5 ((TB) with Uniform Allocations are Asymptotically Optimal).

For traditional box with M classes, we have

lim
N→∞

max
p,d
RTB(p,d) = lim

N→∞
RTB

(
µ

e
, (β1, . . . , βM)

)
=
µ̄

e
.

Proof. Consider a class allocation probability vector d = (d1, . . . , dM). For p >∑M
m=1 dmµm, by the law of large numbers, the normalized selling volume will tend to 0. Thus

we can focus on the case p ≤
∑M

m=1 dmµm. Note
∑M

m=1 dmµme
− dm
βm

k equals µ when k = 0,

and decreases monotonically to 0 as k→∞. Thus for any price p, there exist a unique pos-

itive k such that p=
∑M

m=1 dmµme
− dm
βm

k. Recall by Proposition 4, if p=
∑M

m=1 dmµme
− dm
βm

k,

1>k > 0, then

lim
N→∞

E
[
QN(p,d)

]
= k.

Using this identity we can write the limiting revenue function in terms of k, i.e.,

lim
N→∞

RTB(p,d) = lim
N→∞

p ·E
[
QN(p,d)

]
= k

M∑
m=1

dmµme
− dm
βm

k :=
M∑
m=1

Gm(k).

Consider the mth term of the revenue function, Gm(k) = µmdmke
− dm
βm

k. This function

obtains its maximum at k = βm/dm, and the maximum value is βmµm/e, which is inde-

pendent from the value of dm. Hence, the limiting optimal revenue is bounded above by
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m=1 βmµm/e= µ̄/e. For any d, we can reach the the upper bound µ̄/e if every component

function reaches the maximum simultaneously in the limit, i.e., k= βm/dm for all m. Since∑M
m=1 βm =

∑M
m=1 dm = 1, the only possible limiting allocation is dm = βm, which is the uni-

form allocation. In this case, k= 1, and the corresponding price is p=
∑M

m=1 dmµme
− dm
βm

k =

µ̄/e. Hence, the solution p= µ̄/e with uniform allocation is asymptotically optimal with

corresponding revenue µ̄/e. �

Note that the allocation d = (β1, . . . , βM) is simply the uniform allocation over all the

items (not over all classes). Theorem 5 provides a natural generalization of Theorem 3

to the multi-class case. The uniform allocation strategy with price µ/e is asymptotically

optimal, for any number of classes and any set of valuation distributions. In this sense,

Theorem 5 makes the decision of a seller who adopts traditional box simple: instead of

designing complicated allocation structures, simply use uniform allocations and focus on

the price. Further, Theorem 5 extends the asymptotic dominance of unique box strategies

over traditional boxes to the case of multiple item classes; varying the allocation probabil-

ities cannot close the gap in revenue between the two strategies.

We emphasize that for uniform allocations to be optimal in Theorem 5, the price for the

loot box must be optimally chosen. For prices other than µ/e, uniform allocations may not

be the best asymptotically. For example, suppose we have two classes with µ1 = $10, µ2 =

$5 and β1 = β2 = 0.5, then the price µ̄
e

= $2.76 with uniform allocation is asymptotically

optimal. However, if the seller uses the price $3, then by optimizing over d, we find that

the asymptotically optimal allocation probabilities are d = (0.514,0.486).

4.3. Transparency of the Allocation

In the previous section, we assumed that both the customer and the seller believe and act

according to the announced allocation probabilities. In practice, the seller sometimes may

lie about the allocation probabilities by purposely using an allocation strategy different

than the announced strategy. In this section, we discuss the potential implications of this

case.

Consider a situation where the seller deviates from the posted allocation rule, but the

customers still believes the posted allocation rule. As an example, such a situation occurred

in the game Monster Taming, where the seller claimed the chance to receive a rare item

was 1% whereas the actual odds were 0.0005% (Fingas 2018). In such cases, the duped

customer may end up buying many more loot boxes due to the false announcement. In
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Example 2, we demonstrate that sellers can greatly increase their revenue by misrepre-

senting the allocation probabilities, and further, can do so in a way that is difficult to

detect (unlike in the case of Monster Taming). In particular, Example 2 shows that a so

called random perturbation strategy can increase the revenue of a traditional loot box while

adhering to the announced allocation rule in expectation, making such a deception hard

to detect.

Example 2. Consider a traditional box with a single class of items and price µ/e.

Suppose the seller claims that a uniform allocation is used, but instead, the seller randomly

chooses half of the items to be allocated with probability 1+ε
N

and the other half to be

allocated with probability 1−ε
N

. By Proposition 4, the normalized selling volume under a

truly uniform allocation is asymptotically equal to 1. On the other hand, when the random

perturbation is used, the traditional box can be regarded as a two-class traditional box,

with µ1 = µ2 = µ, and d= (0.5(1 + ε),0.5(1− ε)). If the customer has complete information,

then by Proposition 4, the normalized selling volume k is given by solving

µe−1 = µ

(
1 + ε

2
e−(1+ε)k +

1− ε
2

e−(1−ε)k
)
. (1)

However, if the customer assumes the allocation is uniform, then the weight of two classes

changes from (1+ε
2
, 1−ε

2
) to (1

2
, 1

2
) while the exponential terms in Eq. (1) remain the same.

In this case k is given by solving

µe−1 = µ

(
1

2
e−(1+ε)k +

1

2
e−(1−ε)k

)
,

and it turns out that k is strictly greater than one. Thus, the selling volume (and thus

revenue) increases by setting ε > 0. For example when ε = 0.2, the selling volume and

revenue increases by 2.4%. �

We highlight that even small perturbations from uniform allocations can be profitable,

while being quite difficult for a consumer to notice. Further, the total number of each

item allocated among all the customers in the market is balanced, meaning a regulator

examining aggregate data may not notice the influence of such strategies. Thus, Example 2

demonstrates the need for regulators to focus on not only enforcing that sellers follow the

allocation probabilities, but also ensuring that the seller follows these rules precisely for

each customer.
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4.4. Salvage System

In previous sections, we assumed that customers have no value for duplicate items received

in traditional loot boxes, and that a customer could not resell items back to the seller. In

practice however, some loot box marketplaces are equipped with salvage systems, mech-

anisms by which a customer can trade in unwanted items for currency. Outside of video

games, many forms of collectible cards can easily be salvaged for value. Salvage systems are

an ubiquitous method for managing customer satisfaction under loot box policies, offering

customers a form of recourse against unlikely or unfortunate outcomes. In Fig. 6 we pro-

vide an example of such a salvage system. In this section, we shall consider loot box selling

strategies that allow customers to trade-in or salvage item for a value of c. For simplicity,

we restrict our attention to the case where the loot box allocates a single item at a time

and there is only a single class of items.

Figure 6 Salvage System in Dota 2.

Note. In the game Dota 2, players can trade in 6 unwanted items for a new loot box plus 2000 shards, a form of

in-game currency.

