Electronic Companion for “Design of Medical
Reimbursement Policy and Effects of Pooling”

Abstract. This electronic companion for “Design of Medical Reimbursement Policy and Effects of Pooling” is organized as
follows. Section EC.1 documents problem formulation of pooling systems and provides the auxiliary results, including the optimal
solution in full pooling systems and a numerical study on inflow pooling effects. Sections EC.2, EC.3, and EC.4 include the proofs

for results in our main manuscript.
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EC.1. Problem Formulation and Auxiliary Results

EC.1.1. Problem Formulation of Pooling Systems

In this section, we provide the formulation for the utility optimization problem in the three pooling systems,
as summarized in Table 1. Let m = (m® m® ....m¥)) be the vector of budget per capita of the K
groups. In the non-pooling system, each group operates independently with its own budget. The decision
variables are ( (;”, g)), which can vary across groups. The budget constraints are imposed for each group.

Thus, the problem can be formulated as

K
UWNP) (m) = min > whPE[(P(C5)))] (EC.1.1)
{43()43 K i—le{FS}
st Y h“ D(CN] =mD, Vi=1,2,..,K, (EC.1.2)

Jje{F,S}

where the net cost function lj(-i) (r)=2— gb;i) (r); w® =N®/ EK: NU) represents the population weight
of group i. We consider admissible reimbursement policies ( %’), (7)) € C for all groups.

In the full pooling system, we pool the budgets together and use a common reimbursement policy
(¢r, @) for all groups. The budget constraint is thus based on the total expense and budget of all groups.

The optimization problem is formulated as:

UFP) (m) =  min Z Z w® h(l l (C( )))] (EC.1.3)

(¢ 5)€ i=1 je{F,S}

s.t. Z > wORE[g (CI)] =) wDm . (EC.1.4)

i=1 je{F,S} i=1



Finally, with monetary pooling, the central planner can set different reimbursement policies for each

group based on the shared budget. This leads to the following optimization problem:

K
UM m) = min Y Y wOrPE(BY(C))] (EC.1.5)
{¢(SZ)’¢;3)}5(1 i=1 je{F,S}
K K
st Y Y wOPERP (CN] =D T whm. (EC.1.6)
i=1 je{F,S} i=1

When the ratio reimbursement policy is used, we only need to let ¢;i) (c) = r;i) x ¢ (for NP and MP) and
¢i(c) =1, x c (for FP) in above formulations. Now, the decision variables become the reimbursement ratio.
Accordingly, the net cost function is given by lj(.i) (c)=(1- rj(»i)) x ¢ (forNPand MP)and [;(c) = (1—r;) xc
(for FP). The reimbursement ratios fall in the interval [0, 1].

Next, we specify the action space for the three pooling systems in the dynamics setting, as described
in Section 4.3. Let m” and s denote the spending amount and fund level for group i, respectively. In
the non-pooling system, each group operates independently. Thus, the constraint m® < s hold for each

group. The reimbursement policies can vary across the groups. Thus, the action space is given by:

ANPI(s) = {(mD, 6, ), :m® < 50, (EC.1.7)
> BE[BY (C5)] =mP Vi=1,2,.. K}
JE{F,S}

In the full pooling system, groups are constrained to use the same reimbursement policy (¢, ¢s). The

medical funds are shared across all groups. The action space is given by

K K
) = {(mD, ¢, 65, > wDm® <y w (EC.1.8)
i=1 i=1
Z > whE[g;(C)] Zw m®, ¢ = ¢l2) iy iy =1,2,. K}
=1 je(F.S)

The formulation is similar to that in (EC.1.4) for the single-period model. In the monetary pooling system,

groups share their medical funds and can use different reimbursement policies. The action space is:

K K
AMP) (g = {(m(i),gbg),gbg))fil : Zw(i)m(i) < Zw(i)s(i), (EC.1.9)
i=1 ;
Z Z ()h(l)E d)(Z) C(i) Zw
i=1 je{F,S}

For the ratio reimbursement policy, we impose the functional form (;S;i) (c) = rﬁi) X ¢ in above.



EC.1.2. Auxiliary Results

We define C and C as the upper and lower bounds of all service costs of agents. In the single-group model,
they are given by C = max{ép,és} and C = min{C,C S} In the multi-group model, we define C' =
distribution functlons Gy (x) to the interval [C, C], with zero probability mass assigned to cost levels

outside their original support.

EC.1.3. Optimal Reimbursement Policy for Full Pooling System
In this section, we solve the optimal reimbursement policy in the full pooling system. Full pooling combines
all groups into a single pooled group with a shared budget and a common reimbursement policy. Thus, we
can solve the optimal reimbursement policy using our results for single-group model, with newly defined
parameters for the pooled group.

The optimization problem in the full pooling system is given in (EC.1.3), with decision variables

(éF, ¢s). For the pooled group, we define the aggregated service incidences as:
K .
h =3 "w@n?, vje{F s}

The per capita budget is given by:
K

m® =3 O

i=1
Finally, we define the distribution for the aggregated service costs Cj(p ) for j € {F,S}. Its cumulative
distribution function is given by
T
GV (c) = P{CY gc}—(—z DGO (c), Vje{F, S}, (EC.1.10)

J 1=1

where Gg-i) is the cumulative distribution function of cost C](-i). With these parameters for the pooled group,

we formulate the following problem:

U () = min b Elu(le(CF)] + hé’”E[u(ls(Oé’”)))} (EC.1.11)
st WPE[r(CE)+hEElps(CE)] <m®. (EC.1.12)

We show that the optimization problem (EC.1.11 ) — (EC.1.12) is equivalent to the original problem
(EC.1.3) — (EC.1.4) in the full pooling system. Consider a continuous function f;(c) > 0 with domain [C, C]
for j € {F, S}. Its expectation is given by

K
1 oy
E[£;(C}") /fg JAG (e /fg (h(,,)ij“)h;)G;)(c))
) =1



K c
1 o
~w Zw(z)hy/ fi(e)dGY(c). (EC.1.13)
joi=1 c

The last equality in (EC.1.13) follows from the linearity of integration with respect to the measure, since
the measure Gg.p ) is a linear combination of G;” by (EC.1.10).

Summing (EC.1.13) over services F' and S, we have:

> RPEfCM) = Y Zw Dpl / fi(e)dGP ()= Y Zth YE[f;(C9).

JE{F,S} JE{F,S} i=1 jE{F,5} i=1
(EC.1.14)

We specify the function f;(c) in (EC.1.14) as u(l;(c)) and ¢,(c), respectively. By direct substitution into
(EC.1.14), we verify the equivalence of (EC.1.3)- (EC.1.4) to (EC.1.11)—~(EC.1.12), respectively. In addi-
tion, the optimization problem (EC.1.11)~(EC.1.12) is identical to that in (4)~(5) with h; = h"; C; = C\V;
and m = m(®). Thus, the optimal reimbursement policies in full pooling system can be solved using the

results in Propositions 1 and 2.

EC.1.4. Numerical Study on the Effects of Inflow Pooling

In this section, we conduct a numerical analysis on the effect of inflow pooling in the dynamic setting.
Pooling the inflows between groups reduces the volatility in the total inflow as long as these inflows are not
perfectly correlated. As shown in Lemma 4, inflow pooling can improve the system performance even the

groups are totally the same. Such effect only exist in multiple-periods model.

Table 1 Parameters in Numerical Study on Inflow Pooling

vor B (whws) (B RY) (E RS ¢ and 0 ¢ and O g Corr(¢™,q®)

2 5% 095 (0.5,0.5) (0.5,0.2) (0.5,0.2) U(5,15) U(2,6)  U(0,3) 0.5

In this numerical study, we consider two groups with parameters in Table 1. The two groups have the same
population size, services incidence, service cost distribution, and inflow distribution. We further assume
the same initial state for the two groups i.e. s(() ) = 582) = 2. We measure the benefit of inflow pooling by
comparing the equivalent loss in the non-pooling and full pooling systems. The optimal dynamic policy is
used in both systems.

Figure 1 plots the certainty equivalent losses in the non-pooling and full pooling systems. In the left
panel, we fix the inflow distribution ¢, ¢® ~ U(0,3) and vary the correlation coefficient of inflows,
corr(qW), q®), from —1 to 1. When the correlation is —1, the total inflow is deterministic: ¢’ = E[q] = 1.5.
When the correlation is 1, the total inflow is the same as ¢(*) and ¢?, i.e., ¢ ~ U(0,3). In the right
panel, we vary the dispersion level of the inflow, measured by (g — ¢) /(2E[q]), while fixing the expectation

E[¢"V] = E[¢?] = 1.5. The correlation coefficient is set at corr(q"),¢®) = 0.5. A larger dispersion means



the inflow is more volatile. In each panel, the blue solid (resp. red dashed) line represents the certainty
equivalent loss in the non-pooling (resp. full pooling) system. The certainty equivalent loss is defined in

Section 5.

Figure 1 Equivalent Loss in Non-pooling and Full Pooling Dynamic Systems
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As shown in Figure 1, the inflow pooling leads to smaller certainty equivalent loss. By the left panel,
the benefit from inflow pooling is higher when the two inflows are less correlated, and vanishes when the
correlation approaches one. The right panel shows that the inflow pooling leads to greater improvement
when the dispersion of inflows is higher. This is because pooling brings more smoothing benefit when there
is more uncertainty in the inflow levels. In the extreme case where the inflow is constant in each period, the

inflow pooling effect vanishes.

EC.2. Proof of Results in Section 2

In this section, we provide proof for the analytical results in Section 2 of the main manuscript, including

Lemma 1, and Proposition 1-3.

We first present a lemma on the continuity of expectation operators, which will be used in our subsequent

proofs.

Lemma EC.1 Let C be a random variable with support [C, C]. Suppose that for all c € [C, C|, the function

f(e,x) is continuous in x and satisfies

[fe,z)| <&(c),

where &(c) is an integrable function on the domain of c. Then, the function Ec[f(C,x)] is continuous in x .



Proof of Lemma EC.1: Let G denote the probability measure induced by random variable C. Consider
any point z, and a sequence {z, } such that x,, — 2, as n — oo. To prove continuity, we will show that

lim,, o Ec[f(C,z,)] = Ec[f(C,x0)]. Since f(c, ) is continuous in z for each fixed ¢ € [C, C], we have

lim f(e,z,)= f(c,zy) VeelC,C].

n—oo

In addition, we have |f(c,z)| < {(c) for all z. Since £(c) is integrable and does not depend on x, we can

apply the Dominated Convergence Theorem to interchange the limit and the expectation as follows:

C C

lim EL/(Cua)] = Tim [ fleca)ace) = / Tim f(e,a,)dG(e /fcxo 4G(c) = E[f(C, o))
This yields:

lim E[f(C,z)] =E[f(C,x0)],

T—xQ
which implies that E¢[f(C, x)] is continuous at x¢. This proves that E¢[f(C, z)] is continuous at any x € R.

Q.E.D.

EC.2.1. Proof of Lemma 1

In this section, we prove Lemma 1, which shows that the optimization problem can be formulated at the
aggregate level as in (4). The agents are indexed continuously over the interval [0, N]. Agent ¢ requires
service F' (S) with probability p,r (p,s). By assumption, each agent requires at most one type of service.
For agent ¢, his service cost in service j is a random variable C,; with cumulative distribution function G;.

The optimization problem can be formulated as follows:

Vinalm) = : d EC.2.1

= e W E;S} [ ot e ECa)
Z / p,E[B(C.)]de=m (EC.2.2)
je{FS} 0

where [;(c) = ¢ — ¢;(c) represent the net cost for service j € {F,S}. We transform the problem to the
aggregate level using the population-based services costs and incidence. We prove that the optimization
problem (EC.2.1) — (EC.2.2) is equivalent to the one in (4) — (5) of the main manuscript.

To establish the equivalence, we first introduce service incidence and cost distributions at the aggregate
level. Let p; := |, ON p.;de represent the total incidence of service j. The aggregate service incidence is given
by:

1 I ,
h; =P = i pyde, Vje{F,S}.



The cumulative distributions of C'» and C'g are defined as follows:

Gj(c)zp(cjgc):/ Papc, < o)di = —

N
p.;G.(c)de, Vje{F,S},
o e EEHC (£.5)

where ¢ is the agent index for the CDF G ;(c). We first show a key equality for general continuous functions

based on definition of h; and G;(c). For any continuous function f; > 0 defined and bounded on [C, C], we

h], . / f7 dG / / Pej fJ dG” dL— N / pL] f] L]

The second equality holds by Chang and Pollard (1997). In particular, if a measure is the sum of multiple

have

measures, then the integral can be calculated as the sum of the integrals over those measures. Summing the

above equation for the two services, we get:

Z hjE[fj( Z /pbj f] ) (EC.2.3)

JE{F,S} Jje{F,S}

Since the feasible reimbursement policies ¢;(c) € C and the utility function u(c) are continuous, the func-
tion u(l;(c)) is also continuous. Thus, letting f;(c) =u(l;(c)) and f;(c) = ¢;(c) in (EC.2.3), we can prove
the equivalence of (EC.2.1) — (EC.2.2) to (4) — (5) . That is, both the objective function and the constraints

are equivalent to their aggregated form. This completes the proof of Lemma 1.

EC.2.2. Proof of Proposition 1

In this section, we give the proof of Proposition 1, which gives the form of optimal reimbursement policy.
Since the decision variables in problem (4) are two functions ¢;(c) for j € {F, S}, we first introduce a
fundamental lemma base on the calculus of variations with a general measure before proceeding with our

proof.

Lemma EC.2 Let G; be a Borel measure on [C, C]. If a continuous function f(c) satisfies:

/C F(©n(e)dG(c) =0,

for any continuous functions 1(c), then f(c) = 0 almost everywhere in [C,C| with respect to the measure
G,.

Proof of Lemma EC.2: We prove by contradiction. Suppose f(c) is not equal to 0 almost everywhere with
respect to the measure G. There exists a measurable set A = {c € [C,C]: f(c) # 0} C[C,C] satisfying
C4y=G;{A} > 0. We can establish

na(c) = 1{c€A}fC(,Z)-



We show that 174 (c) is continuous by the definition of A and continuity of f(c). If ¢, satisfies f(cy) = 0, then
by continuity of f(c), we have lim._,., f(c) = f(cy) =0, thus lim._,., na(c) =0 =n4(co). If ¢y satisfies
f(co) # 0, by continuity of f(c), there exists a neighborhood B, = (co — €, ¢y + ¢) such that f(c) # 0 for
all ¢ € B,. Therefore, lim,_, ., na(c) =lim._., f(c)/Ca= f(co)/Ca=mna(co).