The main focus in this setting will be on the understanding the two competing effects

that salvage systems have on loot box revenue. On the one hand, the presence of a salvage

cost c increases the minimum valuation of any item to at least c, increasing the expected

valuation of an item (from E[V ] to E[max{V, c}]) and thus inducing more purchases. On

the other hand, salvage systems return currency to the customer which dilutes the revenue

garnered from customer purchases. The results in this section characterize and extend the

revenue guarantees of Theorems 2 and 3 to the case when items can be salvaged for some

value c. We use the notation R(·)(c) to denote the optimal revenue of a strategy with fixed

salvage cost c. Note that in the presence of a salvage system, the allocation mechanism for
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unique box strategies is no longer well-specified. For our results we assume that customers

facing a unique loot box strategy are never allocated an item they had previously salvaged,

which is the case in the example described in Fig. 6.

We first show in Theorem 6 that the introduction of a salvage system by the firm makes

both loot box strategies more attractive than separate selling. Specifically, by treating the

salvage cost c as a parameter of a loot box strategy, the revenues of both the optimal

unique box or traditional box strategies are guaranteed to dominate the revenue of separate

selling.

Theorem 6 (Loot Boxes with Salvage Outperform Separate Selling). For any

N , both the unique box and traditional box strategies with a salvage system dominate sep-

arate selling, i.e.,

max
c
RUB(c)≥RSS and max

c
RTB(c)≥RSS.

Proof of Theorem 6. Let p∗ be the optimal price used by separate selling. Now consider

a loot box strategy (either unique or traditional) with salvage cost p∗ and price p∗. The

customer will purchase loot boxes, keeping all the items which they value at p∗ or greater

and returning the unwanted items for a full refund, until they obtain all items which they

value above p∗. Thus, such a loot box induces the same revenue as separate selling, which

implies that

max
c
RUB(c)≥RSS and max

c
RTB(c)≥RSS.

�

We emphasize that this result is valid for any finite N . It is well known that the grand

bundle is not guaranteed to outperform separate selling for finite N , even though grand

bundle selling is asymptotically optimal. Thus, Theorem 6 allows us to pin down the precise

relationships between loot box strategies and separate selling and further explains the

power and popularity of loot boxes in practice.

We next investigate the revenue of salvage systems in the asymptotic regime. Proposi-

tion 5 gives the limiting normalized revenue with respect to a fixed salvage cost c.

Proposition 5 (Revenue and Surplus of Loot Box Strategies with Salvage Costs.).

Let c be the salvage cost, and η=E[V |V > c].
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a) The unique box strategy asymptotically earns

lim
N→∞

RUB(c) = ηF̄ (c),

and the limiting normalized customer surplus is cF (c).

b) The traditional loot box strategy asymptotically earns

lim
N→∞

RTB(c) = F̄ (c)(η− c)
(

c

η− c
+ e−

η
η−c

)
,

and the limiting normalized customer surplus is F̄ (c)
(

(η− c)− (2η− c)e−
η
η−c

)
.

This result generalizes the insights derived from Theorem 2 and Theorem 3 to the

case with salvage costs. First, note that like before the (asymptotic) revenue of unique

box strategies dominates the (asymptotic) revenue of traditional box strategies for any

valuation distribution F and salvage cost c. To see this, note since 0 < c ≤ η, we may

substitute c by c = qη, for some q ∈ [0,1]. Plugging in this substitution and rearranging

yields:

lim
N→∞

RTB(c)≤ F̄ (c)η max
q∈(0,1]

(
q+ (1− q)e−

1
1−q

)
≤ F̄ (c)η= lim

N→∞
RUB(c), (2)

where the final equality comes from noting q + (1− q)e−
1

1−q is monotone increasing and

tends to 1 as q→ 1. Thus limN→∞RUB(c) ≥ limN→∞Rc
TB. Further, the monotonicity in

the maximum in Eq. (2) implies when c
η

is large (close to 1), the gap in expected revenue

between unique box strategies and traditional box strategies is small and generally shrinks

from a factor of e ( c
η

= 0) monotonically down to 1 ( c
η

= 1). Thus when salvage costs

are large relative to η, the additional value of employing unique box strategies decreases.

Further, by combining Theorems 2 and 6 and Proposition 5, we obtain a complete ordering

of the four strategies in presence of salvage cost:

lim
N→∞

RGB = lim
N→∞

max
c
RUB(c)≥ lim

N→∞
max
c
Rc
TB ≥ lim

N→∞
RSS,

Compared to the revenue without salvage, it is worth noting that for the unique boxes,

F̄ (c)η≤ µ, with equality achieved only when c= 0. Hence, when N is large it is never opti-

mal for a revenue-maximizing seller to use salvage systems with unique boxes, although in

reality salvage systems improve consumer’s satisfaction. For traditional box, the benefit of

introducing a salvage system is distribution-dependent. For example, when Vi is a uniform
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random variable supported on [0, 2µ], the optimal traditional box revenue with salvage is

0.517µ, which is 40.4% better than 0.368µ, the revenue without salvage.

Finally, salvage systems are primarily used to improve customer outcomes and overall

satisfaction with the system. For unique box strategies, the expected normalized customer

surplus under a revenue maximizing unique box with salvage cost c is cF (c). Note the

expected normalized customer surplus is monotonically increasing in c. Thus the salvage

system enables the seller to balance revenue and customer surplus to their desired propor-

tion, although a revenue-maximizing seller would set c= 0 in the asymptotic regime.

For traditional box strategies, we find in Theorem 7 that the revenue-maximizing seller

may only increase the surplus by at most 1.4%, compared to the case without salvage

(c= 0).

Theorem 7 (Salvage System Barely Increases Surplus for (TB)). The limiting

normalized customer surplus of the traditional box strategy with any salvage cost c is at

most 1.4% more than the customer surplus of the traditional box strategy with no salvage

system (c= 0).

Proof. Recall from Proposition 5 that the customer surplus given salvage c is

F̄ (c)
(

(η− c)− (2η− c)e−
η
η−c

)
. By replacing c with qη, one can see that the normalized

customer surplus can be expressed as

F̄ (c)
(

(η− c)− (2η− c)e−
η
η−c

)
= F̄ (c)η

(
(1− q)− (2− q)e−

1
1−q

)
. (3)

As a special case, when c= 0 the normalized surplus is (1− 2
e
)µ= 0.264µ as discussed in

Theorem 4. When c > 0, note that in the right-hand side of Eq. (3), one can easily see that

F̄ (c)η ≤ µ, and maxq(1− q)− (2− q)e−
1

1−q = 0.268 where the maximum is reached when

q= 0.074. So using any salvage c may increase the customer surplus by at most 1.4%, i.e.,

0.268/0.264-1. In fact, the surplus decreases in most cases.