Plugging the form of 14 (c) into the condition, we have:

/f ()G CA/f 24G(c) =

Since f(c) #0on A and C4 > 0, we have [, f(c)*dG;(c) > 0, which leads to a contradiction. Therefore,
the assumption that f(c) # 0 on a set of positive measure is false. Hence, f(c) = 0 almost everywhere in
[C, C] with respect to the measure G;.  Q.E.D.

We now derive the optimal policy using calculus of variations. Let GG; denote the distribution of cost C;.

The optimization problem in (4) in Lemma 1 can be rewritten in the following integral form:

UGm) = min_ Zh/ (e~ ()G (0

je{F,S}

s.t. Zh/qu )dG(

Jje{F,S}

Here, ¢; € C indicates that ¢, is continuous and 0 < ¢;(c) < c¢. To simplify the proof, we consider a
more relaxed version: constraint 0 < ¢,(c) < ¢ holds almost everywhere with respect to the measure
G(c). However, we will give a solution which still satisfies 0 < ¢r(c), ¢ps(c) < ¢ point-wise even in
this relaxation problem. We introduce the auxiliary variables for the inequality constraints as p(c) =
(0.7 (€), po.s(¢), 1, r(€), 1, 5(c)) and X for budget constraint. Then, the Lagrangian function for this relax-

ation optimization problem is given by:

L5 M p1) = Zh/ (c— 6,())dG, (€) + A Zh/ (€)dG(c) -

jE{F,S} e JE{F,S}
Z / 15,0(¢)9;(c)dG( Z / 11 (e)(d5(c) — c)dGj(c),
jE{F,S} JE{FS}

(EC.2.4)

where A is the multiplier for the budget constraint, and /1, ¢(c), 15,1 (c) > 0 are the multipliers for the non-
negativity constraints.

As the utility function is strictly convex and the feasible set for ¢ and ¢g is convex, the problem is
convex. We can develop the necessary conditions, i.e., the Euler-Lagrangian equation, for the above system

(Luenberger 1997). This leads to the following optimality conditions.



The first condition is the variation of the Lagrangian function to decision variable ¢ and ¢s: Consider a
small perturbation 7;(c) to ¢,(c) for service j, defined as ¢;(c) +¢en;(c). Let ¢_; denote the reimbursement

policy for the other service. So, we have

9 d
7‘C(¢jv¢—j,)\,u) =0 <— %

3 L(¢j+en;,¢_j,A\,n)| =0, for all continuous ;.
J

e=0

Plugging (EC.2.4) into the right hand side, we have

C
/ [—h;u'(c—¢;(c)) + hiA— pjo(c) + p;1(c)n(c)dG;(c) =0, for all continuous 7;.
c

By Lemma EC.2, the above equation is equivalent to

—hju'(c—¢;(c)) + hjA— pjo(c) +pji(c) =0, Gj-ae.in|[C,C|forje {F,S}. (EC.2.5)
The second one is the budget constraint:

C e}
hF/C ¢F(c)dGF(c)+hS/C ¢s(c)dGs(c) =m. (EC.2.6)

Then, we have the complementary slackness condition for the inequality constraint:
Hj.0 (C)(Z)j(C) = Mj1 (C)(C — d)j (C)) = O, Gj-a.e. in [Q,é] forj € {F, S} (EC27)

Finally, we impose the feasible regions on the decision and constraint variables:

0<9¢;(c)<c, pjo(c), uji(c) >0, Gj-ae.in[C,C]forje€{F,S}. (EC.2.8)
As we mentioned, by the convexity of objective and linearity of constraints, the solution that satisfies the
above conditions is optimal.
We verify that the following solution satisfies the above optimality conditions (EC.2.5) — (EC.2.8). The
reimbursement policy is given by:

¢%(c) =max{0,c—1"}; (EC.2.9)

J

and the auxiliary constraint variables are:
A=u/(77), pjolc) =h; (v (") — u’(c))+, pii(e)=0. (EC.2.10)

In this case, the net cost is /;(¢) = min{c, 7*}.
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We now verify the optimality conditions. Plugging the solution (EC.2.9) and (EC.2.10) into (EC.2.5), we
have

—hu/(min{c, 7°}) + hju'(7%) — by (v (77) — /()T = 0.

This follows from the fact that u/(c) is strictly increasing in c. The budget constraint (EC.2.6) holds by the
definition of 7*. We establish the existence of 7* momentarily. For the complementary slackness condition

in (EC.2.7), we have

pi0(€)@;(c) = h; (/' (77) — u'(c)) " max{0,c — 77} = 0.

Finally, it is obvious that the feasible condition (EC.2.8) holds for ¢7(c), A, p;0(c) and g, (c) defined in
(EC.2.9) and (EC.2.10).
We now prove the existence of threshold 7* that satisfies the budget constraint (EC.2.6). For a given level

of 7, the total expenditure defined in right-hand-side of (EC.2.6) is given by:

B.(r)= Y_ hEmin{C;,7}].
Je{r,s}
Let the support function £(c) = ¢, which is integrable and satisfies min{c, 7} < ¢(c). By Lemma EC.1, the
function B.(7) is continuous in 7. In addition, we can see that B.(7) decreases in 7 with B.(0) = m and
B.(C) = 0. By the Intermediate Value Theorem, there exists a 7* such that B.(7*) = m for 0 < m < .

Thus, the solution in (EC.2.9) and (EC.2.10) satisfies all the optimal conditions and is therefore optimal.

EC.2.3. Proof of Proposition 2
In this section, we give the proof of Proposition 2, which gives the optimal ratios. The proof consists of
three steps. First, we formulate the optimization problem and derive its KKT conditions. Then, we analyze
these conditions in two cases based on the budget level m: when m < m,. and when m > m,., where m,. is a
threshold that will be defined later. In each case, we construct a solution and verify that it satisfies all KKT
conditions, thereby proving its optimality.

We assume the cost indexes bg > br without loss of generality. The optimization problem for the ratio
policy is formulated as:

U.(m)= min hrE[u((1 —rp)Cr)] + hsE[u((1 —r5)Cs)] (EC.2.11)

0<rp,rg<1

S.t. hFE[TFCF] + hsE[’I"ScS] =m.

Compared to the optimization problem in (4), the policy for service j € {F, S} in (EC.2.11) is restricted to

¢j(c) =r; x ¢, where r; is the decision variable.
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This optimization problem is a convex problem because: (1) the objective function is convex in rp
and rg as the function u(c) is convex in ¢; (2) the constraint is linear in r and rg. Therefore, the
Karush—Kuhn-Tucker (KKT) conditions are sufficient and necessary for the optimal solution. We introduce
the auxiliary variables g = (o r, fto s, 41,7, f1.5) and A, associated with the constraints ¢, ¢s € C and the

budget constraint, respectively. Then, the Lagrangian function is:

L(rs,rp, A\, p) = Z hiElu((1—7;)Ci)]+ X[ Z h;Elr;Ci] —m] + Z (151 (rj = 1) = pj07m5]-

JjE{F,S} je{F,S} JE{F.S}

The KKT conditions are listed as follows. The first condition is the gradient with respect to the decision

variables:

oL

J

The second condition is the budget constraint:
hrE[rrCr]+ hsE[rsCs| =m. (EC.2.13)
Next, we have the complementary slackness condition for the inequality constraint:
wior; =pii(r;—1)=0 Vje{F, S} (EC.2.14)
Finally, we impose the feasible regions of the decision and constraint variables:
Wiostin >0, 0<r; <1, Vje{F S} (EC.2.15)

Since this optimization is a convex problem, the KKT conditions are sufficient and necessary for the optimal
solution in problem (EC.2.11).

To simplify the notation, we first define function g;(r;) as follow:

g;(r;) = E[Cjul(élcf]rj)cj)], vj e {F,S}, (EC.2.16)

which represents the marginal benefit of increasing the budget in service j as shown in (12). By applying
Lemma EC.1, with £(c) = cu/(c)/E[C;] dominating cu'((1 — 7)c)/E[C}], the marginal benefit function
g;(r;) is continuous with respect to ;. By the strict increasing property of u'(c), the function g;(r;) is
strictly decreasing in r;. Thus, the inverse function (g;)~*(b) exists, which is also continuously and strictly

decreasing in b. At r; =0 and r; = 1, we have ¢;(0) = b, and g,(1) = v/(0) = 0, respectively.
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Given the assumption by < bg, we define the threshold m,. as:
m, = hsE[Cs] (gs)il(bp). (EC217)

The threshold m,. satisfies m,. < hgE[Cs]. By definition, m, represents the minimum budget required to
reduce the marginal benefit of service S to that of service F'.
We consider two interval m € [0, m,.] and m € (m,,m]: First, when 0 < m < m,., we prove that the
optimal solution is given by:
m

TF:O, T'S:m7 (EC218)

with auxiliary variables

A=gs(rs), pro=hrE[Crl(gs(rs) —br), prp1=ps1=pso=0. (EC.2.19)

We verify the optimality of the solution by checking the KKT conditions one by one. Plugging the solution
(EC.2.18) and (EC.2.19) into (EC.2.12), we have

heE[Cr] (=br +gs(rs) — (9s(rs) —br)) =0,
and
hsE[Cs] (—gs(rs) +gs(rs)) =0.

The budget constraint (EC.2.13) holds by definition of 7} and r% in (EC.2.18) as
hFE[CF]'I“; + hsE[Cs]T; =0+ hsE[Cs]i =m.

The condition (EC.2.14) holds by definition as pgo = pts1 = pr1 =0 and ppory = pro X 0 = 0. Finally,
since m < m, < hgE[Cs], by (EC.2.18) , we have r% < 1. By the definition of m,. in (EC.2.17) and strict

decreasing property of gs(r), we have

9s(rs) =gs <h5|;n[05]) > gs <]“£w> = bp.

Thus, we have pro = hrE[CFr](g9s(rs) —br) > 0. So, condition (EC.2.15) holds by definition in (EC.2.18)
and (EC.2.20). We have verified all the conditions (EC.2.12)~(EC.2.15), thus r}. and r§ defined in (EC.2.18)
is optimal when 0 <m < m,.

Second, we consider m,. < m < m: Proposition 2 states that when m > m,., our solution satisfies

gr(r5) = gs(r%). So we prove the optimal solution is as follows. The auxiliary variables are given by

Hro = o = et = fisa =0, A= A% (EC.2.20)
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and the optimal ratios are given by:
re=1(9s)""(\), TR = ()" (\). (EC.2.21)

The parameter A* is solved by (EC.2.13) and (EC.2.21). We will show that \* € [0, bF].
We verify the optimality conditions. Plugging the solution (EC.2.20) and (EC.2.21) into (EC.2.12), we

have:

The budget constraint in (EC.2.13) holds by the definition of \*, and we will prove the existence of \*
and \* € [0,br] momentarily. Finally, the KKT conditions (EC.2.14) and (EC.2.15) hold by definitions
(EC.2.20) and (EC.2.21).

We then prove that there exists A* satisfying (EC.2.13) under (EC.2.21). We define the total expenditure
B,.(\) as the right-hand-side in (EC.2.13):

B,(X) :=hsE[Cs](gs) " (N) + hrE[CF](gr) " (N).

We consider the domain X € [0,bp]. As g;'()\) is continuously decreasing in A, the function B, () is
continuously decreasing in A. We have B,.(br) = m, and B,.(0) = m. Thus, by the Intermediate Value The-
orem, if m, < m < m, there exists A* satisfying B,.(A\*) = m. As \* € [0,br|, we have 5 = (gr) "1 (A*) €
[0,1] and 75 = (g5)"*(\*) € [0,1]. By (EC.2.21), we have \* = gr(r%) = gs(r%). In addition, as B,.(\)
is decreasing in A, by definition of A* in (EC.2.13), we have that solution A\* decreasing in m. So, both
the 5 = (gr) *(A*) and r% = (gs) ' (\*) are non-decreasing in m. We have verified all the conditions
(EC.2.12)~(EC.2.15), thus r% and 7§ satisfy gz (r}) = gs(r%) = A* when m,. <m < m.

In summary, the optimal ratios satisfy: If m < m,., the optimal solution is (r}.,7%) = (0,m/hsE[Cs]); If
m > m,., optimal solution satisfies gs(r%) = gr(r}), as stated in Proposition 2.

We also discuss a special case for the power utility function u(l) = 17 /~. Plugging the power utility

function into (EC.2.17), the threshold m,. is
m, = hsE[Cs](1 — (bp/bs)7T). (EC.2.22)

If the budget m € [0, m,], by (EC.2.18), we have:

m

- EC.2.23
hsE[Cs] ( )

—_— *_
rp=0, rg=

If the budget m € (m,.,m], by combining (EC.2.13) and (EC.2.18), we have:

1

1 1 1 1
(mby T +hpE[CE)(b T —by 7)), (EC.2.24)

1 1 1 1
(mbg™" —hsE[Cs](ba™" — b)), re=

*_
TF—
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1
where the constant H := hsE[Cs]by ' +hrE[Cr]bd~". In this case, the optimal ratios can be solved explic-

itly, which increase piece-wise linearly in the budget level.

EC.2.4. Proof of Proposition 3

In this section, we give the proof of Proposition 3, which indicates decreasing and convexity of U,.(m)
and U.(m). We first give the proof of U.(m) < U,.(m). Then, we prove that U.(m) and U,.(m) are strictly
decreasing in m. Finally, we prove that U.(m) and U,.(m) are strictly convex in m.

To simplify the notation, we let the objective function in (4) be

Ue(br,ds)i= > hEu(C;—¢;(Cy))l.

JE{F,S}

Let the objective function in (EC.2.11) be:

U, (re,rs) :==hpE[u((1—rp)Cr)] + hsE[u((1 —rg)Cs)].
(i) Ue(m) < U, (m).
The optimal solution in problem (EC.2.11) satisfies ¢;(c) =rjcand 0 <rjc < cfor j € {F,S}. With the
same budget constraint, this optimal ratio policy is feasible in problem (4). Therefore, U.(m) < U,.(m).
(ii) U.(m) and U,.(m) are strictly decreasing in m € [0,m).
Consider m < m’' < m. Let ¢} and ¢¢ denote the optimal solution to problem (4) with budget m. We
will establish a new policy feasible for problem (4) with budget m’ which leads less utility loss than that by

@3 and ¢%. The optimal policy ¢;. and ¢ satisty:
hrE[o}(Cr)] + hsE[o5(Cs)] = m.
We consider a new policy ¢’(c, €) based on the optimal policy

¢'(c,e) :=min{c, ¢} (c) +¢}, Vee|C,C]. (EC.2.25)

Then, for e >0 and c € [C, C], we have ¢/;(c, &) > ¢} (c) (as ¢ > ¢} (c) and ¢} (c) +& > ¢}(c)) and the strict
inequality holds at some points because of m < m (no fully cover). By the strict increasing property of

u(c), we have

Udm)= " hE(C;=¢5(C)] > > hE[u(C;—¢(C,e))]. (EC.2.26)

JjE{F,S} je{F,S}

We then prove there exists such € making (EC.2.25) feasible to problem (4) with budget m'.
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The total expenditure under new policy is

> hE[6(Cye)).

JE{F,S}

Let the support function £(c) = ¢, which is integrable and satisfies min{c,7} < £(c). By Lemma EC.1,
Be..(¢) continuous on ¢. Furthermore, B, ,,(c,0) =m and B.,,(c,C) = m. So, by the Intermediate Value
Theorem, there exists €* > 0, satisfying B, ,,,(¢*) = m’ for m <m’ < m. Thus, the new policy ¢/(c,e*) is

feasible for problem (4) with budget m’, but might not be optimal:

> hE(C; = ¢(Ch,e7)] < Ue(m).
Je{r,s}
The second inequality derives from (EC.2.26). Therefore, we conclude U.(m') < U.(m) for m <m’ <m,
and thus, U.(m) is strictly decreasing in m.
For U,.(m) under ratio policy, we follow a similar approach. Consider m < m’ < m. Let r}. and 7% be
the optimal ratios for problem (EC.2.11) with budget m. We construct a new policy 7 = (1 + ¢)r} for
J € {F,S}. Note that since 7} € [0, 1] and m < m, there exists small enough & > 0 such that 7 € [0, 1]. The

total expenditure under the new policy is

> WEC =(1+e)m
Je{r,s}
By the Intermediate Value Theorem, there exists ¢* > 0 such that B, ,,(¢*) = m/. The rest of the proof
follows the same argument in the unconstrained case, showing that U,.(m) is strictly decreasing in m.
(iii) U.(m) and U, (m) are convex in m.
Consider the budgets m, and m,. Let (¢}, 95 ;) and (¢f 5, @5 ») be the solution in (4) under budget m,
and my, respectively. Let 6 € (0,1) be given. Then, denote m’ = 6m, + (1 — 0)m, and ¢ = 05, + (1 —

0)¢; .. Based on the strict convexity of u, utility loss under policies ¢ satisfies

U@ ds) = > WEu(Cy = ¢4(C))]

Jje{F,S}
<0 > hE(C =@ (CO+(1—=0) > hEL(C)— 5,(Cy))]
JE{F,S} JE{F,S}
= OUc($515 951) + (1 = O)Ue(Phrzs 950)- (EC.2.27)

Due to the linearity of budget constraint, ¢’ is feasible in (4) with budget m':

> hElg = > WE0;,(Ch) + (1= 60)655(Cy)) = my + (1 — O)ms.

JE{F,S} jE{F,S}
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Since ¢ is feasible but might not be optimal, with (EC.2.27), we have

Ue(m') U, @s) < OU(51,851) + (1= 0) Uz, 052)
= HUC(ml) + (1 — H)Uc(mg),

which means U.(m') < 0U.(m,) + (1 — 0)U.(m3). Therefore, the function U,.(m) is strictly convex in m.
We then prove the strict convexity of U,.(m) under the ratio policy. Let m; and my (m; < ms) be given.
Denote (1% ;,7%,) and (175,775 ,) the optimal ratios for budget m, and ms in (EC.2.11) respectively. Then,

for j =1,2, we have
U.(my) = U, (r5;,7%,)- (EC.2.28)

Let 6 € (0,1) be given. Then, denote m’ = 6m, + (1 —0)my and v = Or7 , + (1 —0)r; ,. The ratios (75, 7%)
are feasible in problem (EC.2.11) with budget m/, because

S nEC =0 > hEC (1-6) Y WEC]r,=

jE{F,S} je{F,S} jE{F,S}

From the feasibility of r}. and r, we have
U, (m) U (r}, 17%). (EC.2.29)

Based on strict convexity of u(c), the utility loss under such ratios satisfies

(T, s) g h;E[u l—r E h;E[fu(( 1—7“] )C;) + (1—9)u((1—7’;"2)Cj)]
JE{F,S} JG{FS}
= eUT(T;,l’ T;,l) + (1 - Q)UT(T;‘,W r;‘,Q)' (EC23O)

Using (EC.2.28) and (EC.2.30) in conjunction with (EC.2.29), we get
U.(m') <0U,.(my)+ (1= 0)U,(my).
This completes the proof that U,.(m) is strictly convex in m.

EC.3. Proof of Results in Section 3
In this section, we provide proof for the analytical results in Section 3 of the main manuscript, including

Theorem 1, and Proposition 1-3.

EC.3.1. Proof of Proposition 4
In this section, we give a proof of Proposition 4, which gives the optimal reimbursement policies in monetary

pooling system. We first show that the optimal solution in the unconstrained problem has a cap structure



17

in part (i) of Proposition 4. Then, we prove that the optimal ratio policy has the structure in part (ii) of
Proposition 4.

To simplify the notation, we denote M := 3.5 w®@m® the budget and M :=
ZZ L2 ielF.s) wl [C( ] the full cover cost.

(i) For the proof of cap policy, we can directly follow the proof in Proposition 1.

Similar to discussion in Proposition 1, we consider a relaxed version of problem (EC.1.5) — (EC.1.6):
constraint 0 < (b;i)(c) < c only need to holds almost everywhere with respect to the measure G?(c) but
not point-wise. However, we will show that, even in this relaxation problem, our solution still satisfies
0< ¢§»i) (¢) < c point-wise. Let 1¢(c) be an vector auxiliary function for inequality constraint as

p(c) = (pp(c), s (0), 15p (), 1575 (e)) -

The Lagrangian function for this relaxed problem is written as:

L(¢r,Ps, A, 1) = Z > w / u(c— %" (¢))dGY (c) (EC.3.1)

i=1 je{F,S}
+A Z > w®hf / ¢\ (c)dG (c) — M
i=1 je{F,5} ¢
—Z Z/ 1599 (€)dGY (c) +Z > / 1) (0 (e) — )G (e).
i=1 je{F,S} i=1 je{F,S}

Based on this Lagrangian function, we can establish the optimal conditions as follows: The first one is the

variation of the Lagrangian function, i.e., the Euler-Lagrangian equation:

—wDh (c— ¢\ (€) +w PRI N—pS () + 1 (€) =0,  GV-ae.in [C,C], Vi€ {F, S}, i=1,2,.., K.
(EC.3.2)

The second condition is the budget constraint:

Z > / ¢ ()dG () = M. (EC.3.3)

JE{F,S} =

Next, we have the complementary slackness conditions for the inequality constraints:
1 (@8 (€)= 1 () (e — ¢ (¢)) =0.  GV-ae.in[C,C], Vje{F,S}, i=1,2,...,K. (EC3.4)
Finally, we impose the feasible bounds on the decision and constraint variables:

0< ¢! (e) <e, 9 (e), 1l (c) >0, GV-ae.in|C,C), Vje{F,8},i=1,2,...,K.  (EC3.5)
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As the objective function is convex by convexity of u(c) and the feasible set for gzﬁy) is a convex set, the
solution that satisfies the above conditions is optimal.
Our proposed policy is that for ¢ € [C,C], j € {F,S},i=1,2,..., K, optimal reimbursement policy is
given by:
¢\ () = max{0,c— 7*}. (EC.3.6)

The auxiliary variables are given by:
A=/ (77), 1)) =0, pl(e) =w D (u' (7%) — ' (¢))* EC3.7
u (T )7 /’Lj71(c) ) :uj,O(c) w J (u (T ) U (C)) . ( e )

We verify each condition one by one. Plugging the solution (EC.3.6) and (EC.3.7) in the first condition
(EC.3.2), for every ¢ € [C, C], we have

w(i)hy)u'(min{c, T} + w(i)hgi)u'(T*) - w(i)h;i) (u'(77) — /()" =0.

This follows by the increasing property of u'(c) in ¢. Then, the budget constraint (EC.3.3) holds by the
definition of 7*. We will prove the existence of 7* momentarily. Conditions (EC.3.4) and (EC.3.5) hold by
the definitions of 14, o, 15,1 and ¢, for service j in (EC.3.6) and (EC.3.7).

We now prove that the threshold 7* exists. The total expenditure under our proposed policy is

BMP) (1 Z Z ()h(Z)Emm{C’(), H.

i=1 je{F,S}

With the integrable support function &(c) = w(i)hy)c > w(“hy) min{c, 7} and Lemma EC.1, total expendi-
ture BXMP)(7) is continuous in 7. In addition, the function B{™?)(7) decreases in 7 with BMP)(C) =0
and «
=> " > w"nPECY).
i=1 je{F,S}

By the Intermediate Value Theorem, there exists 7*, which satisfies BMP)(7%) = M for 0 < M < M,
which is the budget constraint in EC.3.3. Therefore, the solution in (EC.3.6) exists and is optimal.

(ii) For the proof of optimal ratio policy, We follow the proof idea of Proposition 2. The optimization

problem for monetary pooling under ratio policy is given by:

K

UMP)(m) = min Z Z (i)hy)E[u((l — rgi))Cﬁi))]
{ (4) (1)}7{(1 i—1 jE{FS}

s.t. w()h(l TZC” =M,
>y ]

i=1 je{F.S})

0<r¥r¥<1 vi=1,2,. K.
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To simplify the notation, we define the function:

which represents the marginal benefit of increasing the reimbursement ratio in service j for group ¢. By
integrable support function £(c) = cu/(c)/ E[ ;] > cu'((1 —r;))/E[C;] in Lemma EC.1, marginal benefit
function g]@ (r) is continuous. In addition gj )(r) strictly decreases in 7 at [0, 1]. Thus, the inverse function
(gj(-i))(‘l) exists, which is also continuously decreasing. First, to simplify the notation, let the vector of

auxiliary variables for inequality constraint be
i i i i) \ K
= (ILL((),)F’ M((),)S’ Mg,)FW Ng,g)izl'
The Lagrangian function for monetary pooling under ratio policy is

Clrsrrdn =3 3 wOH (11100

i=1 ]G{FS}
D% % WOEo] a0+ 3 B
=1 ]E{FS} 1=1 ]E{FS}

We consider the KKT conditions: The first one is the gradient of decision variables:

wORPE[CT] [ - g () + A+ D -u)] =0, Vie{FS}, i=12.,K.

(EC.3.8)

wdhVE[CH]

The second one is the budget constraint:

Z > wOhPE[r,C] =M, (EC.3.9)

i=1 je{F,S}

Next, we have the complementary slackness conditions for the inequality constraints:

plor? =p (@ —1y=0, Vje{FS}, i=12,..,K. (EC.3.10)
Finally, we impose the feasible regions of the decision and constraint variables:

P, >0, 1>r>0, Vie{FS}, i=12,..K. (EC3.11)

The optimization problem is convex because the objective function and the constraints are linear. Therefore,

the KKT conditions are necessary and sufficient for an optimal solution.
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We consider the solution: For service j € {F,S} and i = 1,2, ..., K, auxiliary variables for all services

and groups are

A=b, u{) =0, 4b) =wDRVE[C)(b— gt (r{")) . (EC.3.12)

The optimal ratios are determined by

b,

- (EC.3.13)

b.

We verify the optimal conditions one by one. Plugging (EC.3.12) and (EC.3.13) into (EC.3.8), we have
—g, (r") 4b— (b—gi (") =0, je{FS}), i=12.K

Then, the budget constraint (EC.3.9) holds by definition of 7*. We will prove the existence of b momentarily.
Finally, KKT conditions (EC.3.10) and (EC.3.11) holds by (EC.3.12) and (EC.3.13).

We prove the existence of b. The total expenditure in reimbursement is

MP Z Z h( )E (b)C’](»i)].
i=1 je{F,S}
We first prove that all r(-i)"* (b) are continuous and (weakly) decreasing in b: (1). If b;-i) < b, then rj(-i)’* (b)=0
and it is continuous. (2). If b > b, then r{"*(b) = (¢”)=)(b). The function (¢\”)~ is continuous in
r§ D (3). If bg-z =, then lim,_, gj (r) = b] =b. Because r( O (b) continuously (weakly) decreases in b
foralli=1,2,...,K and j € {F, S}, the function B{*")(b) continuously decreases in b. We have

BMP) (max{b{'}) =0 < M,

and

BMP) (0 Z > wOhPE[C] = M > M,

i=1 je{F,S}
where M = Zfil w7, By Intermediate Value Theorem, there exists b satisfying BMP) (l~)) =M. So,
the b satisfies budget constraint (EC.3.9). Using this threshold l~), we could get solution (EC.3.12) and
(EC.3.13), which satisfy all the KKT conditions. As the problem is convex, this solution is optimal. By the
optimal solution in (EC.3.13), we get the optimal reimbursement ratios which satisfy the statement (ii) in

Proposition 4.

EC.3.2. Proof of Corollary 1
In this section, we prove the Corollary 1, which gives the optimal ratio policy under power utility function

defined in (3). We first give the marginal benefit function gﬁi) (r) under the power utility function, which is
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used in the solution of optimal ratios in (EC.3.13). By the forms of gj(»i) (r) and Proposition 4, we get the
result of Corollary 1. We also give the explicit form of bin Corollary 1.
Plugging the power utility function in (3) into the marginal benefit function of increasing the budget in

service j defined in (EC.2.16), the marginal benefit is given by:

957 (r3") = =4 =y

where the bgi) is the cost index in Definition 1. So, the inverse function of gj@ is given by:

<g§“>-1<b>=1—<bf;> -

So, by the optimal ratios in (EC.3.13), the optimal solution satisfies:

_ 7y=Lio

s :max{l - (éi’)); i ,o}. (EC.3.14)
)1
J

where b is determined by the budget constraint as:

Z > ( @D p( >EC<Z]max{1—((5)7_I,

i=1 je{F,S} bf))”

K
o}) =Y wim®. (EC.3.15)
i=1

The explicit formulation of threshold bis given by following: The forms of optimal ratios in (EC.3.14)
indicate that only the services with a cost index greater than b are reimbursed. So, we can sort the cost index
and search for the threshold of service to be reimbursed. Let by, bs, ..., box be the sorted cost indexes of
all services across groups, where 2K is the total number of services since each group ¢ has two services
(j € {F,S}). These cost indexes satisfy b, > by, for all k =1,2,...,2K — 1. The corresponding groups

and services are i1, is, ..., iax and ji, jo, ..., jox . We define a threshold £ as:

k 1 K

= iV g (i i b\ 7! DG

k::sup{k:§ wWRE[CIV] |1~ <b]l€> ] <> w<>m<>}. (EC.3.16)
=1 =1

The left-hand-side in the inequality in (EC.3.16) is the expenditure of reimbursement if we set the cost

index threshold b = by,. Thus, by definition in (EC.3.16), the threshold fall in region b € [b, 0711 )- Thus, the
service of sorted index k > k will not be reimbursed. We can transform the budget constraint in (EC.3.15)

as follows:

7| &
() p i groti) N = (OPFNO)
ZwlhlECl] 1 (bz> _;w m'.
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So, b is solved as follows:

k i) p (i ' K (i) (i
B— Do W ”hxl)E[CJ(-f’)] — i wm®
- E (G i i)\ — T ’
25:1 w(”)h;lz)E[Cj{lz)](b( z)) 7—1

Ji

where k is defined in (EC.3.16).