The following example shows that this bound is tight. Suppose valuations are constant

and equal to 1 for all items. Then for any c < µ, η = µ= 1. Let c= 0.074η = 0.074. Then

F̄ (c)η= 1, and the normalized surplus is 0.268, which is 1.4% better than 0.264, the surplus

from traditional box without salvage. �

Theorem 7 implies that for traditional boxes, the salvage system may serve as a tool to

increase revenue, but does not effectively improve the customers satisfaction.
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5. Conclusions

Our work implies a host of managerial insights for sellers, customers, and regulators of loot

boxes. For sellers, we give a thorough analysis of the profitability of loot boxes, yielding

guidelines for how to design and price loot boxes so as to maximize revenue. We show

that the unique box strategy is asymptotically optimal, whereas the traditional box can

garner only 36.7% of the maximum revenue. These results hold in the cases where loot

boxes allocate multiple items as well as when the items are heterogeneous. Surprisingly,

in the case where items come from multiple classes, a simple uniform allocation policy is

optimal.

From the customer perspective, we show that the traditional strategy is preferred, as

the unique box strategy does not yield any customer surplus. Further, we show that the

introduction of a salvage system has surprisingly little affect on customer surplus when

facing traditional loot boxes, with a potential gain of only 1.4%. We also show that cus-

tomers may be at risk to seller manipulation. Specifically, if the seller deviates from the

announced allocation probabilities, then they are capable of making more revenue, even

the allocation probabilities are correct in expectation. Thus, it is essential for regulators

to protect consumers against such a scenario. In fact, we show that the regulator must

check each customer’s allocations individually to properly ensure that the seller is being

truthful.

While loot box selling has gained attention in the domains of psychology and policy-

making, there is a distinct lack of academic work which analyzes loot boxes from a revenue

management perspective. While our work breaks ground on this topic, there are several

avenues to be unexplored. One particularly fruitful direction would be to study loot boxes

via the lens of optimal mechanism design, with the aim of characterizing conditions for

which loot box selling is the best possible mechanism. Other directions include personalized

and dynamic pricing/allocation rules, utilizing full or limited information of the customer’s

history. Also, one may consider alternative customer behavior models. In particular, one

may assume a dependency among the item valuations, or a submodular or supermodular

effect to collecting all the items. For example, customers may have a very high valuation for

the last unowned item with which would complete their collection. In this case, the revenue

from a traditional box strategy may increase dramatically, since it takes many purchases

in expectation to collect all the items. Finally, in connection with the ongoing debate in
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the media, it would be interesting to consider loot box pricing and design problems under

various legal or fairness considerations.
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Appendix A: Omitted Proofs

A.1. Omitted Proofs from Section 2

Proof of Theorem 1. (a) Unique Box. Without loss of generality, we index the items by the order in which

they are allocated, i.e., the i-th unique box yields the i-th item which is valued at Vi. Let Xk =
∑k

i=1(Vi−p),

which is the net utility of buying k unique boxes. Note that the myopic customer will buy the first unique

box if U1 =XN/N ≥ 0. The customer will continue to purchase until the first time τ + 1 where Uτ+1 < 0, i.e,

until

Uτ+1 =

∑
i∈[N]\Sτ+1

Vi

N − |Sτ+1|
− p=

∑N

i=τ+1 Vi

N − τ
− p < 0. (4)

When this condition is met, the customer stops with τ items in total and has total utility of Xτ . From Eq.

4, we find that τ is also the first time that Xτ >XN since

Xτ =
τ∑
i=1

(Vi− p) =XN −
N∑

i=τ+1

(Vi− p)>XN . (5)

Hence, the net utility of the myopic strategy, Xτ , is at least XN .

Observe that an upper bound on the maximum possible utility of any purchasing strategy is the utility of

the clairvoyant strategy denote by MN that stops when customer utility is maximized, i.e.,

MN = max
k∈0∪[N]

k∑
i=1

(Vi− p).

For a random customer, MN is equivalent to the maximum value of a random walk on {Xk}Nk=0. By Theorem

2.12.1 in Gut (2009), limN→∞MN/N converges to max(0, µ− p) almost surely. Further by the strong law of

large numbers, limN→∞XN/N converges to µ−p almost surely, which implies that the normalized net utility

of myopic customer converges to max(0, µ− p) almost surely, because a myopic customer always garners at

least max(0,XN) utility. Therefore, the normalized net utility of the myopic strategy and optimal strategies

must also converge to max(0, µ− p) almost surely.

(b) Traditional Box. Let τ + 1 be the first period where a myopic customer decides not purchase an item,

meaning the customer purchased exactly τ traditional boxes. This means that

Uτ+1 =

∑
i∈[N]\Sτ+1

Vi

N
− p < 0. (6)

However, it is clear that the the utility Ut is non-increasing in t. If a duplicate is received in period t, then

Ut = Ut+1. If a new item is received, then the customer now values that item as 0 in the future and their

expected valuation of a traditional loot box decreases. Therefore, once τ + 1 is reached, a customer will

never see a traditional box that offers a positive utility even if they continue purchasing indefinitely. Thus,

a myopic strategy is optimal. �

A.2. Omitted Proofs from Section 3

Proof of Theorem 2. The proof works by constructing a sequence of prices, pN , and showing that

RUB(pN) is greater than a term that converges to µ as N goes to ∞. Since µ is the maximum possible

normalized revenue by Proposition 1, then this implies that limN→∞RUB(pN) = limN→∞RUB = µ. We shall
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rely on the random walk from the proof of Theorem 1(a), {Xj}∞j=0 where Xj :=
∑j

i=1(Vi− pN) and X0 = 0.

Without loss of generality, we assume the items are indexed so that the ith item a customer receives from

the ith unique box is valued at Vi. Let the random variable τN denote the number of boxes purchases, and

recall from Eq. (5) that τN is also the first time that XτN >XN . Note that RUB(pN) = pNE[τN ]/N . Also

note that since XN is not known to the seller, τN is not a stopping time. (However, it is a stopping time

from the perspective of the customer.) We shall show that for a sequence of prices that tend to µ, that τN

tends to N which implies our result.

For some µ > εN > 0 to be optimized later, let pN = µ− εN . We shall compare τN to an actual stopping

time τ̄N , which is the first time {Xi} crosses the threshold (1−kN)NεN , where 1>kN > 0 shall be optimized

later. Note that if we condition on the event that XN ≥ (1−kN)NεN , then we know that τN ≥ τ̄N since {Xi}
must hit (1− kN)NεN before hitting XN . Therefore,

E[τN ]≥E
[
τNIXN≥(1−kN )NεN

]
≥E
[
τ̄NIXN≥(1−kN )NεN

]
=E[τ̄N ]−E

[
τ̄NIXN∈[0,(1−kN )NεN )

]
−E [τ̄NIXN<0] . (7)

We proceed by lower bounding Eq. (7) term by term, beginning with E[τ̄N ]. Since τ̄N is a stopping time,

by Wald’s equation we know that

E[Xτ̄N ] = E[

τ̄N∑
i=1

(Vi− pN)] = E[τ̄N ]E[Vi− pN ] = E[τ̄N ]εN . (8)

Rearranging (8), we have

E[τ̄N ] =
E[Xτ̄N ]

εN
≥ (1− kN)NεN

εN
= (1− kN)N, (9)

where the inequality follows from the definition of τ̄N .