EC.3.3. Proof of Theorem 1
In this section, we give the proof of Theorem 1 which compares the performance of non-pooling (NP), full
pooling (FP) and monetary pooling (MP) systems in different assumptions of services costs. We first prove
the general inequalities in (ii-b), showing that both NP and FP systems perform no worse than MP. Then, we
prove the equivalence between FP and MP in two special cases: for cap policies in (i) and for ratio policies
with homogeneous costs in (ii-a).

(ii-b) UNP) > UMP) and UFP) > UMP),

The solution {¢%"*, $"*}X | in non-pooling system (EC.1.1)~(EC.1.2) is feasible in monetary pooling
system (EC.1.5)— (EC.1.6) because we could sum the budget constraints in (EC.1.2) for all group to get
the budget constraints in (EC.1.6). Due to this feasibility, we have UN?) > UMP) | Similarly, the opti-
mal policies ¢% and ¢} in full pooling system (EC.1.3)—(EC.1.4) are feasible in monetary pooling system
(EC.1.5)—(EC.1.6) because budgets in two systems are same and we could let policies in MP be ¢(;'> = ¢%
and ¢(Si) = ¢% foralli =1,2,..., K. Due to this feasibility, we have U") > UMP)_ For the ratios policies,
the ideas of proof are the same. So, we could also conclude UN?) > UMP) and U > UMP), Those
inequalities are the general situation corresponding the statement (ii-b) in Theorem 1.

() UFP) = UMP) < UNP) in cap policy.

The optimal cap policy is shown in part (i) of Proposition 4. In the monetary pooling system, the optimal
policy is

¢\ (2) = max{zr — 77,0}, Vje€{F,S}i=1,2,3,..,K, (EC.3.17)

where the parameter 7% is a constant determined by (EC.1.4). The optimal cap policy in (EC.3.17) is
feasible in the full pooling system. This is because the reimbursement policies in MP are homogeneous
between groups i.e., gbg.il)’*(x) = ¢§i2),*($) and the budget constraints for FP and MP are the same i.e.,
the equivalence of (EC.1.4) to (EC.1.6). Therefore, we have U{'") < UMP) In former result, we have
UMP) <UFEP) So, we have UMP) = UFFP) Combining with discussion in previous of UNP) > (MF)
we conclude U = UMP) < (NP,

(ii-a) UEP) = UMP) < UNP) in ratios policy with homogeneous services costs.
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The optimal ratios are shown in part (ii) of Proposition 4. With homogeneous service cost assumption, the
cost indexes are the same for all groups. Let the cost indexes be by and bg to service F' and S for all groups.
We define the marginal benefit function, which is the same for all groups by homogeneous assumption, as

Elu'((1—r)C))Cj]
E[C)] '

g;(r) =

which represents the marginal benefit of increasing the reimbursement ratio in service j for group 7. By
integrable support function £(c) = cu’(¢)/E[C;] > cu/((1 — r;))/E[C;] in Lemma EC.1, marginal benefit
function g;(r) is continuous. In addition g;(r) strictly decreases in r at [0, 1]. Thus, the inverse function
(gj)~ " exists, which is also continuously decreasing. By Proposition 4, the optimal reimbursement ratio

satisfies -
@ )0, if b; <0,

(gj)il(g), if bj >B
This implies that

(i1),*
T

:7".57;2)’*& Vilﬂ;2:1727"')K7 andjE{F7S}

So, all the optimal reimbursement ratios in the monetary pooling system for service j are the same for all
groups. Therefore, the optimal reimbursement ratios in the monetary pooling system are also feasible in
full pooling. Due to the feasibility, we have that U*") < UMP) The former result shows UMP) < UFP),
So, we have U") = UMP) Combining with the former result UN?) > UMP) | we conclude UFP) =

UT(MP) S UﬁNP).

EC.3.4. Proof of Proposition 5
In this section, we prove the result in Proposition 5, which compares the performance of NP and MP under
given parameters. We first present the formulation of utility loss under optimal ratio policy in constant
services costs denoted as U, .,,(m). Then, we give the value of UN") and U¥P) in our setting by using
U,.con(m). Finally, we compare the performance U™?) and U*'") by difference and discuss the two cases
in Proposition 5.

We first give an auxiliary lemma, which presents the utility loss under optimal ratio policy for constant

service costs. This is helpful in calculating U ") and UNVP),

Lemma EC.3 Under power utility loss defined in (3), if the services incidence of a group are (hr,hs) and

the services costs are constant (cr,cg), then the utility loss under optimal ratio policy for the group is

hpch + =1 (hgcg —m)7, ifm<hg(cs —cr),
VU eon(m) =4 ro r(hscs —m) sles —cr) (EC.3.18)
W(hpCp"FhsCs —m)”, lfm> hS(CS —CF),

where m is the budget level of the group.
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Proof of Lemma EC.3: The utility loss function has the power utility form wu(l) = [/~ defined in (3).
So, the optimal ratio has been solved in (EC.2.22)—(EC.2.24). Plugging the constant services cost cx and
¢g into (EC.2.22)—(EC.2.24), the threshold of reimbursing two services is m,. = hg(cs — ¢x). The optimal

ratios (r}., r%) are given by: If m < hg(cs — cr), then we have

. . m
TF:O7 TS: hSCS;
and if m > hg(cs — cr), then we have
1
Tp (hF+hs)CF [m s(cs —cr)l, Ts (hF“‘hSi)CS [m+hp(cs —cr)]

Plugging optimal ratios (r}, r%) into objective function in ratio policy in (EC.2.11) with power utility func-
tion (3), i.e. YUp,con(m) =32 1o gy hycj (L —175)7, we get the result in (EC.3.18). This completes the proof
of Lemma EC.3. Q.E.D.

Lemma EC.3 gives the single period utility loss function under constant service cost. Then, we establish
the utility loss UNP) and UF?). We first give the utility loss UV?) in a non-pooling system. Recall the
setting that both Group 1 and Group 2 have service incidence (hr, hs) and population weight w*) = w(? =
0.5. Their services cost and budget are (cr, cs) and m for Group 1 and (k.cr, k.cs) and k,,,m for Group 2.

By Lemma EC.3, the utility loss for Group 1 under optimal ratio UV is given by:

Y _ : _
UW = hech +grhses —m)? Tfm = hsles e (EC.3.19)
W(hpcp + hgecs —m)?, if m > hg(cs —cp).
Similarly, the utility loss for Group 2 under optimal ratio U? is given by:
¥ ¥ i < _
U hpk)cy + h'y —1(hskecs — kyym)?, if k,ym < hsk.(cs —cr), (EC.3.20)

W(h}:‘k cr+ hsk.cs — k,, m)'* if k,,m > hgk, (CS—CF).

Recall the definition of a non-pooling system: each group operates independently. So the total utility loss in

the non-pooling system U™) is given by:
UNP) = MU W 4 @U@ = %(Uﬁ” +UP). (EC.3.21)

We then give the utility loss U¥?) in full pooling system. The optimization problem in full pooling

system under ratio policy could be formulated as:

UFP) =  min Z hic)(1+k.) (1 —r;)" (EC.3.22)

0<rp,rg<1
]E{F S}
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1 1

JE{F,S}

To use Lemma EC.3, we could transform the problem (EC.3.22)—(EC.3.23) into a constant service cost

form as follows:

(FP) _ : CP) (cp _
U! s in > hy "1 —ry) (EC.3.24)
JjE{F,S}
s.t. > b =), (EC.3.25)
Je{F,S}

where the parameters are given by:

1 1
. (I+k) )71 c 1+k7\ 71 . 1 .
hi? = h [ T =g %) 0 MY =30tkm, Vie{FS}.
(EC.3.26)

For any reimbursement ratio (rs, 7 ), we verify the equivalence of transformation as follows: Plugging the

(EC.3.26) into objective function (EC.3.24), we have:

C C 1
2 WG Qo =g 3 (=) (] +hklc)),

Jje{F,S} je{F,S}

where the right-hand side is the objective function defined in (EC.3.22). Similarly, plugging the (EC.3.26)
into the budget constraint in (EC.3.25), we have

C C 1
3 h§p>c§p)rj:§ > ri(hes + hikeey),

je{F,S} JjE{F,S}

and

1
mP) — Z(1 k.,
= (1 k)m

where the right-hand sides in the above two equations constitute the budget constraint defined in (EC.3.23).
Therefore, we complete the proof of equivalence of problem (EC.3.24)—(EC.3.25) to problem (EC.3.22)—
(EC.3.23). For the problem (EC.3.24)—(EC.3.25), by Lemma EC.3 and definition of 1\, ¢\ and m(*® in
(EC.3.26), we get U'P) as:

AUED) (EC.3.27)
Lhpcp(L+k)) + ”1 1(11jk’“ (hscs(1+k.) — (1 +ky)m)?, if (1+k,)m < hg(1+k.)(cs — cp),
(hFJrfiS)W—l (11;35)7 [(1+k.)(hperp 4+ hscs) — (L +kp)m]Y,  if (14+ky)m > hs(1+k.)(cs —cr).

We then compare the performance of the non-pooling system and the full pooling system by the difference

of y(UNP) —U(F'P)), Before going to comparison, we introduce an auxiliary function f(x) to simplify the
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Figure2  Schematic Diagram of f(z)

notation:

f(z):= L (EC.3.28)

(14z)’
It is easy to see that f(x) decreases in (0, 1) and increases in (1, +00). In addition, we have f(z) = f(1/x).
We plot the schematic diagram in Figure 2. We discuss the two cases in Proposition 5 one by one.
(i) If m < hs(cs — cr) and k,,m < hgk.(cs — cr), then (1 + k,,)m < hg(1 + k.)(cs — cr). With
auxiliary function f(x) in (EC.3.28), by the UM, U@, UWNP) and UFP) defined in (EC.3.19)- (EC.3.21)
and (EC.3.27), we have

'Y(UT(NP) — UT(FP)) = 2];_1 [(hscs —m)Y + (hskees — kpm)” — f(ke)[(1+ke)hscs — (1 + Ky )m]”]
S
hgk.cs — k,,
= Qh]-'y—l[(]' + kc)hSCS - (1 +km)m]’y |:f (W) - f(kc):| .
S

To further simplify the notation we let r; := (k. — k,,a1)/(1 —ay) and a; :=m/hscs < 1. So, we have

1+ kc)hscs - (1 + km)m]“’
2h%

YUNP) —UFP)) = ( [f(r) — f(k.)]. (EC.3.29)

By the case assumption (1 + k,,)m < hg(1 + k.)(cs — cr), the first term in (EC.3.29) is positive. For the
last term, we have f(r,) — f(k.) > 0 if and only if max{r;,1/r;} > k. > min{ry,1/r;} because f(x) is
decreasing in (0, 1) and increasing in (1,+4o00) with solution f(x) — f(1/x) = 0. (see the red solid line in
illustrative Figure 2).

So, we compare ry, k., and 1/r,. By definition of r, = (k. — k,,a,)/(1 — a;1), we have r; < k. if and

only if k. < k,,,. Similar, by definition of 4, k. > 1/r; is equivalent to k.(k. — k,,a;) — (1 — a;) > 0 which



27

has solution at positive region (k. > 0) for

1
kc > kl = §[k:ma1 + \/k?nal +4—4a1] S (17km)

Therefore, we could summarize the result of the comparison as follows:

o If ky <k, <k then1/r; <1<k, <k.<ry.So f(r1) > f(k.). Therefore UN") > UFP),

o Ifky <k.<k,,thenr, <k.and k. >1/r,.So f(r,) < f(k.). Therefore UNF) < UF'P),

o Ifk. <k, <k, thenr, <k.<1/ry.So f(r;) > f(k.). Therefore UN") > UFP),

(i) f m < hg(cs — cp) and k,,m < hsk.(cs — cr), then (1 + k,,)m < hgs(1+ k.)(cs — cr). We follow
the calculation in part (i). With auxiliary function f(z), by the UV, U@, UNP) and UFP) defined in
(EC.3.19)- (EC.3.21) and (EC.3.27), we have

1

U(NP) —
’}/ r 2(hF+hS)'y—l

[(thJCCF + hsk’CCS — k‘mm)”’ + (hFCF + hsCS — m)7]7

and

VU = Wf(kc)[(l +ke)(hpep + hscs) — (14 ky)m]™.

Similarly, we define 7, = (1 — k,,a2)/(1 — az) and ay = m/(hscs + hrcr) < 1. Then, the difference in
utility between these two pooling systems (U ™) — UFP)) is given by:

)= M[(lJrkc)(hFcFJrhSCs) — (L+kp)m]" [f(rs) = f(ke)] . (EC.3.30)

The equality in (EC.3.30) has the same structure as (EC.3.29), where the first two terms are both positive
by case assumption (1 + k,,)m < hg(1+ k.)(cs — cr). For the last term, we have f(ry) — f(k.) > 0 if and
only if max{rs,1/ra} > k. > min{rs,1/r>}.

So, by definition of r, = (1 — k,,a2) /(1 — as), we have ry < k. if and only if k. < k,,,. By definition of
9, inequality k. > 1/ry is equivalent to k.(k. — k,,a2) — (1 — az) > 0, which has solution at positive region

for

1
kc > kg = §[k7na2 —+ 4/ k'?nag +4 — 4@2] € <1ykm)

We could similarly summarize the analysis like (i): if k. < ky or k. > k,,, then f(ry) > f(k.), so UNT) >
UFP)Af ky < ke < ky, then f(ry) < f(k.), so UNP) < UEFP),

EC.4. Proof of Results in Section 4
In this section, we provide proof for the analytical results in Section 4 of the main manuscript, including
Lemma 2 — 4, Theorem 2—4, and Proposition 6.

In the dynamic model, we extend the domain of U,.(m) and U.(m) to [0, 00). We let U,.(m) = U.(m) =0

for m > m as it already achieves full cover. In the following proof, we will sometimes use U (m) to denote
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the single-period utility loss. This means that the proof applies to both the cap and ratio reimbursement
policies, i.e., for both U,.(m) and U.(m).
We first introduce an auxiliary lemma for the derivative of value function v'(x) (if exists) based on the

following iteration.
Lemma EC.4 Consider the following iteration of vy (z) with initial value vy(x) =0 for all x € S,

Vpy1(x) = min [U(m)+ BE,[vp((1+7)(x —m)+¢q)]], VzeS. (EC4.1)

me[0,z]

Similar to (EC.4.18), we also define

my(x) = inf argmin {U(m) + BE,[vx (1 +7)(z —m) +q)]} . (EC4.2)

0<m<zx

i.e., my(x) is the smallest minimizer in (EC.4.1). Then, for each k and x satisfying my(z) > 0, we have

Uy (2) = U’ (my ().
Thus, for v(z) = limy_, e vk (), we have v/ (z) = U’ (m* (z)) if @ satisfying m*(z) > 0.
Proof of Lemma EC.4: Consider each k = 1,2, ..., by (EC.4.1) and (EC.4.2), we have
ki1 () = U(m(@)) + BE[or (14 7) (2 — mu(2)) + q)].
The derivative (if exists) satisfies
U (1) = U' (i (2))mip (2) — (L= my,(2)) B(L+r)Eg[vp (L4 r)(z —mi(2)) +¢)].  (EC43)

First, if my(x) = x, then we have v, (z) = U'(z) = U'(my(z)). Otherwise, if 0 < my(z) < x, then the

spending optimal my () satisfies the first order condition of (EC.4.1) as follows:
U'(mi(z)) — B(L+7)E v, (1 +r)(z —my(z)) + ¢)] = 0. (EC.4.4)
Plugging the first order condition (EC.4.4) into the derivative of v;_, (x) in (EC.4.3), we have
U () = U (i (@) () — (1 =y, (2)) U (mi () = U (m ().

By above two case, v}, (x) = U’(my,(x)) holds when state x satisfies my(x) > 0. Taking the limitation of

k, we have v'(x) = U’(m*(x)) holds when state z satisfies m*(z) >0. Q.E.D.



29

EC.4.1. Proof of Lemma 2
In this section, we prove Lemma 2, which shows that with a given spending amount for current period, the
optimal reimbursement policy in the dynamic model is identical to the single-period model in Propositions
1 and 2. First, we suppose the optimal spending amount to state m*(s) is given. Then, we consider a relaxed
problem where the reimbursement policy can vary in each period, even with the same state variable s.
Finally, we show the policy in Propositions 1 and 2 is one of the optimal policies in this relaxed problem
and thus is optimal in the original problem.

Let the optimal policy 7*(s) = (m*(s), ¢%(; s), ¢%(;s)) for the problem (24) be given. We consider the
optimal policy ¢}.(; s) and ¢ % (; s) under spending amount m*(s). Under the optimal policy 7*, the transition
of states defined in (22) is only determined by the spending amount m*(s) but not related to the form of

05(;8),0%5(; s). That is, for any initial state s, the subsequent states are given by:
Str1 = (56, My qir) = (L+7) (5, —m*(50)) + @e1,  VE>0. (EC4.5)

We consider the optimization problem in (24) for a given path of inflow {¢; }7°,: Denote q = (go, 1, - - . ) as
the sequence of inflow. Then, by (EC.4.5), the state sequence {s,}{°, can be fully determined. The action
space (20) and (21) restrict the policy to be the same under the same state s. We consider a relaxed version
of the optimization problem, where different policies ¢, and ¢, can be used in each period, even if the
state s, is the same. On the other hand, we still require that the optimal spending amount is given by m*(s)

in each period. Then, the total discounted utility loss under the relaxed problem 4 (q) is given by:

i(q) min Y B (hpE[u(lp(Cr))] + hsElu(ls:(Cs))])

o {(¢5,6,0F,) 1520 =0

S.t. (d)s,t’qu,t) GQ)(m*(St)), t:O,1,2,... 5

lj,t(x):$_¢j,t(x) VJG{F)S}v t:07172)°"'

As the state sequence {s;}7°, has been determined, this optimization problem can be decomposed into the

sum of utility optimization problem in each period as

i hrElu(lg:(C hsElu(ls,(C
(bsorbrnedmr(s)) T [u(lp,(Cr))] + hsElu(ls(Cs))]
s.t. Lix)=x—¢;(x), Vje{F S}

This decomposed problem has been solved in Propositions 1 and 2. Therefore, we have:

i(a) =) BUm" (),
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where the U (m) is the single period utility loss function. Note that optimal policy (¢%, ¢} ) in Propositions
1 and 2 is stationary to the budget m*(s), i.e. we have the same optimal policy under the same budget
constraint. In the relaxed problem, the spending amounts are the same m*(s) for the same state s, thus
optimal policies ¢% and ¢}, for relaxed problem are also stationary to state s. This holds for every path

{@:}2,- By the definition of the relaxed problem, we have

v(s) > Eqlt Zﬁt “(s¢))|s0=s].

This inequality holds because the relaxed problem allows for a larger set of feasible policies than the original
problem, potentially leading to a lower (better) objective value. As we have mentioned, the optimal policies
9%, ¢ in Proposition 1 or 2, which are optimal for the relaxed problem, are also feasible for the problem
(24) because they are stationary policy. This implies that the lower bound from the relaxed problem can
actually be achieved by a feasible policy, and thus ¢%, ¢} are also the optimal policy for the original

problem. Therefore, we have:

Zﬂt “(s¢))|s0 = s]

s.t. $t+1—(1+7’)( S — M (St))+Qt+17 VtZO

This implies that, under a given m*(s), the optimal reimbursement policies ¢s(;s) and ¢r(;s) can be

chosen as the solutions given in Propositions 1 and 2 with budget m*(s).

EC.4.2. Proof of Proposition 6

In this section, we give the proof of Proposition 6, which establishes that the value function v(s) is convex
and decreasing in s. We prove it by mathematical induction. Consider the value iteration function vy (z)
with initial value vo(x) = 0 for all x € S and updating rule:

Ugs1(x) = min [U(m)+ BE,ux(Y(x,m;q))], Yz eS. (EC.4.6)

mel0,z]

By definition, limy_, ., vx(z) = v(x). So, it suffices to prove that v, (x) is decreasing and convex in z for
every k. Initially, vo(x) = 0 is weakly decreasing and convex in x. Assuming v, (x) is decreasing and
convex, we then show v 1 (z) is also decreasing and convex in x.

(i) vg41(x) is decreasing in x.

Consider any state x and ' > x. Let m* be optimal spending amount for state x in iteration as follows:

m* € argmin {U(m) + BE, v (¥ (z,m;q))} .

me(0,x]
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Then, the new value function vy, (z) is based on m*:
Vp1(x) = U(m™) 4+ BEuip (¢ (x,m"; q)). (EC.4.7)

For state 2/, the spending amount m* + (2’ — z) is also feasible since m* + 2’ —x <z + a2’ —z = 2’ but

might not be optimal. Thus, by definition of iteration value function in (EC.4.6), we have
Vg1 () UM + (2' — x)) + BEup (¥ (2, m* + (2’ — x);q)). (EC4.8)
For the last term in (EC.4.8), by definition of ¢(x,m;q) = (1+7)(z —m) + ¢ in (22), we have
Ejur(W(z',m* + (' —x);q)) = Eg[ox (L +7)(x —m*) + q)] = Egur (¢ (z,m™; q)). (EC.4.9)
Combining (EC.4.7), (EC.4.8) and (EC.4.9), we derive
Vi (') —vpp () UM + 2" —2) —U(m*) <0.

The last inequality holds because U(m) decreases in m by Proposition 3. Thus, we conclude vy (z") <
Vg+1(z), which completes the proof that v, () decreases in .
(ii) vy41 () is convex in z.

To simplify the notation, we define the objective function hj(m, ) as follows:
hi(m,z) :=U(m)+ BE,up((1 +7)(x —m) + q), (EC.4.10)

which represents the objective function in iteration. Consider state x; and x, with optimal spending amount

mj and mj respectively. We have
V1 (z5) = hi(mj, x;), Vji=1,2. (EC4.11)

Let 6 € [0,1] be given. Denote m’ = 0mj + (1 — 0)m? and 2’ = 0z, + (1 — 0)z,. By the convexity of U in

Proposition 3, we have
Um')=U(0m] + (1 —0)m3) <0U(m7) + (1= 0)U(ms3). (EC.4.12)

Since ¥ (x,m;q) = (1 +7r)(x —m) + q is linear in m, x and g, we have ¥(m’,z’; q) = 0 (m3,x1;q) + (1 —

0)1(m3, x2; q). By the induction assumption of convexity of vy, we have:

Eq[ve(¥(m', 275 9))] = Eq[ve (00 (m], 215.9) + (1 = 0)¢(m3, 22;9))]
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< OB [ve(Y(mi, 15q))] + (1 = O)q[v ((m3, 225q))].  (EC.4.13)
Summing (EC.4.12) and (EC.4.13), we obtain
U(m')+BE[or (v (m/, 25 q))] < O[U (m7) +Ey[on (¥ (m], z159))]]+ (1= 0)[U (m3) +Eq [vk (¥ (m3, 223 ¢))]]-
By (EC.4.10) and (EC.4.11), this inequality is equivalent to the following:
Ohy(m?, 1) + (1 — 0)hy(m3, @) > hy(m/,2'). (EC.4.14)

Asm’ =0m; + (1 —0)mj; < 0x; + (1 — 6)x,, the spending amount m/’ is feasible in state =’ but might not

be optimal. Thus, we have
Vg1 (2') < hgp(m',2") < Ovgyq(z1) + (1 — O)vgrq (z2).

As this inequality holds for every 6 € [0, 1], x; and x,, iteration function vy, () is convex in x.
From (i) and (ii), v, () is convex and decreasing in x. By mathematical induction, we have vy (z) is

convex and decreasing in z for all the k. Therefore, value function v(z) is convex and decreasing in x.

EC.4.3. Proof of Theorem 2
In this section, we give the proof of Theorem 2. The proof consists of four parts: First, we prove m*(x) is
increasing in x. Then, we establish the continuity of m*(x) and v(x). Following this, we address the general
case of statement (i) and (ii) in Theorem 2, and consider the special case where 5(1 4 r) < 1. Finally, we
prove the optimal spending amount satisfies m*(m) < m.

Before going to the main proof, we establish the following auxiliary inequalities. Let a,, a2 and a,, be

real numbers satisfying 0 < a,, < a; < a. Then we have
U(ag —a,,) —Ulaz) <U(ay — a,) —U(ay). (EC4.15)
Inequality (EC.4.15) holds as one-period utility function U () is convex and decreasing. Similarly we have,

E,0((1+7)(az — a) + ) — Ego((1+ 1) + ) < Ego(1+ 1) (s — a) +4) — Ego(1+ 1)as + ).
(EC.4.16)
Inequality (EC.4.16) holds as E,[v((1 + )z + ¢)] is convex and decreasing in x.

To simplify the notation, we define the objective function in (27) under spending amount m as follows:

h(m,x) :=U(m)+ BE,[v((1+7)(z —m)+q)]. (EC.4.17)
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So, optimal spending amount is m* € arg min,_,, ., 1(m, ). But, there could be more than one optimal
spending amount m* for minimizing h(m, ). If multiple actions achieve the minimum of h(m,x), we let

the optimal spending amount m*(z) be:
m*(z) =inf{m|h(m,z) = Oglig h(a,z)}. (EC.4.18)

This ensures that among all optimal spending amounts, m*(x) is the smallest one, thereby preserving the

monotonicity and continuity properties necessary for the subsequent arguments.

EC.4.3.1. Increasing property of m*(z): Let x and 2’ be two states satisfying =’ < z. Denote
m/ = m*(z’) as optimal spending amount for state z’. For any action m with m < m’ <z’ < x, we prove
that m cannot be the unique optimal solution for state z. Setting a1 = 2’ —m, as =x —mand a,, =m’' —m

in (EC.4.16) respectively, we obtain

Eg[o((1+7)(z —m') +¢)] = Eg[o((1+7)(z —m) +q)]
< Eg[v((1+7) (2" —m) +q)] = Eg[o((1 +r) (2" —m) + q)].

Since m/ is the smallest optimal spending amount for state x’ and the spending amount m < m’ < z’ feasible

in state x’, we have
U(m') + BE[v((1 +7) (2" —m') + q)] <U(m) + BE,[v((1 +r)(z" —m) + q)].

Multiplying the first inequality by /3 and adding it to the second inequality, the terms SE,[v((1 + r)(z' —
m’) +q)] and BE,[v((1+47)(x’ —m) + q)] cancel out. Thus, we have

B(m, @) = U(m) + BE,[o(L+7)(z — m) + q)] > U(m') + BE,[o((L +7) (& — m') + )] = h(m, ).

That implies h(m,x) > h(m',x). As m is taken arbitrarily, no action m < m’ can lead to better or the same
value h(m, ) than h(m’,z) for x. Therefore, we have m*(z) > m’ = m*(z’) for x > «’. This completes

the proof that m*(x) is (weakly) increasing in .

EC.4.3.2. Continuity of m*(z), v(z), and equality v’ (z) =/, (x): Here v’ (x) and v/, (x) are the
left derivative and right derivative of v(z) respectively. As the function v(x) is convex in z, the left and
right derivative v’ (x) and v/, () exist (Rockafellar 1970). We prove them by mathematical induction and
iteration of value function. Consider the value iteration function v () with initial value vo(x) = 0 for all
x € S. The iteration satisfies the following:

Upg1(2) = min [U(m)+ BE,vx(¥(x,m;q))], VreS. (EC.4.19)

me[0,z]
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Similar to (EC.4.18), we also define

my(x) = inf argmin {U(m) + BE,[vx (1 +7)(z —m) +q)]}, (EC.4.20)

0<m<zx

which represents optimal spending amount in iteration k. The limits of them are lim;_, ., vy (z) = v(x) and
limg oo M () = m*(x). So, we prove the continuity of my (), vi(x), and equality v;, _(v) = v} , (x)
for every k. Initially, vo(z) = 0 is continuous in  and v, , (x) = v; _(x) = 0. The corresponding optimal
spending policy is mg(x) = inf arg min,,,, U(m) = min{x,m}, which is continuous in x. Assuming
that v (z) and my(x) are continuous, and v}, , (v) = v, _(x), we then show v (z), My () is also
continuous in z, and v}, , , (z) =v;, _(x) forall z.

We first show the continuity of vy (z): By the definition of vy, ; and m;, in (EC.4.19) and (EC.4.20),

the optimal spending amount is my () in iteration, so we have:
Vg1 () =U(my(x)) + BE,[vk (1 +7)(x — my(z)) + q)]- (EC.4.21)

By the continuity of vy (z) and my(x) in induction assumption, v, () is continuous.
We then prove the continuity of my, 1 (z). The optimal spending amount m () is given by:

My () = inf argmin {U(m) + BE, o1 (1 +7) (@ —m) + )]}

0<m<zx

We define the threshold Z;,; as the minimal state where the optimal spending amount achieves the full
coverage level m:

T =inf{x:my () =m}.