Next, we provide an upper bound for the second term in (7), E
[
τ̄NIXN∈[0,(1−kN )NεN )

]
. This term corre-

sponds to the case that XN ∈ [0, (1−kN)NεN). To derive an upper bound, we suppose that {Xi} has not hit

(1−kN)NεN after N steps, and further assume the worst case that XN = 0. In this case, it is a fresh random

walk starting from 0. We first note that for a discrete random walk crossing a threshold, by (Lorden 1970)

Theorem 1 we have

E[Xτ̄N − (1− kN)NεN ]≤ E[max(Vi−µ+ εN ,0)2]

εN
≤ E[(Vi−µ+ εN)2]

εN
=

E[Vi−µ+ εN ]2 +σ2

εN
≤ µ2 +σ2

εN

which implies that

E[Xτ̄N ]≤ (1− kN)NεN +
µ2 +σ2

εN
.

Hence, by Wald’s equation (see (8)), in expectation it takes at most another (1− kN)N + µ2+σ2

ε2
N

steps to hit

(1− kN)NεN if XN =. Thus,

E [τ̄N |XN ∈ [0, (1− kN)NεN)]≤N + (1− kN)N +
µ2 +σ2

ε2N
. (10)

The probability that XN ∈ [0, (1− kN)NεN) can be upper bounded using Chebyshev’s Inequality,

P (XN ∈ [0, (1− kN)NεN))≤ P (XN < (1− kN)NεN)≤ σ2

k2
Nε

2
NN

. (11)
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Combining (10) and (11), we have

E
[
τ̄NIXN∈[0,(1−kN )NεN )

]
≤
(
N + (1− kN)N +

µ2 +σ2

ε2N

)
σ2

k2ε2NN
=

(2− kN)σ2

k2
Nε

2
N

+
(µ2 +σ2)σ2

k2
Nε

4
NN

. (12)

Next, we provide an upper bound for the third term in (7), E [τ̄NIXN<0]. This term corresponds to the

case that XN < 0. To derive an upper bound, we suppose that {Xi} has not hit (1− kN)NεN after N steps,

and further assume the worst case that XN =−NpN (since Vi ≥ 0). Following the same logic as (10),

E [τ̄N |XN < 0]≤N +
Np+ (1− kN)NεN

εN
+
µ2 +σ2

ε2N
. (13)

As before, the probability that XN < 0 can also be upper bounded using Chebyshev’s Inequality,

P(XN < 0)≤ σ2

ε2NN
. (14)

Combining (13) and (14) yields

E [τ̄NIXN<0]≤
(
N +

Np+ (1− kN)NεN
εN

+
µ2 +σ2

ε2N

)
σ2

ε2NN
=

(
µ

εN
+ 1− kN

)
σ2

ε2N
+

(µ2 +σ2)σ2

ε4NN
. (15)

Plugging Eqs. (9), (12) and (15) into the right hand side of Eq. (7) yields

E[τN ]≥N
(

1− kN −
2σ2

k2
Nε

2
NN

+
σ2

kNε2NN
− σ2µ

ε3NN
− σ2

ε2NN
+
σ2kN
ε2NN

− (µ2 +σ2)σ2

k2
Nε

4
NN

2
− (µ2 +σ2)σ2

ε4NN
2

)
.

Now we can lower bound the normalized revenue of a unique box strategy,

RUB ≥ (µ− εN)
E[τN ]

N

≥ µ(1− εN
µ

)

(
1− kN −

2σ2

k2
Nε

2
NN

+
σ2

kNε2NN
− σ2µ

ε3NN
− σ2

ε2NN
+
σ2kN
ε2NN

− (µ2 +σ2)σ2

k2
Nε

4
NN

2
− (µ2 +σ2)σ2

ε4NN
2

)
.

Choosing εN = µN−1/5, and kN =N−1/5, we have

RUB ≥ µ(1−N−1/5)

(
1− (1 +

2σ2

µ2
)N−1/5− σ2

µ2
N−3/5− σ4

µ4
N−4/5− (

σ2

µ2
+
σ4

µ4
)N−6/5

)
.

Taking the limit of both sides gives

lim
N→∞

RUB ≥ µ.

Combined with the fact that RUB ≤ µ from Proposition 1, we conclude that limN→∞RUB = µ. �

Proof of Theorem 3. Consider a random walk for N steps, {Yj}Nj=0, where Yj =
∑N

i=j+1 Vi for j =

0, . . . ,N − 1 and YN = 0. Without loss of generality, we assume the items are indexed so that the ith unique

item a customer receives from purchasing traditional loot boxes is valued at Vi. Therefore, every time the

customer receives the ith unique item, their valuation for the traditional box becomes Yi/N .

Similar to our proof of Theorem 2, we construct a sequence of prices pN such that limN pN → µ

e
and show

the expected number of traditional loot boxes purchased by a customer at price pN tends to N . Let the

random variable τN denote the number of unique items acquired, and recall from Eq. (6) that τN is also the

first time YτN /N − pN < 0. Note that τN is well defined since YN = 0.
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The number of traditional loot boxes a customer must have purchased to acquire τN unique items is the

sum of τN independent geometric random variables, Geo(1) + Geo(N−1
N

) + . . .+ Geo(N−τN+1
N

). The revenue

under price pN is then,

RTB(pN) =
1

N
E
[
pN

(
Geo(1) + Geo

(
N − 1

N

)
+ . . .+ Geo

(
N − τN + 1

N

))
IτN≥1

]
= pNE

[
1

N

(
1 +

N

N − 1
+ · · ·+ N

N − τN + 1

)
IτN≥1

]
= pNE [(log(N) + γ+ ζN − log (N − τN + 1)− γ− ζN−τN+1) IτN≥1]

= pNE
[(
− log

N − τN + 1

N
+ ζN − ζN−τN+1

)
IτN≥1

]
, (16)

where the third equality follows from the well known expression for the harmonic numbers,
∑k

i=1
1
i

= logk+

γ+ ζk, with {ζk} converges to 0 from above, and γ is the Euler-Mascheroni constant.