By the increasing property of my.1(x), we have my;(x) < m for x < Z;,,. The objective function is
strictly convex in m when m € [0,m) because U (m) is strictly convex on this interval and vy, (z) is convex
(as established in part (ii) of Proposition 6). Therefore, the objective function hj(m,z) admits a unique
minimizer m for z in x € [0, Zy1). Since U(m) and E,[vy41((1 + r)(z —m) + q) are both continuous in
m and ¢, by Maximum Theorem (Sundaram 1996), m;.1(x) is continuous on interval [0, Z;1). Then, for
Zr+1, we have m*(z) > m. However, for any m > m, we have U(m) = U(m) = 0. So, further increasing
spending amount does not affect utility loss for m > m. By monotonicity of v;, (established in Proposition

6), we have
U(m) + BE[un((1+7)(z —m) +¢)] =2 U(m) + BE [k (1 +7) (2 —m) +q)], Vm>m.

So, my41(z) < m for x > Zj. By increasing property of my.1(x), we have my1(x) > m for z > . So

my41(x) = m for z > &y, Thus, my,1(x) is continuous for all .
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Finally, we prove that the left and right derivatives v, ,, (v) and v},  (z) satisfy v,,, (v) =
Vj.11 4 () for all x. By convexity of v 41 (z) (proof in part (ii) of Proposition 6), the left and right derivative
Vyyq,_(x) and vy, , () exists. We will show that vy, _(z) = v}, , (). For x satisfying 0 < my(z) <,
function my,(x) is determined by first order condition because the objective function is convex and contin-
uous:

U'(my(2)) = B(1 +7)Eq[vp, (1 +7) (& — mipa(2)) + )] = 0.

Taking derivative of vy, (z) in (EC.4.21), we examine the derivatives from the right and left:

Vir, 4 () = U'(mi(@))my, 4 () + B(L+7) (1= my_y (2))Eq[vh (1 +7) (2 —mi(2)) + )],
Vi, (@) = U'(ma(@))my, () + B(1+r) (1 —mj _(2))Eg v (1+7)(z —ma(2)) + )]

Combining the first order condition, the left and right derivative of iteration value function v;,, () and
Vj.1, 4 () are given by:

Ul/c+1,+(x) = ”;cﬂ,—(x) =U'(my()).

If = satisfies my(x) = =z, then vy (x) = U(x) + Eq4lvk(q)]. The derivative is vy, _(z) = v;,, () =
U'(x). If z satisfies my(z) = 0, then vy, (z) = U(0) + E,[vi((1 4 r)x + ¢)]. By induction assumption
vy, () = v, (x) for all z, the derivative is v, ,, (v) =v;, ,(2) = (1+7)E,[v,((1+7)z + q)]. Thus,
we have v, (z) =v;, ,(z) forall z.

Therefore, by induction, we conclude that m*(z) and v(x) are continuous in x. In addition, v’ (z) =
V', (x) ='(x) for all z.

EC.4.3.3. Statement (i) and (ii) in Theorem 2: The two statements can be reformulated as fol-

*

lows: if the optimal spending amount m*(x) = = or m*(x) = 0, then for 2’ < x, the optimal spending

(
amount also satisfies m*(z') = 2’ or m*(2") = 0 respectively. We discuss them one by one.

(1) If the optimal spending amount m*(x) = x, we then prove that, for any state 2’ < =, we have m*(z’) =
a'. For states 2’ < x, the objective function h(m, z") defined in (EC.4.17) under the spending amount m = x’
is given by:

h(z' ") =U(x") + BE,[v(q)]- (EC.4.22)

Consider any other spending amount m’ < z’. We will show that such a spending amount m/' leads to greater
total discounted utility loss than that under the spending amount 2’ i.e., h(z’,z’) < h(m’,z"). We utilize the
condition m*(z) = x, where m*(x) is defined as the smallest optimal spending amount for state x. Spending
amount m =m’ + (x — 2') is feasible, but not the optimal for state x as m’ + (x —2’') <2’ + (x — /) = x.

Substituting m = m’ + (z — 2’) into function h(m, z) defined in (EC.4.17), we have

h(m'+ (z —2'),2) > h(z,x) =U(x) + BE,[v(q)]. (EC.4.23)
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The strict inequality “>" holds by assumption m*(x) = x where m*(z) is the smallest optimal spending
amount defined in (EC.4.18).

We use the auxiliary inequality in (EC.4.15) to further bound h(m’ + (x —2’), x). Setting a; = m’ + (x —
x'), ay = x, and a,, = x — 2’ in (EC.4.15), we get inequality U(z’) — U(z) <U(m') —U(m' + x — 2’).

Plugging this inequality into h(m’ + (x — 2’), x), we obtain

h(m' + (z —2'),x) = U(m'+ (z — 2')) 4+ BE,[v((1 +7) (2" —m') + q)]

<Um)+U(z) = U(z') 4+ BE (1 +7) (2 —m') +q)]. (EC.4.24)
Combining (EC.4.22)—(EC.4.24), we obtain:

h(z' ") =U(z") + pE,[v(q)] < U(z') = U(x) +h(m'+ (z — '), x)

S U(m) + BEy[v((1 +7) (2" —m') + q)] = h(m', 2').

That is h(z',2") < h(m’,z"). Therefore, the spending amount m = 2’ yields a lower objective value than
any other spending amount m’ < z’ for state z’, i.e., h(z’,x") < h(m’,z’). So, we have m*(z') = z'.

(2) If the optimal spending amount satisfies m*(x) = 0 for state x, by increasing of m*(x), we have
m*(z") = 0 for any state 2’ < .

(2-a) We establish the result m(z) = x for x < §; under the case (1 + r) < 1 using mathematical
induction. We will first show v'(x) < U’(0) for = > 0, with equality only at x = 0. Then, we use this
inequality to analyze optimal spending amount to get our result.

We will use mathematical induction to show v'(x) < U’(0). Initially, vo(x) = O satisfies the condition.
We assume v;,(x) > U’(0) for all z > 0. Similar to (EC.4.17), we define hy(m,x) as the objective function
in each period:

hi(m, x) = U(m) + BEy[or((1+7)(z —m) +q)].

Thus, the derivative of iteration function (hy ), (m,z) is
(M) (m, ) = U’ (m) — B(1+7)E[vy, (1 +7)(x —m) +q)].
Because 3(1+r) <1, for x > 0, we have

(h)7 (0,2) = U'(0) = B(1 +7)Eq [ (1 +7)z+q)]

< U'(0) = Eyfv, (1 +7)z+q)] <U'(0) = U'(0) =0.
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Thus, m, = 0 is not optimal for x > 0 because we can increases spending amount m to decreases the

objective value hy(m,x) at m = 0. Then, by Lemma EC.4 with m,(x) > 0, we have

Vg () = U’ (my(2)) <U'(0).

This completes the proof of Vz > 0,v'(x) < U’(0).

Thus, for value function v(zx), by Lemma EC.4, we have following inequality

(7)) (0,2) = U'(0) = B(1 +7)Eg[v (1 +7)z + q)]

< U'(0) = Eg[or (1 +7)z 4+ q)] =U'(0) — E,[U(0)] <0.

Thus, for every state x > 0, we have m*(z) > 0. Therefore, if (1 + ) <1, we have m*(x) = x for state

x < §; which is defined in Theorem 2.

EC.4.3.4. m*(m) <m with P(q <m) > 0: If the inflow g satisfies P(q < m) > 0, we prove that the
optimal spending amount m* () at state x = mm satisfies m*(m) < m.

We prove this by showing h'(m,m) > 0, which implies that we can decrease the spending amount to
decrease objective value when m = m. We consider the possible spending amount m for state x = m: By

U(m) = 0 for m > m, we have

W(m,m) =U'(m) = B(1+7)Eg[v'(q)] = =B(1+7)E,[v(g)]-

Firstly, if m*(m) = 0, then m*(m) < /m holds. Otherwise, if m*(m) > 0, by former discussion in (2) of
Section EC.4.3.2 about continuity, there exists £; > 0, satisfying that m*(x) > 0 holds in z € (m — &1, m).
So, by Lemma EC.4, we have v'(z) = U'(m*(x)) on (m — &,,m). By assumption of P(q <m) > 0, there
exists £, such that P(q <m —e3) > 0.

Let £ = min{e;, €2 }. We now analyze the term E,[v'(¢)]. Note that v'(z) < 0 and v'(z) is increasing in x

by convexity of v(z), so we have

Eo[v'(9)] = Bq[v' (@) L(gzm—c) + 0" (@) Ligem—2)] S Eq[v' (@)L (gem—cy] < Plg <m —e)v'(m —e).

The first inequality holds due to v'(z) < 0. For the last term, by definition of ¢, we have P(qg <m —e3) >0

and m >m —e >m*(m —¢) > 0. By Lemma EC.4, we have:

Plg<m—e)' (m—e)=P(g<m—e)U'(m*(m—¢)) < P(g<m—e)U'(m)=0.
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The inequality bound by m*(m — ¢)q < m by definition of € = min{e;, e, }. So, we conclude E,[v'(q)] < 0.

We then consider the derivative h’(m,m):
(h) (M, m) = =B(1+7)Eg[v'(¢)] > 0.

This implies that we can decrease spending amount to decrease the utility. Therefore m*(m) < m.
By the above proofs, if the optimal spending m*(z) = x or m*(z) =0, then for 2’ < z, we have m*(z’) =

a’ or m*(z") = 0. Then, we can define the threshold:
5 =sup{s/m*(s) =0orm*(s) =s}.

Since the only feasible solution in state s = 0 is m = 0, we have m*(0) = 0. Therefore, §; > 0 exists. In

addition, with P(q < m) > 0, we have m*(m) < m.

EC.4.4. Proof of Lemma 3
In this section, we give the proof of Lemma 3, which give the optimal spending amount m*(s) under
condition 3(1 + r) =1 and constant inflow ¢. Since inflow ¢ is constant, we could directly transform the
dynamic decision problem in (24) into deterministic problem.

We establish the spending amount constraint m, < s, by following: Let the spending amount {m, }° in
each period be given. With the constant inflow ¢, s, is deterministic by (22). By induction of s; in definition

(22), we could get the explicit form of s; as:

t—1

st = (o0 —mo)(l+T)t+Q+Z(q—ml)(1+"")t_la vt >0,

=1
where s is the initial fund level. In addition, constraint m, < s; is equivalent to m,/(1+7)" <s,/(1+7)".
So, by above equation of s;, the spending amount constraint m; < s; is equivalent to the following:
t—1

my q q—my
< —
Ty = 07 gyt 2 (e

t t
my q
= —— < —_—. EC.4.25
2 ey =t & ey .

Based on constraint in (EC.4.25), we could formulate our optimization problem as,

v(s) = min tU(m EC.4.26
(5= uin > 5Um) (EC4.26)
T m T ¢
t
.t. g — < vT=0,1,2... EC.4.27
S (1+T)f _SO+Z(1+T)t’ b b ) ( )

t=0 t=1
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my >0, Vt=0,1,2,...,

where U (m) is single period utility loss, which is convex decreasing in m.
To get the solution of problem (EC.4.26), we first consider a relaxed version of problem (EC.4.26). Then,
we prove the solution in relaxed problem is still feasible in original problem under some condition. In the

relaxed version of problem, the constraint (EC.4.26) only works for the infinite period as follows:

0(s) = min ‘U(m EC.4.28

(i Z BT (my) ( )
00 my
s.t. —_— EC.4.29
tX—O: (1+7) — ( )
0<my, Vt=0,1,2....

The constraint in (EC.4.29) could be either “<” or “=" because the U (m) is decreasing in m, so, spending
all the funds is always optimal. If we transform the constraint (EC.4.29) into “=", under 5(1 4+ r) = 1, the

relaxed problem in (EC.4.28) is a standard consumption allocation in macroeconomic theory. The Euler

equation (first-order condition) for above problem is given by (Sachs and Larrain B. 1993) as:

U'(my) = B(L+1)U" (mys1) = U'(mys1).

The second equality derives from condition 5(1 + r) = 1. Since and U’(m) is decreasing in m, one of the
feasible solution is m; = m;, ;. Combining this Euler equation m, = m,,; with constraint (EC.4.29), the

optimal solution in relaxed problem (EC.4.28) is given by

r 1
fy = _ EC.4.30
=TSt Tt ( )

However, in the original problem, the constraint is (EC.4.27) for each period but not (EC.4.29) in relax
problem. So, we now verify that if so > ¢, then the solution in (EC.4.30) satisfies m; < s;, which is equiva-
lent to constraint (EC.4.27): With spending amount in (EC.4.30), we have s; = (14 7)(so — 7i2;) + ¢ = So
and similarly s; 1 = s; = ... = s for each {.

(1) If sg > g, then m; < sq = s; by definition (EC.4.30). So, for sy > ¢, the optimal spending amount in
original problem (EC.4.26) is r; defined in (EC.4.30).

(2) If 0 < 89 < g, then solution my is not feasible as Mg > sq in the zero period ¢ = 0. We will first show
mo = So 1s optimal for £ = 0. Then, we show that after ¢ = 0, the state becomes s = q. Finally, we use the
result from case (1) sq > g for subsequent periods. We consider the spending amount m = sy: The derivative

of objective function A/, (s, s¢), defined in (EC.4.17), is given by:

h.,.(50,50) = U'(s50) — B(1+7)v'(q).
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By Theorem 2 with 5(1 +r) < 1, we know that mg > 0 for = > 0. So, with ¢ > 0 and Lemma EC .4,

U'(s0) — B(1+1)v"(q) = U'(s0) — U'(m"(q))-

We now consider the spending amount m*(q): According to the above discussion (i) in the case of sy > ¢, if
the initial state is s, = ¢ > ¢, then optimal spending amount is 772, = ¢ by (EC.4.30). So, we have m*(q) = q,
thus

U'(s0) =U'(m"(q)) = U'(s0) = U'(q) <0.

By the condition 0 < s < ¢, the equality U’(so) = U’(q) only happens at ¢ > sy > m. This is trivial case

because we could full cover in each period. In the other case, we have U’(so) —U’(g) <0, so h., (50, S0) =

U'(s0) — B(1+7)v'(q) < 0, which implies that m(sy) > so. When ¢ > 0, the state s, becomes ¢, the problem

reduce to the case s; = g < q. Then, in the following period, optimal spending amount is m;, = ¢, according

to the discussion sy > g. We conclude the solution is my = sg and m, =¢q for k> 1if 0 < sy <gq.
Combining the discussion above (1) and (2), the optimal spending amount is

. r 1
mt—mln{st, 1—&-7’8t+ 1+Tq}.

This solution has a clear interpretation: we spend either the all fund s or the spending amount that would

keep the state constant across periods.

EC.4.5. Proof of Theorem 3
In this section, we give the proof of Theorem 3, which implies optimal reimbursement m*(z) is piece-wise
concave in x. We first give the properties we use in proof for single period utility function U, (m) and
U.(m). Then, we first consider the result for ratio policy in the statement (i). Finally, we can use similar
method for cap policy.

Step 1. Properties of U,.(m): We first consider the single period utility loss U,.(m) under ratio policy .
The utility function is defined as u(l) = [? /2 with first and second order derivatives u'({) = and u”(I) =1,

respectively. We introduce the following lemma which introduces the properties we need in proof.

Lemma EC.5 If the utility loss function is u(l) = (? /2, then U,.(m) has following properties:

(i) U,.(m) is strictly convex and strictly decreasing on [0,m), and equals zero on [im, o).

(ii) Ul(m) is continuous and piece-wise linear in m. The three linear intervals for m are [0,m,),
[m..,m), and [m, o0).

(iii) U/ (m) is piece-wise constant with two discontinuous points m,. and m. The left and right derivative
(U,)"(m) and (U,)'.(m) satisfy (U,)"” (m,) > (U,)" (m,) and (U,)"” (m) > (U,)'.(m) at two discontinu-

ous points m,. and m. Thus, U!"(m) is decreasing on [0, 00)
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Proof of Lemma EC.5: The first property is given by Proposition 3 and extension definition of U,.(m).
The second property could be proven as follows: Recall the utility loss function U,.(m) =3, E[u((1 —
7%)C;)], where 7}, and r§ are the optimal ratios under the ratio policy. Plugging utility loss u(l) = I?/2,
cost index b; = E[C?]/E[C}], and optimal ratios 7} and 7§ in (EC.2.23) and (EC.2.24) into U,(m), the

single-period utility loss U,.(m) is given by:

hFEK34+A—§a5;F(

E[CZIEICE]

% hsE[Cs]—m)Q, if0<m<m,,
1
2 hpE[C2Z](E[CF])2+hsE[CE Macs>2(
0,

hrE[cp] + hsElcs] —m)?, if m, <m <m, (EC4.31)

U.(m) =
if m <m.

Obviously, by definition of U,.(m) in (EC.4.31), single period utility loss U,.(m) is continuous at m, and
m. The derivative is

E[CE]

—rs@osnz (hsElCs] —m), if0<m<m,,
() = E[CLIEICE] 4 . )
Un(m)=1q - WP EICEIEICH )+ hSEICEIELCS])? (hrE[CF]+ hsE[C's] —m), if m, <m <m,
0, if < m.

For each interval [0, m,.), (m,.,m), and (m, 00), the derivative U/ (m) is linear to m. Thus, U/ (m) is piece-
wise linear. Then, we check the continuity of U/(m): We take m = m, into the left and right limits of

U!(m), where m,. is defined in (EC.2.17), as follows:

Similarly, taking the form m = m into the left and right limits of U/(m), we have (U,)_(m) =0 =
(U,)".(m). Therefore, U/ (m) is continuous in m.

The third property could be proven as follows: Similarly, the second order derivative, U (m), is given

by: s
FSECSD? it0<m<m,,
1 _ E[CZ]E[CZ] . _
U2 (m) =4 irecaicce) rnsecaeesye 1 me <m <m,
0, if m < m.
For each interval [0,m,.), (m,.,m), and (m, c0), the derivative U)'(m) is constant. Thus, U/ (m) is piece-

wise constant. We now compare the constant on each interval: Taking form m = m,. into the left and right

limits of U/ (m), we have

(m.) = hr(E[CF])*(hrhsE[Cs])?
" (E[CF])?(EICs])’E[CE] + R (EICs))'EICE]

(UT)Z(?TL,.) - (UT)ZL > 0.
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Similarly, taking form m = m into the left and right limits of U}’ (m), we have (U,.)"” (m) > 0= (U,)" (m).
Thus, U/’(m) is piece-wise constant with two discontinuous point m, and m satisfying (U,.)"” (m,) >
(U,)"(m,) and (U,)"” (m) > (U,)" (m). In general, U (m) is decreasing inm. Q.E.D.

Thus, we have proven the three properties in Lemma EC.5. For cap policy with discrete loss, we have
similar properties.

Step 2. Similar structure for cap policy: We prove that cap policy has similar structure.

Lemma EC.6 If the utility loss function is u(l) = 1? /2 and service costs Cs and Cr take random discrete
values c(1y < ¢(2) < -+ < C(n), then the single period utility loss under cap policy U.(m) has the following
properties:

(i) U.(m) is strictly convex and strictly decreasing on [0, m), and equals zero on [m, o).

(i) U[(m) is continuous and piece-wise linear in m. The linear intervals for m are [0,m()),
[M(1), M2))seeer [M(n—1), M), and [m,00), where my;y satisfies T* (M) = Cin—i)-

(iii) U!(m) is piece-wise constant with n discontinuous points M1y, M(2)s-ees My(n—1), and m. The left and
right derivative (U.)"” (m) and (U.)"| (m) satisfy (U.)" (m)) > (Ue)"(m)) and (U.)” (m) > (U.)'L ()

at the discontinuous points. Thus, U (m) is decreasing on [0, 00).

Proof of Lemma EC.6: Recall the definition of U.(m) in (4). By Proposition 1, the reimbursement policy
is ¢}(7) = max{xr — 7*,0}. We denote 7*(m) as the maximal out-of-pocket threshold when budget is m.
The threshold 7*(m) is determined by budget constraint in (9). Let j; denote the corresponding service of
the cost c;). The weight of cost c(;) is wg) = hjiP(Cj = c(i)). Then, the budget constraint in (9) can be
rewritten as:

> wiymaxfen — 7(m), 0} =m. (EC.4.32)
=1

Similarly, the objective value i.e., the single period utility loss in (4) can be rewritten as:
1 ¢ , .
Ue(m) =5 > " wip (min{e), 7 (m)})’. (EC.4.33)
i=1

The first property is given by Proposition 3 and extension definition of U.(m). The second property
can be proven as follows: We first derive the form of m; using the inverse function (7*)~'(c). As
o weymax{ei) — 7%(m),0} in (EC.4.32) is strictly and continuously increasing in 7*, we have the
inverse function (7*)~'(c) exists and satisfies m; = (7*) ' (¢(n—s)). Consider each region [m;, m 1))
with mo) = 0 and m,,) = m. For the budget m € [m;), m;11)), the threshold 7*(m) € [c,—i—1,C(n—s)) is

determined by (EC.4.32) as:

n

> wymax{cy —7(m),0} = Y wyylcq —7(m)) =m,
=1

l=n—1i
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where the solution is

mm) = g [Zw new — ] . (EC.4.34)
l=n— z

So, plugging this threshold in (EC.4.34) into (EC.4.33), the single period utility loss function under cap
policy U.(m) is given by:

l\DM—A

n—i—1
[Z wa)Chy + Z way (T ] ,ifm € [ma), meq).

l=n—1i

The derivative is as follows:

v, dr .
drdm T M=o Z? i@ [Zw(l o

Ul(m)=

C

, ifme [m(i),m(iﬂ)). (EC.4.35)

At the corner point m;), we have limm_>m U’( )= limm_,m+ U.(m) = —1*(m). So, Ul(m) is con-

tinuous and linear on [0, m (1)), [m(l),m@)), v (M=), M), and [m, 00).

The proof of third property is similar. By (EC.4.35), we consider the derivative U/ (m) as follows:

1

l=n—1

By (EC.4.36), the derivative U/(m) is piece-wise constant. In addition, by (EC.4.36), we have
limm%m&) Ul(m) > limmﬁmz) U’ (m).

Lemma EC.5 and EC.6 show that U.(m) and U,.(m) have similar structures. In the following, we prove
our main result using single-period utility loss U,.(m) under ratio policy as example. The proof follows
similarly for the case when the single-period utility loss is U,.(m).

Step 3. mathematical induction: We employ mathematical induction for the proof. Consider the value
iteration function vy, (x) with initial value v, (z) = 0 for all . The iteration satisfies the following equality:

Ugs1(2) = min [U(m)+ BE,ur(Y(x,m;q))], VreS, (EC.4.37)

me[0,z]

which represents the iteration value function. We define hy,(m, x) as follows:
hi.(m,z) :==U(m) + BE,[vi.((1 +7)(x —m) + q)], (EC.4.38)

which represents the objective function to spending amount m for state z in iteration k. We also define

my(z) as follows:

my,(z) = inf argmin {U (m) + BE,[vr.((L +7)(x —m) +q)]}, (EC.4.39)

0<m<ax
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which represents the optimal spending amount function for state x in iteration k. Their limits are
limy_, o v () = v(x) and limy_, . my () = m*(x). Our induction assumption for iteration k has the fol-
lowing four parts:

(i) v (z) is concave on [0,00).

(ii) my(z) is piece-wise concave and = — my(x) is non-decreasing.

(i) (U,)" (my(z))m;, , (x) and (U,.)” (my(z))m;, () is decreasing if x satisfies 0 < my(z) < .

iv) (U.)L(mg(z))my,  (z) < (U,)" (my(z))m;, _(z) for state x satisfying my,(z) = m, or my(x) = m.

Initially, for &k = 0, vo(z) = 0 and v (x) = 0. The corresponding optimal spending policy is mg(x) =
inf arg min,,,, U,(m) = min{z,m}. Conditions (i)—(iv) hold for £ = 0.

For k + 1, we proceed as follows. We consider the objective function hyyq(m,x) in (EC.4.38). The

derivative of the objective function Ay, (m, x) to spending amount m is
(Pi1) (m, @) 1= Up(m) = B+ 7)Eq[vg 41 (L4 7) (2 —m) + g)]. (EC.4.40)

The first order condition is hj,_ , (141 (), ) = 0, which holds if 0 < my4,(z) < .

We first define §; , = sup{z : my(x) = 0 or my(z) = =} and 7, = inf{x : my(z) = m} for all k. We

prove that
{0} or {z}, if o <5,
my(x) € $ (0, min{x,m}), if 5, <x < Ty, (EC.4.41)
{m} it 2, <w.

So, in the following proof, we will divide the region [0, c0) into two or three parts to discuss it one by one.

EC.4.5.1. m,(x) satisfies equation (EC.4.41) for all k: We first prove the statement: If x < 5, 4,
then my, () =z ormy(x) = 0; If © > 5,4, then 0 < my(x) < . This statement is equivalent to the following
statement: if the optimal spending amount my(z) = x or m;(x) = 0, then for 2’ < x, optimal spending
amount my(z') = x or my(2") = 0, respectively. The statement is similar to Section EC.4.3.3, so we could
follows the proof. We just replacing the v(z), m*(x), and h(m, x) to vy (z), my(x), and hy(m, x) in Section
EC.4.3.3, respectively . The proof in Section EC.4.3.3 relies on the convexity and the decreasing property of
v(z). vi(z) is also convex and decreasing by the proof of part (i) and (ii) in Section EC.4.2. So, following
the proof in Section EC.4.3.3, we have that if the x < 5, ;, then my,(z) = x or my(z) = 0; If z > §; 1, then
0 <my(z) <z

Then we prove the statement: If the = > &, x, then my(x) = m. Firstly, by the increasing property of
my(z) in z, we have my(x) > my(Z,) = m. We then prove my(z) < m: By the part (i) of Lemma EC.5,
for m > m, we have U(m) = U(m) = 0. But, vy, 1(x) is decreasing by the result of part (i) in Section
EC.4.2. So, spending amount m > m could not be smallest optimal spending amount in (EC.4.39). Thus,

we have my,(z) < m. By above two inequality my (z) > m and my(z) < m, so my(x) = m.
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These two statements complete the proof of equation (EC.4.41). Since these proofs do not rely on the

induction assumption, equation (EC.4.41) holds for all £ > 0.

EC.4.5.2. Concavity of v;_,(x) on [0,00): A function is concave if and only if both the left-hand
and right-hand derivatives are monotonically decreasing, and the right-hand derivative is less than or equal
to the left-hand derivative at each point. Thus, we prove that v, () is decreasing in 2. We first prove the
decreasing property of v}/ ,(x) on [0,5,;) and (3, ,00). Then, we prove (vii1)” (31%) = (Vk+1)L(31k)-
With those two conditions, v/, (x) is decreasing in x € [0, c0).

(1) If z < §, , there are two cases: m(z) =z or m(x) = 0 on this interval. We consider each one by one:

(1-a) Case of my(x) =0 for all x < 5;;: we have vi41(x) = BE,[vp((1 + )z + ¢)]. Then, v, (z) =
B(1+7)E,[v,((147)x+q)] is concave in 2 by induction assumption of global concavity vy (x). So, v}, ; ()
is decreasing.

(1-b) Case of my(x) = x for all x < 5;;: We have v (x) = U,(x) + BE,[vi(q)]. Then, v}/ ,(x) =
(U,)"(x) is decreasing in x as U”(x) is piece-wise constant and U” (x) > U/ (x) by part (iii) in Lemma
EC.5. So, v}, (%) is decreasing.

In both of two cases, we have v}/, , () is decreasing in interval [0, 5; ;).

(2) If = > §, , then optimal spending amount 0 < my(z) < z. By Lemma EC.4, the derivative of iterated
value function v;_, () could be simplified into v ,(z) = U’(my(x)). Since the induction assumption
implies the piece-wise concavity of my(x), both the left and right derivatives of my(z) exist. Thus, for

T > 811, the left derivative vy, ; () and right derivative v}/, , , () are

Ui, () = (Un) 2 (mue(2))mi, (@), viyq 4 (@) = (U) (ma(@))my ().

By induction assumption of decreasing property of (U,.)"} (my(z))m;,  (z) and (U,)” (my(z))m;, _(x),

both of v, () and wv;,, (x) are decreasing in x. The induction assumption implies that,
(U) (my(z))m,  (x) < (U,)" (my(z))my, _(x) for my(z) = m, at x . So, we have v;/,, (z) and
vy, , (v) are both decreasing in x, and v/, , () < vy, () at the discontinuous point. This implies
vy, (z) (if exists) is decreasing on (5, x,00), and v}, , () <wv},, () at the discontinuous point.
(3) If © = 5,4, there are two cases my(x) = x or my(z) = 0. We prove that at = = 5, the left
"

and right derivative satisfies (vi41)} (56) < (Vi41)” (51,%). That is equivalent to hmx%éfk v (x) <

hmm—%f,k Vi1 ().

(3-a) Case of my(5,x) = 5,42 By (1) and (2), we have

lim vy, (z) =U"(56) x 1> U"(31)my, , (v) = lin}r vy 4 ().