First we bound E[N − τN + 1]. Let us define the monotonically increasing random walk {Cj}∞j=0 such

that (i) {Cj}Nj=0 = {YN−j}Nj=0 , i.e., C0 = 0, C1 = VN , C2 = VN + VN−1, . . . , CN = VN + . . .+ V1 and (ii)

Cj = CN +
∑0

k=N−j+1 Vk for j = N + 1,N + 2, . . . where V0, V−1, V−2, . . . are virtual random variables that

are i.i.d. samples from F . Let rN be the first time that {Cj}∞j=1 is at least NpN . By definition of τN , note

that when τN ≥ 1, rN = N − τN + 1. Since rN is the first passage time when Cj ≥ NpN , it follows by the

well known inspection paradox that E[CrN −CrN−1] =
E[V 2

i ]

E[Vi]
= µ2+σ2

µ
. Using this fact together with Wald’s

equation, E[CrN ] = E[rN ]µ, we have

E [rN ] =
E [CrN ]

µ
∈
[
Np

µ
,
Np

µ
+ 1 +

σ2

µ2

]
. (17)

Now we can construct a lower bound for RTB(pN),

RTB(pN) =pNE
[(
− log

N − τN + 1

N
+ ζN − ζτN

)
IτN≥1

]
(Eq. (16))

≥pNE
[(
− log

N − τN + 1

N

)
IτN≥1

]
({ζk}monotone dec.)

=pNE
[(
− log

rN
N

)
IrN≤N

]
(rN ≤N ⇐⇒ τN ≥ 1) (18)

≥pNE
[(
− log

rN
N

)]
(19)

≥− pN logE
[rN
N

]
(Jensen’s Inequality)

≥− pN log

(
pN
µ

+
1 + σ2

µ2

N

)
(Eq. (17)) (20)

where Eq. (18) follows from the fact that − log rN
N
< 0 when rN >N . Setting pN = µ

e
yields

RTB (pN)≥ µ

e
log

 1

1
e

+
1+σ2

µ2

N

 (21)

which is our desired guarantee.

We now upper bound the revenue, RTB(pN). Consider the event that rN
N
≤ (1− εN) pN

µ
for some small

1> εN > 0, which is an ingredient of our proof. We can upper bound the probability of such an event by,

P
(
rN
N
≤ (1− εN)

pN
µ

)
= P

(
rN ≤ (1− εN)

NpN
µ

)
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= P

 N∑
t=N−(1−εN )

NpN
µ

Vt ≥NpN


= P

∑N

t=N−(1−εN )
NpN
µ

Vt

(1− εN)NpN
µ

≥ 1

1− εN
µ


≤ P

∣∣∣∣∣∣
∑N

t=N−(1−εN )
NpN
µ

Vt

(1− εN)NpN
µ

−µ

∣∣∣∣∣∣≥ εN
1− εN

µ


≤ σ2

(1− εN)NpN
µ

ε2
N

(1−εN )2
µ2

(Chebyshev’s Inequality)

=
σ2

ε2
N

(1−εN )
NpNµ

. (22)

Now we can upper bound the revenue from (TB) when using price pN by

RTB(pN) = pNE
[(
− log

N − τN + 1

N
+ ζN − ζτN

)
IτN≥1

]
≤ pNE

[(
− log

N − τN + 1

N
+ ζN

)
IτN≥1

]
= pNE

[(
− log

rN
N

+ ζN

)
IrN≤N

]
≤ pNζN + pNE

[(
− log

rN
N

)
IrN≤N

]
= pNζN + pNE

[(
− log

rN
N

)
IrN∈[N(1−εN )

pN
µ
,N]

]
+ pNE

[(
− log

rN
N

)
IrN∈[1,N(1−εN )

pN
µ

)

]
≤ pNζN + pN max{− log

(
(1− εN)

pN
µ

)
,0}+ pNE

[(
− log

rN
N

)
IrN∈[1,N(1−εN )

pN
µ

)

]
≤ pNζN + pN max{− log

(
(1− εN)

pN
µ

)
,0}+ pN

(
− log

(
1

N

))
σ2

ε2
N

(1−εN )
NpNµ

(23)

= pNζN + pN max{log
µ

(1− εN)pN
,0}+

σ2 logN
ε2
N

(1−εN )
µN

, (24)

where the first equality follows from (16), the second equality follows from the facts that τN ≤ N and

rN =N − τN + 1 when τN ≥ 1, and the third equality follows from the fact that rN ≥ 1. Eq. (23) follows by

the monotonicity of log(·) and by applying Eq. (22).

Now setting εN =N−
1
3 and substituting in (24) gives

RTB(pN)≤ pNζN + pN max{log
µ

(1−N− 1
3 )pN

,0}+
(1−N− 1

3 )σ2 logN

µN
1
3

. (25)

Maximizing Eq. (25) over pN gives p̄N := µ/exp(1 + log(1−N− 1
3 )− ζN). Plugging in p̄N into Eq. (25) gives

the desired upper bound, and combining with Eq. (21) yields

µ

e
log

 1

1
e

+
1+σ2

µ2

N

≤RTB ≤ µ

e1−ζN (1−N− 1
3 )

+
(1−N− 1

3 )σ2 logN

µN
1
3

. (26)

Taking the limit of both sides of Eq. (26) completes the proof. �
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Proof of Theorem 4. (a) Unique Box. Suppose the optimal price p∗N does not converges to µ, i.e., there

exist ε > 0 such that |p∗N − µ|> ε infinitely often. First, consider the case where p∗N < µ− ε infinitely often.

Since the normalized selling volume is at most 1, then the revenue must be less than µ− ε infinitely often.

However, this contradicts the fact that RUB converges to µ.

Now consider the case that p∗N >µ+ ε infinitely often. Using Chebyshev’s inequality, the probability that

a customer purchases the first loot box is at most

P
(∑

i
Vi

N
≥ p
)
≤ σ2

(p∗N −µ)2N
.

Thus, σ2

(p∗
N
−µ)2N

is also an upper bound on the normalized sales volume, since the best case the customer

buys the maximum N unique boxes. Thus, an upper bound on the the normalized revenue when p∗N >µ+ ε

is
σ2p∗N

(p∗
N
−µ)2N

. Note that
σ2p∗N

(p∗
N
−µ)2N

is decreasing p∗N when p∗N > µ+ ε, so an even greater upper bound on the

revenue in this case is σ2(µ+ε)

ε2N
. Since this upper bound tends to 0 as N tends to ∞, then this contradicts the

fact that RUB converges to µ and thus p∗N cannot be greater than µ+ ε infinitely often.

Now we consider the expected fraction of unique items collected by the customer, which is also the expected

normalized selling volume for the unique box strategy. Since the normalized selling volume is upper bounded

by 1, if it does not converges to 1, RUB cannot converges to µ given that the optimal price converges to µ.

Hence the expected selling volume converges to 1.

Finally, since the expected customer valuation is µ and RUB converges to µ, then no utility is left for the

customer and therefore the normalized customer surplus converges to 0.

(b) Traditional Box. We first show that the optimal price converges to µ

e
. Suppose the optimal price p∗N

does not converge to µ

e
, i.e., there exists ε > 0 such that |p∗N − µ

e
|> ε infinitely often. Recall from Eq. (25)

that the revenue by using any price pN is upper bounded by

pNζN + pN max{log
µ

(1−N− 1
3 )pN

,0}+
(1−N− 1

3 )σ2 logN

µN
1
3

,

and this upper bound converges to pN max{log µ

pN
,0}. Note that pN max{log µ

pN
,0} < µ

e
for any pN 6= µ

e
.