I*)Sl,k I*)Sl,k

The inequality holds by induction assumption of decreasing property of x — my(x), which implies

my, , (v) <1land mj, _(z) <1. So, we have limgnglc V() < limgHgl_Jc vy, 1 () in this case.
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(3-b) Case of my(8,,) = 0: By applying first order condition at § ,
(P )y (M (81.1), 810) = U (M (81.1,)) — B(L+7)Eq[vp, (L +17)31 1 + q)]-

Then, the right derivative of above equation satisfies
U" (mi(81,:)) (mi ), (0) = B(L+7)* (1 = (), (0) g [y (L +7) 30 + )]

By the continuous assumption ¢, the function E,[(vy)” ((1 4 )5, + q)] = Eq[(ve) (1 + )36 + q)]-

Plugging this equation into limits of v/ , (), the limit is:

lim vy, (2) = B(1+7)°Eq[v (1 +7)2+q)]

x—)slyk

my, ., (31k) _ .
L—my  (51k) 2 (U7 (O 4 (1) = xglg}r Vi (2):

= (U,)"(0)

Lk

Hence, by (3-a) and (3-b), we conclude (vj41)” (5,%) > (Vrg1)' (51.%)-
The above results (1)—(3) show that vy, , () is decreasing on both [0, 5, ) and (%, 00), with vy, , | (z) <

vy;, () at all discontinuous points. Therefore, v}, , () is concave on [0, 00).

EC.4.5.3. Piece-wise concavity of m,.,(z) and non-decreasing property of x —m;.,(z):
We first prove the piece-wise concavity of my1(x). By Section EC.4.5.1, we could define §, ;1 := sup{z :
Mmir1(z) =0o0rmyyy(z) =2} and & 4y := inf{x|my1(z) = m}. So, we can discuss the concavity in
each region: [0, §; x11], (Z15+1,00), and (8, k11, %1 k1] one by one:

(1) If x < §; 41, then we have my;1 () = x or my1 () = 0on [0, §; x4 1]. Therefore, my1(x) is concave
in this region.

(2) If x > Ty .41, then by Section EC.4.5.1, the optimal spending amount my.1(x) = m. So, my41(x) =
m is concave in this region.

(3) If §; k11 < @ < Ty k41, then we have x < Ty 1, which implies we have my;(z) € [0,7m) by Section
EC.4.5.1. The optimal spending amount m(z) has unique solution by the strict convexity of objec-
tive function Ay 1 (m, ) in (EC.4.38) in this region. We examine the following intervals where U (m) is
continuous: In ratio policy, the intervals are M; = [0,m,.) and M, = (m,,m) for the spending amount.
By the continuous and increasing property of m;1(z), the corresponding intervals for the state are S, =
(81441, My 11 (M) and S, = (my ), (m,.), Ty j41). Within M; or M,., U/(m) is constant.

We first prove my1(x) is concave on S;. The corresponding co-domain for my.;(x) is M, . The proof

for M, and S, is the same. Let 6 € (0,1) be given. Let states € S; and y € S; be given. Denote m, =

my41(z) and my, = my41(y), so m,, m, € M,. Denote the convex combination z = 6z + (1 — )y and
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m, =6m, + (1 —0)m,. We have z € S; and m, € M,. By part (ii) in Lemma EC.5, the function U/ (m) is
linear in M, thus we have

U'(m.) = 0U! (my) + (1 —0)U.(m,). (EC.4.42)

As 5 k11 <x < 2y 541, we have 0 <m, < z. By (EC.4.40) and first-order condition, we have:

(M) (M0, ) = U (M) — B(1 +7)Eg [ (1 +7) (2 —ma) +¢)] = 0; (EC.4.43)
and similar

(st ) (M, y) = Ui (my ) = B+ 7)Eq[vp 1 (L4 7) (y —my) 4+ ¢)] = 0. (EC.4.44)
By concavity of v ,, we have

Eg[vpsr (1+7)(z =me) + )] S Egfvy 1 (L47) (2 = ma) + )] + Eg[(1 = O) vy (1 +7) (y —my) +9)]-
(EC.4.45)
Plugging (EC.4.42) — (EC.4.45) into h/(m., z), we obtain,

(h1) (M2, 2) S O(hies1 )y (M ) + (1= 0) (g ) (my, ) = 0.

Since the objective function Ay 1(m, x) is strictly convex in m in this region as © < Z; 1 so m(x) <m,
this inequality implies that increasing the spending amount reduces the loss. Therefore, we have my, 1 (6 +
(1-0)y) > Omyq1(x)+ (1 —0)my41(y). Hence, my41 () is concave in .S;. This process could be repeated
for interval S,..

From cases (1)—(3), we have that m;, () is piece-wise concave.

We then prove that x — my_;(x) is non-decreasing in z. Obviously, it holds for x < 5, 1, my1(z) =0
or my4+1(x) = . Then, for any 2’ > = > §; 1, we consider the spending amount my(z) + (2’ — z),
under which the remaining fund to next period under is ' — my1(x) — (¢’ —z) = — my,1(x), the same
as my1(x) in x. Thus, we consider (hyi1)!,(mi1(z) + (2' — x),2’). In addition, since x > §; ;+1, We

have 0 < my,1(x) < x, so my, 1 (x) satisfies first order condition as follows,
(Pret 1) (M1 (@), ) = Ul (M1 (2)) — B(L+ 1) By [v3 41 (L +7) (2 — my1a(2)) +¢)] = 0.
Plugging this the first order condition into derivative (hyy1)!, (my1(x) 4+ (' — x),2"), we have:

(s ) (M1 () + (2" — ), ") = Up(miga () + (2" — 2)) = B+ 7)Eg[vg 41 (14 7) (2 — miga (7)) + )]
= U'(myga(2) + (2" — 2)) = Up(miga (2))-
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The last equation U/ (my41(x) + (2" — x)) — U/ (my41(x)) > 0 for & < & p11 1.€., mp41(z) < m because
x' > x and decreasing property of U/(m) by (ii) in Lemma EC.5. So, we conclude (hj1)!, (myi1(x) +
(2" —x),2") > 0. This implies that decreasing the spending amount in m = my1(x) + (2’ — x) reduces the
objective value hy1(m,x’). So, for © < Z; 41, we have my1(x") < myy1(x) + (2 — ). For & > & 411,

we have my, 1 (z) = m. Above all, z — m;1(x) is non-decreasing.

EC.4.5.4. Decreasing property of U"(my.1(x))my1°(z) for x > 5, ;.1 where 0 <my;(x) <
x: For state > §; 11, we have 0 < my 1 (x) < z. Then, the spending amount m.,, () satisfies first order

condition:

(hi1) g (Mg (2), ) = 0

= Ul(mya(2)) = B+ 1)Eg [ (1 +7) (2 —mia(2)) + )]

Then, we take the right derivative of the first order condition:

(U)4 (e (@) (m1 )y (@) = B+ ) (1= (miesr)s (2)) Eg[o 1 (L4 7) (@ — miya (2) + )]

We have similar equation for the left derivative:

(UL (mpesa (@) (m41) () = B+ 1) (1 = (mue1) () Eg [0 (1 +7) (2 — mpsa (7)) + )

For above two equations, we merge the terms about (my.1)’ (z) and (my4q1)” () and multiply

(U,) (my41(x)) and (U,)” (mr41(x)) on both sides, respectively. By rearranging the terms and solving

for (my41)’, () and (my1)" () respectively, we obtain:

1 /! _ 1 1 ' .
sy 0)= (S i T =@l O]
(EC.4.46)

and

"(mpgr () (Mmprr) (x) = L L B
(U= (s (@) (M)~ () (5(1+r>2Eq[<vk+1>':<<1+r><x—mk+l<m>>+q>1*(Unumm(x))) |
(EC.4.47)

We check the monotonicity of (U,)} (mii1(x))(me41)’ (x) and (U,)” (myq1(2))(mis1)”(x) by the
monotonicity of right-hand-side of (EC.4.46) and (EC.4.47).

* By (iii) in Lemma EC.5, U/ (m) is piece-wise constant and decreasing in x.

* Since x — my,41 () is non-decreasing in = and v” (x) is decreasing in x, we have that E, [(vi11)" ((1+

r)(x —mys1(x)) 4 q)] is decreasing in .
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So, by above discussion, both two  functions  (U,)|(myi1(z))(mys1),(x)  and
(U)" (myy1(x))(mry1)"(z) are decreasing in z. At the discontinuous point x satisfying my.1(x) = m,.
or my41(x) = m, by (iii) in Lemma EC.5, we have (U,)" (mi11(x)) < (U,)” (my41(2)). So, we have
(U)L (mpga(2)) (M) () < (Ur)” (mgga(2)) (Mig1)” () at the discontinuous point. This completes
our analysis of the decreasing property of U” (my11(x))mj . (x).

With the result in Section EC.4.5.1 — EC.4.5.4, by mathematical induction, we know m*(z) piece-wise

concave in x. Then, we use a similar analysis in Section EC.4.5.4 for m*(x):

o B4 ), [0 (1 +7)(z (@) +0)
B ([T o R R A T e M
Y B+ ) (0) (14 7)o = () +0)
(m*)}(z) = BT PE (1 1) — () T.0) £ (O e @] (EC.4.49)

The discontinuous point occurs in two reasons:

* Discontinuity due to v”(x). At these discontinuous points, we have (U,.)” (m) > (U,)" (m) We have
that m/(z) is increasing in E,[v” ((1+7)(z —m(x)) + q)]. With that the function E,[v" ((1+7)(x —m(x))+
q)] at discontinuous point satisfies v” (z) > v/ (x), By (EC.4.48) and (EC.4.49), we have that m* (x) >
m/’, (x) holds at the discontinuous point incurred by v” (), which will not break the concavity of m(x).

* Discontinuity due to U (m*(x)). This discontinuous point x satisfies (U,.)” (m) > (U,)’/ (m) at this
discontinuous point m, and m. By (EC.4.48) and ((EC.4.49)), this breaks the concavity as it leads to
(m*)"_(x) < (m*)! (x). But U/ (m) only jumps at these points and is constant in subsequent intervals.

Therefore, considering the above two cases, the discontinuous point, breaking the concavity, only occurs
at the discontinuous point due to U/ (m). They are the state = satisfying = = inf{z|m*(x) = m,} and
x = inf{x|m*(x) = m}. At the discontinuous point, we have (U,.)"} (x) < (U,)" (x), so m’ (x) > m* ().

For the cap policy, we can follows the proof to get the result of statement (ii) in Theorem 3.

EC.4.6. Proof of Theorem 4
In this section, we give the proof of Theorem 4, which compares the performance of non-pooling (NP),
full pooling (FP) and monetary pooling (MP) systems in different assumptions of services costs in dynamic
model. Based on the definition of value function v(s) in (24), the value function is determined by these
parameters: discount factor /3, inflow ¢, interest rate 7, and single-period utility function U (m). If all these
parameters or functions are identical, the value function are the same. Consequently, under identical value
functions, the total discounted utility loss are the same if initial fund levels are the same.

(i) MP>FP and MP>NP: From equations (EC.1.7), (EC.1.8) and (EC.1.9), for each period and state vec-
tor s, AFP)(s) C AMP)(s) and AN (s) C AMP)(s). Therefore, for any inflow vector, actions feasible

in NP and FP systems are also feasible in MP. This implies v**)(s) < v¥?)(s) and vM) (s) < v(FP)(s).
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(ii) FP=MP under cap policy or ratio policy with homogeneous cost: By Theorem 1, the utility loss
UMP) = UFP) and UMP) = UFP) under this case. So, as we discussed, MP and FP systems have totally
the same discount 3, inflow ¢, rate r for the pooled group, and single period utility loss function U (m). So
we know v(MP)(s) = v FP)(s).

As mentioned above, FP achieves the same performance as MP if (i).cap policy is used; (ii). ratio policy

is used, but the costs are homogeneous. Similar, FP>-NP.

EC.4.7. Proof of Lemma 4

In this section, we give the proof of Lemma 4. Recall that K homogeneous groups have the same incidence
rate (b, h), distribution of service costs (C\, C"), distributions of inflow {¢{”}2,, and initial fund
level s((f). The services costs satisfy the homogeneous assumption. By Theorem 1, the single period utility
loss satisfies U(MP) = UFP) < UWVP)_Given identical (h\Y, h{¥) and (C, C) across groups, the service
incidence for the pooled Group is h§p ) = Zfil w(i)h§i) = hg.l). By (EC.1.10), the pooled group’s service
costs satisfy C](»p) = C’J(.l). From the definitions of h;p), CJ(»p) and U¥P) in (EC.1.11), we have UFP) =
UD=U® = =U% =UNP) where U") denotes the utility loss under the optimal policy for Group i.
Therefore, UF'P) = UNP) = 7 (MP),

For the total discounted costs vV P), v(FP) and vMP) we consider two cases:

() {q¢9}i=1.2.. i are perfectly correlated. For each i, j = 1,2, ..., K,we have

Cov(q®,q9)
VVar(g®)Var(qW)

corr(q"”,qV) =

By Cauchy-Schwarz inequality (Pishro-Nik 2014), we have

Cov(q®,¢) < \/v@r(qm)vw(q(j)),

with equality if and only if ¢'* = «;;¢¥) for some constant ;. Perfectly correlation implies that the equality
in Cauchy-Schwarz inequality holds, Since the inflow in groups ¢) and ¢\/) have the same distribution,
this leads to a;; = 1 and ¢ = ¢, Thus, inflow for all group satisfies ¢/V) = ¢® = ... = ¢ The pooled

Group inflow is

K
q(p) - Z w(i)q(i) - q(l)7
i=1

where w = N@ /S N s the population weight of groups which satisfies 31 | w(®) = 1. By (24), the

value function is given by:

v(s) :=minE, iﬂt (s, m(s¢))| s0 =15
t=0
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The value function only depends on the parameter discount 3, inflow ¢, rate 7, and single period utility
function @. Since these parameters are the same for each Group including the pooled Group, we have
pWP) — (1) — @) = | = (K) = (F'P) — (M P)

(i1) {q("') }iz1.2,. x are not perfectly correlated. We prove that v(NP) > (FP) can occur using the case K =
2. Consider ¢/, ¢ ~ U(0, 3) and the correlation between inflows of two groups is corr(q¢¥, ¢®) = —1.
Then, for the pooled Group, the inflow is ¢ = 1.5, constant in each period. Let parameter be (cp,cg) =
(5,20); (hp, hs) = (0.1,0.05); and s\ = s{” = 1.5. So, the full cover spending amount in each period is
m = 1.5 for all Group 1, Group 2, and pooled Group. Thus the total discounted utility loss for pooled Group
vFP) = 0 in a full pooling system. In a non-pooling system, the total utility loss is positive because there
is a 0.5 probability of incurring a loss in period 1, which implies v(¥7) > 0 = v*'7)_ Therefore, FP could
be better than NP even when all the parameters of groups are the same. The more detailed example can be

seen in Section EC.1.4.
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