Therefore, using a price bounded away from µ

e
infinitely often results in a revenue that is bounded away µ

e

infinitely often. This contradicts the fact that RTB converges to µ

e
and thus p∗N cannot be bounded away

from µ

e
infinitely often.

The fraction of unique items collected by the customer is given by τN(p)/N = (N + 1− rN(p))IrN (p)≤N/N .

By Eq. (17), E[rN(p)]/N converges to p/µ. When p < µ, by Theorem 7.1 in (Gut 2009), E[rN(p)]/N is

uniformly integrable and E[rN(p)IrN (p)≤N ]/N converges to p/µ. Plugging in limN→∞ p
∗
N = µ/e, we have

lim
N→∞

E[τN(p∗N)]

N
= lim
N→∞

E[(N − rN(p∗N) + 1)IrN (p∗
N

)≤N ]

N
= 1− lim

N→∞

E[rN(p∗N)IrN (p∗
N

)≤N ]

N
= 1− µ/e

µ
= 1− 1

e
.

For the selling volume, note that for any p, Eq. (20) and Eq. (25) implies that

lim
N→∞

RTB(p)

p
= max(0, log

µ

p
). (27)

Plugging in p∗ = µ/e gives the normalized selling volume in the limit, which is 1.



36 Chen, Elmachtoub, Hamilton, and Lei: Loot Box Pricing and Design

Finally, the customer surplus is the total utility from the unique items
∑τN

i=1 Vi minus the total cost price

paid. Hence we have

lim
N→∞

E[Normalized Surplus] = lim
N→∞

E[
∑τN

i=1 Vi]

N
− lim
N→∞

RTB

= lim
N→∞

E[τN(p∗N)]E[Vi]

N
− lim
N→∞

RTB

= (1− 1

e
)µ− µ

e

= (1− 2

e
)µ.

�

A.3. Omitted Proofs from Section 4

Proof of Proposition 2. For unique boxes, we show that the revenue from the size-1 case is dominated

by the revenue of the size-j case with a simple coupling argument. Since the revenue in the size-1 case is

already the best possible µ, then this implies that the revenue for the size-j case is also µ. Now suppose p is

the price in the size-1 case and simply set jp to be the price in the size-j case. If a customer bought τ loot

boxes in the size-1 case and would like to buy the next size-1 box given that they owned the set Sτ , then we

claim that the same customer would have bought a size-j box. This follows from the fact that the valuation

of a size-j unique box in this state is exactly j times the valuation of a size-1 box. Thus, since the price is

also scaled by j, the decision purchase a loot box in period τ is perfectly coupled, which concludes the proof.

For traditional boxes, we use a more complex coupling argument to show that the revenue from the size-1

case is very close to the revenue of the size-j case with a price slightly lower than jp. Let p be the price of the

size-1 box and let pN(1− (1−1/N)j) be the price of the size-j box. If a customer has purchased τ size-1 box

with inventory state Sτ , and would like to buy the next size-1 box, then we claim that the same customer

would like to buy a size-j box given the same situation. This follows from the fact that the customer may

get a specific item with probability 1− (1− 1/N)j , and the valuation of a size-j unique box after owning Sτ

is (1− (1−1/N)j)
∑

[N]\Sτ Vi, while the corresponding valuation of the size-1 box is 1
N

∑
[N]\Sτ Vi. Therefore,

a size-j box is purchased in period τ if and only if a size-1 box would have been purchased:

1

N

∑
[N]\Sτ

Vi ≥ p ⇐⇒ (1− (1− 1/N)j)

N∑
[N]\Sτ

Vi ≥ pN(1− (1− 1/N)j).

Hence, if a customer stops after purchasing τ size-1 boxes, along with the same sampling path he will stop

after purchasing dτ/je size-j boxes. Note that jp≥ pN(1− (1−1/N)j), so the normalized revenue generated

by size-j box is bounded as

pN(1− (1− 1/N)j)

jp
RTB(p)≤RjTB

(
pN(1− (1− 1/N)j)

)
≤ pN(1− (1− 1/N)j)

jp
RTB(p)+

pN(1− (1− 1/N)j)

N
.

Taking the limit of the above as N →∞ leads to limN→∞RjTB(jp) = limN→∞RTB(p). Since the optimal TB

revenue is µ

e
by Theorem 3, this concludes the proof. �
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Proof of Proposition 3. In this proposition we show that unique box with uniform allocation is asymp-

totically optimal. We modify the random walk Xt in the proof of Theorem 2 into a stochastic process

{X ′t, t≥ 0}. For t≤N , let X ′t be the net utility of a random customer after opening t unique boxes. For t >N ,

simply let X ′t −X ′t−1 = µ̄− p. Note X ′N has mean N(µ̄− p) and variance Nσ̄2, where σ2 =
∑M

m=1 βmσ
2
m.

Also, the expectation of X ′t −X ′t−1 is µ̄− p for any t ≥ 1. Note {X ′t}∞t=1 is not a stationary random walk,

since its step lengths are correlated. However, {X ′t}∞t=1 satisfies the Markovian property, as for every t, X ′t+1

depends only on the number of items in each class that are not yet owned. Hence, following the proof of

Theorem 2, the Wald’s equations (Eq. (9)) and Chebyshev’s inequalities (Eq. (11), Eq. (14)) are still valid.

The only difference is the overshoot term, E[X ′τ̄N − (1− kN)NεN ]. By Theorem 2 in (Lorden 1970), it is

bounded by (σ2
max + µ2

max)/εN + ((σ2
max +µ2

max)(1− kN)εNN/εN)
1/2

, which will not influence the limit and

the convergence rate. Thus, the limiting result remains the same. �

Proof of Proposition 4. Fix k ∈ (0,1), a probability vector d, and and let p =
∑M

m=1 dmµme
− dm
βm

k. We

shall show that the normalized number of loot box purchases made by a customer under the pricing and

allocation strategy (p,d), E [QN(p,d)], tends to k as N →∞. For clarity, we prove the lower and upper

bounds separately.

Lower Bound: limN→∞E [QN(p,d)]≥ k
Given p=

∑M

m=1 dmµme
− dm
βm

k, we first bound the probability that QN(p,d)< (1−ε)k. Note since a customers

valuation for the next loot box decreases monotonically after each purchase, the event (a) QN(p,d)≤ (1−ε)k

is equivalent to the event (b) the customer’s valuation for the loot box is less than p after they have opened

(1 − ε)kN boxes. We will bound this event by applying Chebyshev’s inequality, for which we will need

estimates of both the mean and variance of customers valuation after opening (1− ε)kN boxes. Let Zmi be

an indicator random variable taking value 1 if item i from class m has not been revealed after (1− ε)kN

purchases, and 0 otherwise. When the class is clear from the context we will drop the superscript. Now, after

each purchase the probability that item i in class m is obtained is dm
βmN

, thus the expectation of Zmi is,

E[Zmi ] =

(
1− dm

βmN

)(1−ε)kN

.

Recall that Gm denotes the set of items in class m. For a random customer, since Vi and Zmi are indepen-

dent, the valuation of the next loot box after (1− ε)kN purchases is given by
∑M

m=1

∑
i∈Gm

dm
βmN

ViZ
m
i , and

the expected valuation for a loot box after (1− ε)kN purchases is,

E

[
M∑
m=1

∑
i∈Gm

dm
βmN

ViZ
m
i

]
=

M∑
m=1

∑
i∈Gm

µm
dm
βmN

(
1− dm

βmN

)(1−ε)kN

=

M∑
m=1

µmdm

(
1− dm

βmN

)(1−ε)kN

.

Moreover, observe that the the set of indicators {Zmi }
|Gm|
i=1 is negatively correlated for all i and m since

for any two different items, if one is not revealed so far then the other is more likely to have been revealed.

Thus the variance can be bounded by,

Var

(
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi

)
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≤
M∑
m=1

∑
i∈Gm

Var

(
dm
βmN

ViZi

)
({Zmi } Neg. Corr.)

=

M∑
m=1

∑
i∈Gm

(
dm
βmN

)2 (
E
[
V 2
i Z

2
i

]
− (E[ViZi])

2
)

=

M∑
m=1

∑
i∈Gm

(
dm
βmN

)2 (
E
[
V 2
i Zi

]
− (E[ViZi])

2
)

(Zmi ∈ {0,1})

=

M∑
m=1

∑
i∈Gm

(
dm
βmN

)2
((
µ2
m +σ2

m

)(
1− dm

βmN

)(1−ε)kN

−µ2
m

(
1− dm

βmN

)2(1−ε)kN
)

(Vi,Zi independent)

≤
M∑
m=1

∑
i∈Gm

(
dm
βmN

)2 (
µ2
m +σ2

m

)(
1− dm

βmN

)(1−ε)kN

=

M∑
m=1

d2
m

βmN

(
µ2
m +σ2

m

)(
1− dm

βmN

)(1−ε)kN

(28)

Now applying Chebyshev’s Inequality to the event that the mean valuation is less than p after opening

(1− ε)kN boxes, we have

P
(
QN(p,d)≤ (1− ε)k

)
=P

(
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi < p

)
(Event (a), (b) equivalent)

=P

(
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi−E

[
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi

]
< p−E

[
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi

])

≤P

(∣∣∣∣∣
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi−E

[
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi

]∣∣∣∣∣>E

[
M∑
m=1

∑
i∈Gm

dm
βmN

ViZi

]
− p

)

≤
Var

(∑M

m=1

∑
i∈Gm

dm
βmN

ViZi

)
(
E
[∑M

m=1

∑
i∈Gm

dm
βmN

ViZi

]
− p
)2 (Chebyshev’s Inequality)

≤

∑M

m=1
d2m
βmN

(µ2
m +σ2

m)
(

1− dm
βmN

)(1−ε)kN

(∑M

m=1 µmdm

(
1− dm

βmN

)(1−ε)kN
− p
)2 (From Eq. (28))

=

M∑
m=1

d2
m (µ2

m +σ2
m)
(

1− dm
βmN

)(1−ε)kN

βmN

(∑M

m=1 µmdm

((
1− dm

βmN

)(1−ε)kN
− e−

dm
βm

k

))2 (29)

Taking the limit as N tends to infinity, the numerator of Eq. (29) approaches a constant d2
m(µ2

m +

σ2
m)e−

dm
βm

k(1−ε). For the denominator, the term
(

1− dm
βmN

)(1−ε)kN
−e−

dm
βm

k goes to e−
dm
βm

k(1−ε)−e−
dm
βm

k, which

is a constant, so the denominator goes to infinity. Thus for any ε > 0, there exists C1 such that for all N >C1,

P (QN(p,d)≤ (1− ε/2k)k)≤ ε/2k. Applying Eq. (29) yields a lower bound of E [QN(p,d)],

E
[
QN(p,d)

]
=E

[
QN(p,d)IQN (p,d)≤(1−ε/2k)k

]
+E

[
QN(p,d)IQN (p,d)>(1−ε/2k)k

]
≥ 0 +

(
1− ε

2k

)
k
(

1− ε

2k

)
= k(1− ε

2k
)2
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≥ k(1− ε

k
) = k− ε, (30)

which implies that the lower bound converges to k as ε goes to 0.

Upper Bound: limN→∞E [QN(p,d)]≤ k
Similar to the lower bound, we first control the event that QN(p,d)> (1 + ε)k. Let Zmi = 1 now denote the

event that after opening (1 + ε)kN loot boxes, item i in group m is still not revealed. As before we will omit

the superscript when it is clear from context. Following the derivation of (29), we may bound the probability

of this event by

P
(
QN(p,d)> (1 + ε)k

)
≤

M∑
m=1

d2
m (µ2

m +σ2
m)
(

1− dm
βmN

)(1+ε)kN

βmN

(∑M

m=1 µmdm

(
e−

dm
βm

k−
(

1− dm
βmN

)(1+ε)kN
))2 . (31)

Now we will choose ε=− log(1−N−1/3)/k. Substituting our choice of ε into the denominator of Eq. (31) we

may obtain a lower bound,

βmN

(
M∑
m=1

µmdm

(
e−

dm
βm

k−
(

1− dm
βmN

)(1+ε)kN
))2

≥βm

(
M∑
m=1

µmdmN
1/2
(
e−

dm
βm

k− e−
dm
βm

(1+ε)k
))2

(Taylor expansion of ex)

=βm

(
M∑
m=1

µmdme
− dm
βm

kN1/2
(

1− (1−N−1/3)
dm
βm

))2

≥βm

(
M∑
m=1

µmdme
− dm
βm

kN1/2

(
1− 1

1 + dm
βm
N−1/3

))2

(Bernoulli’s Inequality)

=βm

(
M∑
m=1

µmdme
− dm
βm

k

dm
βm
N1/2

N1/3 + dm
βm

)2

.

Plugging back into Eq. (31), the probability that customer purchases more than (1− log(1−N−1/3))N boxes

is then bounded above by,

P
(
QN(p,d)> (1− log(1−N−1/3))

)
≤

M∑
m=1

d2
m (µ2

m +σ2
m)
(

1− dm
βmN

)(1−log(1−N−1/3)/k)kN

βm

(∑M

m=1 µmdme
− dm
βm

k
dm
βm

N1/2

N1/3+ dm
βm

)2 .

Finally, returning to QN
d(p), a trivial upper bound on E[QN(p,d)] is given by

E[QN(p,d)]≤E[# of purchases to collect all the items]

≤
M∑
m=1

E[# of purchases to collect all the items in class m]

=

M∑
m=1

E
[
Geo(dm) + Geo

(
dm(βmN − 1)

βmN

)
+ · · ·+ Geo

(
dm
βmN

)]

=

M∑
m=1

βmN

dmβmN
+

βmN

dm(βmN − 1)
+ · · ·+ βmN

dm
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=

M∑
m=1

βmN

dm

(
1

βmN
+

1

βmN − 1
+ · · ·+ 1

)

≤
M∑
m=1

βmN

dm
(log(βmN) + 1)

≤
M∑
m=1

βmN

dm
(logN + 1).

Thus the expected number of purchases is upper bounded by E [QN(p,d)]≤
∑M

m=1
βmN

dm
(logN + 1) for any

price p. Now we can build an upper bound:

E
[
QN(p,d)

]
=E

[
QN(p,d)IQN (p,d)≤(1+ε)kN

]
+E

[
QN(p,d)IQN (p,d)>(1+ε)kN

]
≤
(
1− log(1−N−1/3)/k

)
kN +N

M∑
m=1

βm
dm

(logN + 1)

M∑
m=1

d2
m (µ2

m +σ2
m)
(

1− dm
βmN

)(1−log(1−N−1/3)/k)kN

βm

(∑M

m=1 µmdme
− dm
βm

k
dm
βm

N1/2

N1/3+ dm
βm

)2

Taking N →∞ on both sides, we have

lim
N→∞

E [QN(p,d)]

N

≤ lim
N→∞

(
1− log(1−N−1/3)/k

)
k+ lim

N→∞

M∑
m=1

βm
dm

(logN + 1)

M∑
m=1

d2
m (µ2

m +σ2
m)
(

1− dm
βmN

)(1−log(1−N−1/3)/k)kN

βm

(∑M

m=1 µmdme
− dm
βm

k
dm
βm

N1/2

N1/3+ dm
βm

)2

=k+ lim
N→∞

M∑
m=1

d2
m (µ2

m +σ2
m)e−

dm
βm

k∑M

m=1
βm
dm

(logN + 1)

βm

(∑M

m=1 µmdme
− dm
βm

k
dm
βm

N1/2

N1/3+ dm
βm

)2

=k+ lim
N→∞

M∑
m=1

d2
m (µ2

m +σ2
m)e−

dm
βm

k∑M

m=1
βm
dm

(
1 + 1

logN

)
βm

(∑M

m=1 µmdme
− dm
βm

k
dm
βm

N1/2

(logN)1/2(N1/3+ dm
βm

)

)2

=k. (32)

Thus combining Eq. (30) and Eq. (32), we can have

lim
N→∞

E [QN(p,d)]

N
= k.

�

Proof of Proposition 5. (a) Let V c
i := max{Vi, c} be the modified valuation of an item that has salvage

value c, and let Fc denote the distribution of V c. Let η̃ be the mean of V c. By Theorem 2 and Theorem 4,

as the number of items N →∞, the optimal price tends to η̃ and the expected proportion of items obtained

tends to 1. Since all items are obtained in expectation, the proportion of items salvaged tends to F (c).

Thus the normalized cost of salvages by the customer is limN→∞
E[# Items Salvaged]

N
c= F (c)c. Together, the

normalized revenue is then η̃−F (c)c. Noting η̃ can be rewritten as η̃=E[max{V, c}] = F (c)c+ F̄ (c)E[V |V >

c] = F (c)c+ F̄ (c)η, then the normalized revenue becomes E[max{V, c}]−F (c)c= F̄ (c)η.
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For customer surplus, note that the customer all items in the limit, garnering expected utility of η̃. The

cost to the customer is the revenue F̄ (c)η, so the customer surplus is η̃− F̄ (c)η= F (c)c.

(b) Following Theorem 3, we consider a modified random walk for customers of a traditional box strategy

with salvage cost c. Let Y ′j =
∑N

i=j+1 V
c
i + jc. For a random customer, Y ′j /N is the expected valuation of the

traditional box after receiving j unique items. If the new item is at value greater than c, then Y ′j is decreased

by Vj+1− c, otherwise it decreases by 0. Hence, the mean step length is given by

E[Y ′j+1−Y ′j ] = F̄ (c)(η− c) +F (c) · 0 = F̄ (c)(η− c).

Also, note that Y ′N =Nc. The random walk Y ′j is still a decreasing process, which means that the valuation

of the box is decreasing as customers collect more and more new items. A customer purchases until the first

time such that
Y ′t
N
< p ⇐⇒ Y ′t <Np ⇐⇒ Y ′t −Nc <N(p− c). Now consider the random walk {Y ′j −Nc},

which ends with 0, and is weakly decreasing with mean jump length F̄ (c)(η−c). Let τ(p) be the first passage

time of {Y ′j −Nc} hitting the line N(p− c) from above. The problem of approximating τ(p) is exactly the

same problem of approximating the expected selling volume of a vanilla traditional box in Theorem 3 with

mean F̄ (c)(η− c) and price p− c. Recall that in the proof of Theorem 4, we show that the limiting selling

volume for a vanilla traditional box is max(log µ

p
,0) (see (27)). So in the case with salvage c, we know that

the normalized selling volume is given by

lim
N→∞

E[selling volume]

N
= max

(
log

F̄ (c)(η− c)
p− c

,0

)
,

and for the nontrivial case p− c ≤ F̄ (c)(η − c), the selling volume is simply log F̄ (c)(η−c)
p−c . The net revenue

is the revenue subtracted by the salvage cost. Note that only the new items with value greater than c are

not salvaged. The number of unique items is τ(p), and by the discussion in Theorem 4, τ(p)/N converges

1− p/µ, which is 1− p−c
F̄ (c)(η−c) in the new problem. Hence the limiting revenue with price p≤ c+ F̄ (c)(η− c)

is

lim
N→∞

RTB(c, p) = lim
N→∞

p
E[selling volume]

N
− cE[selling volume]− limN→∞E[# of unique item with value > c]

N

= lim
N→∞

(p− c)E[selling volume]

N
+ lim
N→∞

c
F̄ (c)E[τ(p)]

N

= (p− c) log
F̄ (c)(η− c)

p− c
+ c(F̄ (c)− p− c

η− c
).

Maximizing over the price yields p= c+ e−
η
η−c F̄ (c)(η− c). Plugging in p gives our desired revenue F̄ (c)(η−

c)
(

c
η−c + e−

η
η−c

)
.

Finally, customer surplus is the total utility from the unique items that the customer keeps minus the

total cost (i.e. revenue of the seller). Hence we have

lim
N→∞

E[Normalized Surplus] = lim
N→∞

E[Utility from unique items with value> c]

N
− lim
N→∞

RcTB

= lim
N→∞

ηE[# of unique items with value> c]

N
− lim
N→∞

RcTB

= η

(
F̄ (c)− p− c

η− c

)
− F̄ (c)(η− c)

(
c

η− c
+ e−

η
η−c

)
= F̄ (c)

(
(η− c)− (2η− c)e−

η
η−c

)
. �
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